RU2645503C1 - Резинополимерный материал для внутренней футеровки гидроциклонов - Google Patents

Резинополимерный материал для внутренней футеровки гидроциклонов Download PDF

Info

Publication number
RU2645503C1
RU2645503C1 RU2016147287A RU2016147287A RU2645503C1 RU 2645503 C1 RU2645503 C1 RU 2645503C1 RU 2016147287 A RU2016147287 A RU 2016147287A RU 2016147287 A RU2016147287 A RU 2016147287A RU 2645503 C1 RU2645503 C1 RU 2645503C1
Authority
RU
Russia
Prior art keywords
cis
oil
carbon black
uhmwpe
hydrocyclones
Prior art date
Application number
RU2016147287A
Other languages
English (en)
Inventor
Олимпиада Евгеньевна Попова
Юрий Юрьевич Гаврилов
Дмитрий Владимирович Парков
Original Assignee
Федеральное государственное бюджетное научное учреждение "Федеральный исследовательский центр "Красноярский научный центр Сибирского отделения Российской академии наук" (ФИЦ КНЦ СО РАН, КНЦ СО РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное научное учреждение "Федеральный исследовательский центр "Красноярский научный центр Сибирского отделения Российской академии наук" (ФИЦ КНЦ СО РАН, КНЦ СО РАН) filed Critical Федеральное государственное бюджетное научное учреждение "Федеральный исследовательский центр "Красноярский научный центр Сибирского отделения Российской академии наук" (ФИЦ КНЦ СО РАН, КНЦ СО РАН)
Priority to RU2016147287A priority Critical patent/RU2645503C1/ru
Application granted granted Critical
Publication of RU2645503C1 publication Critical patent/RU2645503C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C5/00Apparatus in which the axial direction of the vortex is reversed
    • B04C5/08Vortex chamber constructions
    • B04C5/085Vortex chamber constructions with wear-resisting arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C5/00Apparatus in which the axial direction of the vortex is reversed
    • B04C5/08Vortex chamber constructions
    • B04C5/107Cores; Devices for inducing an air-core in hydrocyclones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Tires In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Изобретение относится к изготовлению футеровок внутренней части гидроциклонов - песковых насадок, работающих в водной среде и среде слабых растворов кислот и щелочей для обеспечения защиты от абразивного износа. Композиционный материал включает комбинацию стереорегулярного цис-1,4-полиизопрена с содержанием звеньев цис-1,4 не менее 96% - СКИ-3 и стереорегулярного полибутадиена с содержанием звеньев цис-1,4 87-95 % - СКД-1, сверхвысокомолекулярный полиэтилен, модифицированный 6,5 мас.% модификатора - карбида кремния с размером фракции не более 40-60 мкм, серу, 2МБТ, гуанид Ф, стеарин, белила цинковые, техуглерод П-330 и П-803, воск ЗВ-1, парафин, инден-кумароновую смолу, рубракс, масло ПН-6, ацетонанил Н, диафен ФП, фталевый ангидрид. Изобретение позволяет получать резинополимерный материал с повышенной каркасностью, износостойкостью, морозостойкостью. 2 табл., 1 пр.

