RU2645203C1 - Система автоматического управления микроклиматом в помещениях для размещения животных - Google Patents

Система автоматического управления микроклиматом в помещениях для размещения животных Download PDF

Info

Publication number
RU2645203C1
RU2645203C1 RU2016152442A RU2016152442A RU2645203C1 RU 2645203 C1 RU2645203 C1 RU 2645203C1 RU 2016152442 A RU2016152442 A RU 2016152442A RU 2016152442 A RU2016152442 A RU 2016152442A RU 2645203 C1 RU2645203 C1 RU 2645203C1
Authority
RU
Russia
Prior art keywords
heat exchanger
pipeline
unit
pipelines
air heat
Prior art date
Application number
RU2016152442A
Other languages
English (en)
Inventor
Виктор Иванович Дикарев
Владимир Александрович Мельников
Владимир Васильевич Ефимов
Федор Владимирович Молев
Original Assignee
Открытое акционерное общество "Авангард"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Авангард" filed Critical Открытое акционерное общество "Авангард"
Priority to RU2016152442A priority Critical patent/RU2645203C1/ru
Application granted granted Critical
Publication of RU2645203C1 publication Critical patent/RU2645203C1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D15/00Other domestic- or space-heating systems
    • F24D15/04Other domestic- or space-heating systems using heat pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Central Heating Systems (AREA)

Abstract

Предлагаемая система относится к теплонасосным системам и установкам и может быть использована для горячего водоснабжения и отопления помещений. Система автоматического управления микроклиматом в помещениях для размещения животных, содержащая компрессор, два бака-аккумулятора, конденсатор, испаритель, два циркуляционных насоса, пиковый подогреватель, земляной трубопровод, воздушный теплообменник, блок адаптивной температурной селекции, испарительно-конденсаторный агрегат и два датчика реле температуры, при этом воздушный теплообменник и земляной трубопровод через блок адаптивной температурной селекции и первый циркуляционный насос соединены соответствующими трубопроводами с испарительно-конденсаторным агрегатом, который через трубопроводы первой ступени конденсатора и второй циркуляционный насос соответствующими трубопроводами соединен с первым баком-аккумулятором, в верхней части которого размещен второй бак-аккумулятор, соединенный с трубопроводами холодной воды и горячего водоснабжения, в средней части первого бак-аккумулятора размещены два датчика реле температуры, первый из которых соединен электрически с компрессором, а второй - с пиковым подогревателем, размещенный в нижней части первого бака-аккумулятора, соединенного с трубопроводами холодной воды и отопительных приборов. При этом блок адаптивной температурной селекции выполнен в виде соединенных механически выходных трубопроводов воздушного теплообменника и земляного трубопровода с входным трубопроводом испарительно-конденсаторного агрегата в виде соединенных шарнирно через первый шаровой переключатель выходного трубопровода испарительно-конденсаторного агрегата с входными трубопроводами воздушного теплообменника и земляного трубопровода, причем на выходных трубопроводах воздушного теплообменника и земляного трубопровода размещены температурные датчики, подключенные электрически через первый блок сравнения к первому исполнительному блоку, кинематически связанному с первым шаровым переключателем, в виде соединенных механически выходного трубопровода солнечного концентратора и обобщенного трубопровода воздушного теплообменника или земляного трубопровода с входным трубопроводом испарительно-конденсаторного агрегата с входными трубопроводами солнечного концентратора и обобщенным трубопроводом воздушного теплообменника или земляного трубопровода, причем на выходном трубопроводе солнечного концентратора и обобщенном трубопроводе размещены температурные датчики, подключенные электрически через второй блок сравнения к второму исполнительному блоку, кинематически связанному со вторым шаровым переключателем. Техническим результатом является обеспечение эффективной работы теплонасосной установки для отопления и горячего водоснабжения на протяжении всего года путем использования в качестве низкопотенциальных источников теплоты воздуха или грунта или солнечного концентратора в зависимости от температуры окружающей среды. 2 ил.