Description

Изобретение относится к полимерному композиционному материалу и может быть использовано для изготовления футеровок внутренней части гидроциклонов - песковых насадок, работающих в водной среде и среде слабых кислот и щелочей и обеспечивающих защиту от абразивного износа его внутренних металлических поверхностей. Изобретение может быть использовано также для футеровки любого горнообогатительного, горнодобывающего и другого оборудования, для изготовления формовых резинотехнических изделий, работающих в режиме повышенного абразивного износа.
Песковая насадка представляет собой нижний конус гидроциклона и выполняет функции вывода воды с фракциями породы в виде песка и среднекусковых частиц при высоких скоростях смеси. Проблема при эксплуатации - интенсивный абразивный износ внутренней части песковой насадки в результате контакта с твердыми частицами породы. Песковые насадки быстро выходят из строя, приобрести их можно только вместе с гидроциклоном, что крайне невыгодно.
Современные композиционные материалы образованы объемным сочетанием химически разнородных компонентов с четкой границей раздела между ними, при этом они характеризуются свойствами, которыми не обладает ни один из компонентов, взятый в отдельности. Композит состоит из связующего материала (матрицы), армирующих материалов, наполнителей, специальных добавок. Состав композитов зависит от комплекса требований к их физико-механическим, морозоустойчивым, износостойким, теплофизическим и другим характеристикам. В связи с этим при создании композитов необходимо подобрать компоненты, которые оказывают комплексное воздействие на полимерную матрицу, обеспечивая синергетический эффект.
Известен композиционный материал на основе стереорегулярного цис-1,4-полиизопрена СКИ-3 - резиновая смесь ИРП 1370, содержащая техуглерод П-324, противостарители, воск ЗВ-2, ацетонанил, диафен ФП, в качестве вулканизующего агента серу, в качестве ускорителя - сульфенамид Ц. Материал обладает высокой эластичностью и морозостойкостью.
Однако стойкость его к гидроабразивному износу в режиме высоких скоростей при транспортировке сильноистирающих среднекусковых материалов недостаточна.
Известен композиционный маслобензостойкий, износоморозостойкий материал на основе бутадиен-нитрильного каучука [патент RU 2425850, МПК C08L 9/00, C08L 23/06, опубл. 10.08.2011], содержащий в качестве наполнителей техуглерод П-324 и сверхвысокомолекулярный полиэтилен, модифицированный карбидом кремния, мягчитель - диоктилфталат, серную вулканизующую группу, противостарители. Материал имеет высокую износостойкость, стойкость к действию низких температур, высокую маслобензостойкость и применяется для изготовления резиновых технических изделий, работающих в среде масел и бензина, в абразивных средах при пониженных температурах.
Однако его характеристики недостаточны для работы в режиме трения, необходимой при эксплуатации, при этом для песковых насадок совершенно не требуется маслобензостойкость.
Известен способ футеровки гидроциклона [патент RU 2218994, МПК В04С 5/085, опубл. 20.12.2003]. Изобретение относится к футеровкам или износостойким покрытиям, защищающим корпуса гидроциклонов от абразивного и кавитационного износа. На покрытую клеем внутреннюю перфорированную поверхность корпуса гидроциклона укладывают в несколько слоев откалиброванные по толщине полосы сырой резиновой смеси с промазкой их клеем и прокаткой ручными обжимными роликами. Затем прижимают нанесенное покрытие к внутренней металлической поверхности гидроциклона при помощи специальной оснастки, в которую входят пуансон с пружинами сжатия и крепежными деталями. После этого помещают корпус гидроциклона с нанесенным покрытием и оснасткой в электрическую печь, нагревают до температуры вулканизации резины и выдерживают в течение необходимого для полной полимеризации резиновой футеровки времени при атмосферном давлении. По окончании формообразования футеровки извлекают корпус гидроциклона из электрической печи, выдерживают при комнатной температуре до полного остывания и разбирают оснастку. Использование изобретения позволяет получать износостойкую, монолитную и цельнопрессованную резиновую футеровку с высокой адгезией к внутренней поверхности металлического корпуса гидроциклона. Этот способ трудоемкий и в условиях производственной добычи неприемлем.
Наиболее близким аналогом, принятым за прототип, является композиционный материал [патент RU 2505562, МПК C08L 9/00, C08L 23/06, опубл. 27.01.2014] на основе стереорегулярного цис-1,4-полиизопрена (СКИ-3), включающий 10,0 масс. ч. сверхвысокомолекулярного полиэтилена (СВМПЭ), модифицированного карбосилом с размером частиц не более 50 мкм в количестве 7% от массы СВМПЭ с последующей механоактивацией.
Данный материал был разработан для наружных обкладок резинотканевых конвейерных лент, характеризуется высокой стойкостью к истиранию, морозостойкостью. Однако стойкость его к действию скользящих многократных деформаций трения в водной среде недостаточна.
Задачей изобретения является разработка композиционного материала для изготовления футеровок внутренней части гидроциклонов - песковых насадок, с повышенной каркасностью и износостойкостью при высоких скоростях подаваемой из гидроциклона водно-песковой смеси и среднекусковых материалов.
Техническим результатом изобретения является разработка композиционного материала для изготовления футеровок внутренней части гидроциклонов - песковых насадок с повышенной стойкостью к интенсивному гидроабразивному износу, многократным ударным нагрузкам и стойкостью к старению.
Технический результат достигается тем, что разработан композиционный материал на основе комбинации доступного и недорогого синтетического цис-изопренового каучука СКИ-3 отечественного производства и цис-бутадиенового каучука СКД-1 отечественного производства. В качестве армирующего материала использован модифицированный карбидом кремния сверхвысокомолекулярный полиэтилен (СВМПЭ). За счет введения в композицию модифицированного карбидом кремния СВМПЭ повышена каркасность готового изделия, значительно улучшена износостойкость в режиме трения скольжения, а также морозостойкость. При этом сохранена стойкость к действию механических сил.
В качестве матрицы принята комбинация стереорегулярного цис-1,4-полиизопрена с содержанием звеньев цис-1,4 не менее 96% (СКИ-3) и стереорегулярного полибутадиена с содержанием звеньев цис-1,4 87-95% (СКД-1). В качестве наполнителей использована комбинация активного технического углерода П-330 и малоактивного технического углерода П-803. Вулканизующая группа содержит: неорганический ускоритель вулканизации - окись цинка, органический активатор вулканизации - стеариновую кислоту, основное вулканизующее вещество - серу, органические ускорители вулканизации: 2-Меркаптобензтиазол (2МБТ) и N,N1-дифенилгуанидин (гуанид Ф). В качестве химических противостарителей (антиоксидантов) вводили -N-фенил-N'-изопропилпарафенилендиамин (диафен ФП) и полимеризованный 2,2,4-триметил-1,2-дигидрохинолин (ацетонанил Н); в качестве физического противостарителя для защиты от озонного растрескивания применяют воск ЗВ-1 - сплав твердых углеводородов мелкокристаллической структуры и парафин нефтяной. Для улучшения технологических свойств смеси в качестве замедлителя преждевременной вулканизации при смешении вводят ангидрид фталевой кислоты. Поскольку смеси с применением каучука СКД вызывают определенные трудности при переработке на смесительном оборудовании, то для улучшения клейкости смеси и как дополнительные мягчители вводят смолу инден-кумарованную (КИС) и битум нефтяной (рубракс). Рубракс одновременно улучшает распределение ингредиентов при смешении и каркасность готового изделия. Основным мягчителем в заявляемом материале является высокоочищенное нефтяное масло ПН-6 с содержанием звеньев ароматических углеводородов около 80%.
Для улучшения износостойкости в режиме трения, а следовательно, улучшения эксплуатационных характеристик композиционного материала используют модифицированный сверхвысокомолекулярный полиэтилен (СВМПЭ), который относится к классу полиэтиленов низкого давления (ПЭПД). Благодаря своей уникальной структуре, гигантской молекулярной массе СВМПЭ имеет более высокие физико-механические характеристики, стойкость к агрессивным средам, улучшенные триботехнические свойства, чем остальные полиэтилены класса ПЭПД. СВМПЭ модифицировали углеродосодержащим модификатором карбидом кремния с размером фракции не более 40-60 мкм в количестве 6,5% от массы СВМПЭ.
Применяемый в качестве модификатора карбид кремния - синтетическое бинарное неорганическое химическое соединение SiC. В силу исключительно высоких абразивных свойств его применяют как абразивный износостойкий химически инертный материал при изготовлении инструмента для шлифования вязких, твердых минералов, германиевых пластин, при полировке и доводке деталей в точной механике, в атомной энергетике и других отраслях промышленности.
В отличие от прототипа, СВМПЭ не подвергался предварительной механоактивации, что значительно уменьшило энергоемкость при изготовлении предлагаемого материала. Ингредиенты, входящие в состав композиционного материала отечественного производства, недороги и доступны.
Технологический процесс изготовления изделий из этого материала не требует специального оборудования и дополнительных затрат, монтаж песковой насадки можно производить непосредственно на месте работа гидроциклона.
Состав материала композиционного износостойкого материала на основе цис-изопренового каучука (СКИ-3) и стереорегулярного цис-1,4-полибутадиена (СКД-1) приведен в таблице 1.
Figure 00000001
Figure 00000002
Пример получения заявленного материала
Подготавливали навески ингредиентов композиционного материала по массе согласно рецепту.
Навеску карбида кремния 6,5% от массы СВМПЭ, совместно с навеской СВМПЭ, загружали в приемный бункер дезинтегратор серии «Основа» ДИ 0,12 и перемешивали при 4220 оборотов ротора в минуту 6-8 мин. Такой способ смешения обеспечивает максимально равномерное распределение карбида кремния в СВМПЭ. Полученный гомогенный состав навешивали согласно рецепту. Подготавливали навески каучука, и других ингредиентов композиционного материала по весу согласно рецепту. Смешение композиционного материала производили на вальцах ПД 320 160/160 при температуре поверхности валков 45±5°С. Последовательность ввода ингредиентов: вальцевали каучук СКИ-3 при зазоре между валками 1±0,5 мм, вводили СКД-1, смешивали 8-10 мин, вводили модифицированный СВМПЭ, затем регулировали величину зазора вальцов так, чтобы между валками находился хорошо обрабатываемый запас смеси. Вводили гуанид Ф, 2МБТ, цинковые белила, антиоксиданты, фталевый ангидрид, стеариновую кислоту, инден-кумароновую смолу, воск ЗВ-1, рубракс, парафин, технические углероды П-330 и П-803 совместно с маслом ПН-6, серу. Общее время смешения 35-40 мин.
Вулканизацию лабораторных образцов проводили на вулканизационном прессе 800×800 при температуре 151°С в течение 20 мин при давлении на площадь ячейки не менее 45 МПа.
Испытания проводили следующим образом:
- условная прочность при растяжении, относительное удлинение при разрыве определяли по ГОСТ 11262 - изменение нормы относительного удлинения при разрыве после старения в воздухе при температуре 100°С в течение 24 час определяли по ГОСТ 9.024;
- коэффициент морозостойкости при растяжении при минус 50°С определяли по ГОСТ 408;
- потери объема при истирании определяли по ГОСТ 23509;
- истираемость определяли по ГОСТ 426-77;
- твердость определяли по ГОСТ 263.
Свойства композиционного материала на основе цис-изопренового каучука (СКИ-3) и стереорегулярного цис-1,4-полибутадиена (СКД-1) приведены в таблице 2.
Figure 00000003
Figure 00000004
Как следует из приведенных данных, заявляемый материал для песковых насадок превосходит прототип по показателю истираемости и морозостойкости, при этом показатели прочности при разрыве, изменение относительного удлинения при разрыве после старения в воздухе при температуре 100°С в течение 24 часов находится на уровне прототипа. Несколько ниже показатель относительного удлинения при разрыве, увеличилась твердость. Учитывая, что песковые насадки работают в статическом режиме, не подвергаются деформациям изгиба, растяжения, то этот показатель является второстепенным при эксплуатации изделия.
Превалирующее требование к изобретенному материалу - высокая стойкость к гидроабразивному износу и каркасность определяют низкие показатели истираемости - 57 см3 кВт/час, потери объема при истирании - 36 мм3 и повышенная твердость 75-80 усл. ед.