Description

Предлагаемая система относится к теплонасосным системам и установкам и может быть использована для горячего водоснабжения и отопления помещений, предназначенных для размещения сельскохозяйственных животных.
Известны теплонасосные системы и установки для утилизации вторичных энергетических ресурсов (авт. свид. СССР №№311.111, 458.691, 606.049, 918.729, 1.404.764, 1.478.000, 1.518.626, 1.537.986, 1.672.160, 1.740.912, 1.758.370, 1.783.259, 1.809.263; патенты РФ №№2.008.582, 2.032.866, 2.062.964, 2.099.663, 2.117.884, 2.159.904, 2.206.026; патенты США №№2.634.431, 4.373.346, 4.592.206; патент ФРГ №2.712.110; патенты Японии №№54-47.426, 56-48.777, 62-60.621; Хайнрих Г. и др. Теплонасосные установки для горячего водоснабжения. М.: Стройиздат, 1985, с. 109, рис. 48 и другие).
Из известных систем и установок наиболее близкой к предлагаемой является «Теплонасосная установка для отопления и горячего водоснабжения» (патент РФ №2.206.026, F24D 15/04, 2001), которая и выбрана в качестве прототипа.
Эффективность данной установки определяется коэффициентом преобразования Кпр, равным отношению производимой мощности NT к затрачиваемой электрической мощности Nэ
Figure 00000001
Величина Кпр в общем случае зависит от ряда факторов, в том числе от температуры воздуха, температуры воды и солнечной энергии.
В указанной установке в качестве низкопотенциальных источников теплоты используются воздух, который подается вентилятором из вентиляционной шахты, чердака и др. в трехпоточный испаритель (теплообменник), и грунт, в который установлен земляной трубопровод.
Кроме того, в известную установку введен специальный блок адаптивной температурной селекции, который в теплое время года в качестве низкопотенциального источника тепла использует воздух, а в холодное - грунт.
Воздушный теплообменник очень хорош весной и летом, но при температуре окружающего воздуха ниже 7°С резко снижается возможность его эффективного использования, так как с уменьшением температуры источника низкопотенциальной теплоты уменьшается подводимое к теплонасосной установке тепло и, как следствие, снижается величина коэффициента преобразования Кпр теплонасосной установки.
Основное преимущество теплонасосных установок, в том числе и выбранной в качестве прототипа, заключается в том, что они функционируют с высоким коэффициентом преобразования Кпр электрической энергии в тепловую, что приводит к значительному снижению затрат на потребляемую электроэнергию.
Величина Кпр для современных теплонасосных установок составляет от 3 до 8, что практически означает увеличение в такое же число раз значения выделяемой тепловой мощности по сравнению с затрачиваемой электрической мощностью.
Для того чтобы величина Кпр поддерживалась на высоком уровне (не ниже 3) в случае использования воздушного теплообменника, для отбора тепла от воздуха необходимо идти на значительное увеличение теплопередающей поверхности и создаваемого вентилятором расхода воздуха, т.е. применять оборудование больших габаритов с высоким электропотреблением. При условии, что температура воздуха выше 7°С, габариты теплообменника и потребляемая вентилятором мощность вполне приемлемы и сравнимы с параметрами кондиционеров такой же производительности.
Зимой, когда температура окружающего воздуха ниже 7°, блок 18 адаптивной температурной селекции подключает к испарительно-конденсаторному агрегату 7 земляной трубопровод 17.
Блок сравнения определяет максимальную из двух температур - воздуха или земли на текущий момент и дает команду на исполнительный блок с целью подключения теплообменника (воздушного или земляного соответственно), обеспечивающего более высокую температуру низкопотенциального источника тепла.
С целью обеспечения эффективной работы теплонасосной установки на протяжении всего года необходимо естественно использовать такой природный источник тепла как Солнце.
Технической задачей изобретения является обеспечение эффективной работы теплонасосной установки для отопления и горячего водоснабжения помещений для размещения животных на протяжении всего года путем использования в качестве низкопотенциальных источников теплоты воздуха или грунта или солнечного концентратора в зависимости от температуры окружающей среды.