Claims (2)

  1. Композиционный материал для изготовления футеровок внутренней части гидроциклонов - песковых насадок, включающий СКИ-3-стереорегулярный цис-1,4-полиизопрен, СКД-1 - стереорегулярный цис-1,4-полибутадиен, сверхвысокомолекулярный полиэтилен - СВМПЭ, модифицированный карбидом кремния с размером фракции не более 40-60 мкм в количестве 6,5 мас. % от массы СВМПЭ, активный технический углерод П-330, малоактивный технический углерод П-803, 2МБТ - 2-Меркаптобензтиазол, Гуанид Ф - N,N1-дифенилгуанидин, парафин нефтяной, смола инден-кумароновая, рубракс - битум нефтяной, масло ПН-6 - высокоочищенное нефтяное масло, ацетонанил Н - 2,2,4 триметил-1,2-дигидрохинолин, диафен ФП - N-фенил-N'-изопропилпарафенилендиамин, фталевый ангидрид при соотношении компонентов, масс. ч.:
  2. СКИ-3 стереорегулярный цис-1,4-полиизопрен 40,0 СКД-1 стереорегулярный цис-1,4-полибутадиен 60,0 СВМПЭ – модифицированный сверхвысокомолекулярный полиэтилен 20,0 сера 1,5 2МБТ - 2-меркаптобензтиазол 0,8 гуанид Ф - N,N1-дифенилгуанидин 3,0 стеарин 1,0 белила цинковые 5,0 техуглерод П-330 60,0 техуглерод П-803 30,0 воск ЗВ-1 2,0 парафин нефтяной 2,0 смола инден-кумароновая 4,0 рубракс - битум нефтяной 5,0 масло ПН-6 - 10,0 высокоочищенное нефтяное масло ацетонанил Н - 2,2,4 1,0 триметил-1,2-дигидрохинолин диафен ФП - N-фенил-N' 1,0 изопропилпарафенилендиамин фталевый ангидрид 1,0
RU2016147287A 2016-12-01 2016-12-01 Резинополимерный материал для внутренней футеровки гидроциклонов RU2645503C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016147287A RU2645503C1 (ru) 2016-12-01 2016-12-01 Резинополимерный материал для внутренней футеровки гидроциклонов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016147287A RU2645503C1 (ru) 2016-12-01 2016-12-01 Резинополимерный материал для внутренней футеровки гидроциклонов

Publications (1)

Publication Number Publication Date
RU2645503C1 true RU2645503C1 (ru) 2018-02-21

Family

ID=61258900

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016147287A RU2645503C1 (ru) 2016-12-01 2016-12-01 Резинополимерный материал для внутренней футеровки гидроциклонов

Country Status (1)

Country Link
RU (1) RU2645503C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA038086B1 (ru) * 2019-03-29 2021-07-05 Федеральное государственное автономное образовательное учреждение высшего образования "Северо-Восточный федеральный университет имени М.К. Аммосова" Полимерная композиция конструкционного назначения на основе сверхвысокомолекулярного полиэтилена, оксида цинка, 2-меркаптобензотиазола и серы
RU2800451C1 (ru) * 2022-07-05 2023-07-21 Общество с ограниченной ответственностью "Кировская композиция по переработке полимерных материалов" (ООО "ККППМ") Полиуретановый композиционный материал

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU969318A1 (ru) * 1980-11-05 1982-10-30 Джезказганский Ордена Ленина Горнометаллургический Комбинат Им.К.И.Сатпаева Футеровка гидроциклона
JPS6238255A (ja) * 1985-08-12 1987-02-19 Mitsubishi Heavy Ind Ltd 除塵装置
EP0266669B1 (de) * 1986-10-29 1990-08-01 AKW Apparate und Verfahren GmbH Hydrozyklon, bzw. Hydrozyklonteile, sowie Verfahren zu deren Herstellung
RU2173583C1 (ru) * 2000-12-20 2001-09-20 Зимин Алексей Владимирович Гидроциклон
RU2218213C1 (ru) * 2001-09-25 2003-12-10 Сергей Николаевич Кущенко Циклон с защитной резиновой футеровкой и способ изготовления циклона с защитной резиновой футеровкой (варианты)
RU2218994C1 (ru) * 2002-05-28 2003-12-20 Дочернее унитарное предприятие "Турбонасос" Федерального государственного унитарного предприятия "Конструкторского бюро Химавтоматики" Способ футеровки гидроциклона
RU2505562C1 (ru) * 2012-05-22 2014-01-27 Федеральное Государственное Бюджетное Учреждение Науки Институт Химии И Химической Технологии Сибирского Отделения Российской Академии Наук (Иххт Со Ран) Композиционный материал на основе синтетического цис-изопренового каучука и сверхвысокомолекулярного полиэтилена (свмпэ) для наружных обкладок конвейерных лент