Поставленная задача решается тем, что система автоматического управления микроклиматом в помещениях для размещения животных, содержащая, в соответствии с ближайшим аналогом, компрессор, два бака-аккумулятора, конденсатор, состоящий из двух секций, испаритель, два циркулярных насоса, пиковый подогреватель, земляной трубопровод, воздушный теплообменник, блок адаптивной температурной селекции, испарительно-конденсаторный агрегат и два датчика реле температуры, при этом воздушный теплообменник и земляной трубопровод через блок адаптивной температурной селекции и первый циркулярный насос соединены соответствующими трубопроводами с испарительно-конденсаторным агрегатом, который через трубопроводы первой ступени конденсатора и второй циркуляционный насос соответствующими трубопроводами соединен с первым баком-аккумулятором, в верхней части которого размещен второй бак-аккумулятор, соединенный с трубопроводами холодной воды и горячего водоснабжения, в средней части первого бак-аккумулятора размещены два датчика реле температуры, первый из которых соединен электрически с компрессором, а второй с пиковым подогревателем, размещенным в нижней части первого бака-аккумулятора, соединенного с трубопроводами холодной воды и отопительных приборов, отличается от ближайшего аналога тем, что она снабжена солнечным концентратором, содержащим солнечную батарею с фотоприемником, расположенным в фокусе цилиндрической линзы с возможностью вращения в зенитальной и азимутальной плоскостях с помощью соответствующих приводов, причем фотоприемник через блок адаптивной температурной селекции и первый циркуляционный насос соединен соответствующими трубопроводами с испарительно-конденсаторным агрегатом.
Блок адаптивной температурной селекции выполнен в виде соединенных механически выходных трубопроводов воздушного теплообменника и земляного трубопровода с выходным трубопроводом испарительно-конденсаторного агрегата в виде соединенных шарнирно через первый шаровой переключатель выходного трубопровода испарительно-конденсаторного агрегата с входными трубопроводами воздушного теплообменника и земляного трубопровода, причем на выходных трубопроводах воздушного теплообменника и земляного трубопровода размещены температурные датчики, подключенные электрически через первый блок сравнения к первому исполнительному блоку, кинематически связанному с первым шаровым переключателем, в виде соединенных механически выходного трубопровода солнечного концентратора и обобщенного трубопровода воздушного теплообменника или земляного трубопровода с входным трубопроводом испарительно-конденсаторного агрегата в виде соединенных шарнирно через второй шаровой переключатель выходного трубопровода испарительно-конденсаторного агрегата с входными трубопроводами солнечного концентратора и обобщенного трубопровода воздушного теплообменника или земляного трубопровода, причем на выходном трубопроводе солнечного концентратора и обобщенном трубопроводе размещены температурные датчики, подключенные электрически через второй блок сравнения к второму исполнительному блоку, кинематически связанному со вторым шаровым переключателем.
Принципиальная схема предлагаемой системы автоматического управления микроклиматом в помещениях для размещения животных представлена на фиг. 1. Схема блока адаптивной температурной селекции изображена на фиг. 2.
Система автоматического управления микроклиматом в помещениях для размещения животных содержит компрессор 1, первый бак-аккумулятор 2, конденсатор, состоящий из двух секций 3, 4, соединенных последовательно вместе с испарителем 5 по контуру 24 циркуляции хладагента, воздушный теплообменник 6, воздушный поток, к которому подается с помощью вентилятора 8 испарительно-конденсаторный агрегат 7, первый 9.1 и второй 9.2 датчики реле 9 температуры, первый 10 и второй 11 циркуляционные насосы, трубопроводы 12, 13, 14, 25, соединяющие испарительно-конденсаторный агрегат 7 и бак-аккумулятор 2, электрическую цепь 15, соединительный компрессор 1 и первый датчик 9.1 реле температуры, пиковый подогреватель 16, земляной трубопровод 17, блок 18 адаптивной температурной селекции, второй бак-аккумулятор 19, трубопроводы 20 и 21, соединяющие первый бак-аккумулятор 2 с отопительными приборами, трубопроводы 22 и 23, соединяющие второй бак-аккумулятор 19 с водопроводной сетью, контур 24 циркуляции хладагента, солнечный концентратор, содержащий солнечную батарею 31 с фотоприемником 32, расположенным в фокусе цилиндрической линзы 33 с возможностью вращения в зенитальной и азимутальной плоскостях с помощью соответствующих приводов 34 и 35, датчики 36 и 37, основание 38.