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU969318A1 (ru) * 1980-11-05 1982-10-30 Джезказганский Ордена Ленина Горнометаллургический Комбинат Им.К.И.Сатпаева Футеровка гидроциклона
JPS6238255A (ja) * 1985-08-12 1987-02-19 Mitsubishi Heavy Ind Ltd 除塵装置
EP0266669B1 (de) * 1986-10-29 1990-08-01 AKW Apparate und Verfahren GmbH Hydrozyklon, bzw. Hydrozyklonteile, sowie Verfahren zu deren Herstellung
RU2173583C1 (ru) * 2000-12-20 2001-09-20 Зимин Алексей Владимирович Гидроциклон
RU2218213C1 (ru) * 2001-09-25 2003-12-10 Сергей Николаевич Кущенко Циклон с защитной резиновой футеровкой и способ изготовления циклона с защитной резиновой футеровкой (варианты)
RU2218994C1 (ru) * 2002-05-28 2003-12-20 Дочернее унитарное предприятие "Турбонасос" Федерального государственного унитарного предприятия "Конструкторского бюро Химавтоматики" Способ футеровки гидроциклона
RU2002113982A (ru) * 2002-05-28 2004-02-20 Дочернее унитарное предпри тие "Турбонасос" Федерального государственного унитарного предпри ти "Конструкторского бюро Химавтоматики" Способ футеровки гидроциклона
RU2505562C1 (ru) * 2012-05-22 2014-01-27 Федеральное Государственное Бюджетное Учреждение Науки Институт Химии И Химической Технологии Сибирского Отделения Российской Академии Наук (Иххт Со Ран) Композиционный материал на основе синтетического цис-изопренового каучука и сверхвысокомолекулярного полиэтилена (свмпэ) для наружных обкладок конвейерных лент

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA038086B1 (ru) * 2019-03-29 2021-07-05 Федеральное государственное автономное образовательное учреждение высшего образования "Северо-Восточный федеральный университет имени М.К. Аммосова" Полимерная композиция конструкционного назначения на основе сверхвысокомолекулярного полиэтилена, оксида цинка, 2-меркаптобензотиазола и серы
RU2800451C1 (ru) * 2022-07-05 2023-07-21 Общество с ограниченной ответственностью "Кировская композиция по переработке полимерных материалов" (ООО "ККППМ") Полиуретановый композиционный материал

Similar Documents

Publication Publication Date Title
CN101597391B (zh) 一种高耐磨丁腈橡胶硫化胶及其制备方法
CN102604174B (zh) 一种白炭黑补强的高耐磨覆盖胶及其制备方法
CN102634089B (zh) 硬质矿区使用的轮胎胎面橡胶组合物及其生产方法
CN104031296B (zh) 全钢子午线轮胎带束层垫胶配方及胶料制备工艺
CN104194079B (zh) 一种复合材料密封圈及其制作工艺
RU2381242C2 (ru) Композиционный износостойкий материал на основе сверхвысокомолекулярного полиэтилена (свмпэ)
CN102276884B (zh) 高强伸抗磨环保橡胶鞋底胶及其制备方法
RU2437903C2 (ru) Композиционный маслобензостойкий износо-морозостойкий материал
CN102675701B (zh) 一种压缩生热低且滚动阻力小的橡胶组合物
CN106751018A (zh) 一种耐高温防龟裂输送带覆盖胶及其制备方法
CN101602867B (zh) 一种改性氯丁橡胶v带及其制备方法
EP2196325B1 (en) Tire with a tread comprising coal dust
GB2085019A (en) Friction material
CN109749146B (zh) 一种用于轮胎钢丝带束层的低生热橡胶组合物
RU2645503C1 (ru) Резинополимерный материал для внутренней футеровки гидроциклонов
US4546143A (en) Rubber vulcanisates, having a Shore A hardness of below 65°
CN109053981B (zh) 一种砼活塞材料、高耐磨混凝土泵用砼活塞及其制备方法
Koraboyevna RAW MATERIALS IN THE AUTOMOTIVE TIRE MANUFACTURING INDUSTRY
Pal et al. Influence of fillers on NR/SBR/XNBR blends. Morphology and wear
CN109111645A (zh) 一种阻燃橡胶组合物及复合阻燃剂
Pal et al. Use of carboxylated nitrile rubber and natural rubber blends as retreading compound for OTR tires
CN114230971A (zh) 一种适用于动力集中动车组的复合闸片及其制备方法
RU2505562C1 (ru) Композиционный материал на основе синтетического цис-изопренового каучука и сверхвысокомолекулярного полиэтилена (свмпэ) для наружных обкладок конвейерных лент
Mao et al. Design of convex‐hull bionic tire tread compounds and mechanism on collaborative improvement of wet resistance and wear resistance
CN102675695B (zh) 具有低生热和低滚动阻力的橡胶组合物