При этом воздушный теплообменник 6, земляной трубопровод 17 и солнечный концентратор через блок 18 адаптивной температурной селекции и первый 10 циркуляционный насос соединены соответствующими трубопроводами с испарительно-конденсаторным агрегатом 7, который через второй циркуляционный насос 11 соответствующими трубопроводами 12, 13, 14 и 25 соединен с баком-аккумулятором 2.
В верхней части первого бака-аккумулятора 2 размещен второй бак-аккумулятор 19, соединенный с трубопроводами 22 и 23 холодной воды и горячего водоснабжения, в средней части первого бака-аккумулятора 2 размещены датчики 9.1 и 9.2 реле 9 температуры, в нижней части первого бака-аккумулятора 2 размещен пиковый подогреватель 16, соединенный электрически с датчиком 9.2 реле 9 температуры, компрессор 1 электрически соединен с первым датчиком 9.1.
Бак-аккумулятор 2 соединен трубопроводами 20 и 21 с отопительными приборами. Испарительно-конденсаторный агрегатом 7 содержит компрессор 1, две секции 3,4 конденсатора и испаритель 5, последовательно включенные в контур 24 циркуляции хладагента.
Блок 18 адаптивной температурной селекции выполнен в виде соединенных механически выходных трубопроводов воздушного теплообменника 6 и земляного трубопровода 17 с входным трубопроводом испарительно-конденсаторного агрегата 7 в виде соединенных шарнирно через первый шаровой переключатель 30 выходного трубопровода испарительно-конденсаторного агрегата 7 с входными трубопроводами воздушного теплообменника 6 и земляного трубопровода 17, причем на выходных трубопроводах воздушного теплообменника 6 и земляного трубопровода 17 размещены температурные датчики 26 и 27, подключенные электрически через первый блок 28 сравнения к первому исполнительному блоку 29, кинематически связанному с первым шаровым переключателем 30, в виде соединенных механически выходного трубопровода солнечного концентратора и обобщенного трубопровода воздушного теплообменника 6 или земляного трубопровода 17 с входным трубопроводом испарительно-конденсаторного агрегата 7 в виде соединенных шарнирно через второй шаровой переключатель 43 выходного трубопровода испарительно-конденсаторного агрегата 7 с входными трубопроводами солнечного концентратора и обобщенным трубопроводом воздушного теплообменника 6 или земляного трубопровода 17, причем на выходном трубопроводе солнечного концентратора и обобщенном трубопроводе размещены температурные датчики 39 и 40, подключенные электрически через второй блок 41 сравнения ко второму исполнительному блоку 42, кинематически связанному с вторым шаровым переключателем 43.
Система автоматического управления микроклиматом в помещениях для размещения животных работает следующим образом.
Весной и летом, когда температура окружающего воздуха выше 7°С, в пасмурные дни блок 18 адаптивной температурной селекции подключает к испарительно-конденсаторному агрегату 7 воздушный теплообменник 6. При этом воздух, используемый в качестве низкопотенциального источника теплоты, подается вентилятором 8 из вентиляционной шахты, чердака и др. в воздушный теплообменник 6, передает теплоту хладагенту теплонасосного контура.
В солнечные дни, когда температура солнечного излучения значительно превышает температуру окружающего воздуха, то блок 18 адаптивной температурной селекции подключает к испарительно-конденсаторному агрегату 7 солнечный концентратор.
Зимой, когда температура окружающего воздуха ниже 7°С, в пасмурные дни блок 18 адаптивной температурной селекции подключает к испарительно-конденсаторному агрегату 7 земляной трубопровод, последний может быть выполнен из полиэтиленовой трубы с наружным диаметром 40 мм и внутренним 32 мм, укладываемой на глубину 1,2-1,5 м в зависимости от структуры грунта.
При небольших размерах целесообразно для уменьшения длины укладываемого в землю трубопровода, а следовательно, и длины траншеи вместо полиэтиленовой трубы применить медную трубу. Это существенно уменьшает площадь участка, необходимую для укладки земляного трубопровода, однако срок службы такого теплообменника сокращается с 50 до 20 лет.
В солнечный зимний день, когда температура солнечного излучения значительно превышает температуру грунта, то блок 18 адаптивной температурной селекции подключает к испарительно-конденсаторному агрегату 7 солнечный концентратор.
Блок 28 сравнения определяет максимальную из двух температур - воздуха или земли на текущий момент и дает команду на исполнительный блок 29 с целью подключения воздушного теплообменника 6 или земляного трубопровода 17, обеспечивающего более высокую температуру низкопотенциального источника тепла.
Блок 41 сравнения определяет максимальную из двух температур - солнечного концентратора или воздушного теплообменника 6 (земляного трубопровода 17) на текущий момент и дает команду на исполнительный блок 42 с целью подключения солнечного концентратора или воздушного теплообменника 6 (земляного трубопровода 17), обеспечивающего более высокую температуру низкопотенциального источника тепла.
Следовательно, теплонасосная установка совместно с блоком 18 адаптивной температурной селекции всегда работает в режиме, обеспечивающем наибольшую эффективность теплового насоса.
Эти установки целесообразно использовать прежде всего в животноводческих холдингах и фермерских хозяйствах.
Потребляемая от электросети энергия затрачивается главным образом на работу компрессора 1. В экстремальных ситуациях, когда температура наружного воздуха сильно понижена или когда необходимо быстро запустить систему, используется пиковый подогреватель 16, который работает от напряжения 220 В и потребляет мало электроэнергии.
Таким образом, предлагаемая система автоматического управления микроклиматом в помещениях для размещения животных по сравнению с прототипом и другими техническими решениями аналогичного назначения обеспечивает эффективную работу теплонасосной установки для отопления и горячего водоснабжения помещений для размещения животных на протяжении всего года. Это достигается за счет использования в качестве низкопотенциальных источников теплоты воздуха или грунта или солнечного концентратора в зависимости от температуры окружающей среды. При этом в качестве солнечного концентратора могут использоваться различные схемные решения.
Система может применяться в любых климатических условиях в животноводческих холдингах и фермерских хозяйствах, находящихся в сельской и пригородной местностях вдали от магистралей теплоснабжения. Для электропитания системы требуется четырехфазная четырехпроводная электрическая сеть переменного тока частотой 50 Гц напряжением 380 В с глухозаземленной нейтралью.
Система может использоваться в автоматическом режиме, не требующем присутствия человека. Система основана на экологически чистой технологии - отсутствуют выбросы в атмосферу вредных веществ и углекислоты, применяется озоно-безопасный тип хладона.
Эффективность теплонасосной установки для отопления и горячего водоснабжения проверена опытно-конструкторским бюро «Карат» на территории Ленинградской области.

Claims (1)

  1. Система автоматического управления микроклиматом в помещениях для размещения животных, содержащая компрессор, два бака-аккумулятора, конденсатор, состоящий из двух секций, испаритель, два циркуляционных насоса, пиковый подогреватель, земляной трубопровод, воздушный теплообменник, блок адаптивной температурной селекции, испарительно-конденсаторный агрегат и два датчика реле температуры, при этом воздушный теплообменник и земляной трубопровод через блок адаптивной температурной селекции и первый циркуляционный насос соединены соответствующими трубопроводами с испарительно-конденсаторным агрегатом, который через трубопроводы первой ступени конденсатора и второй циркуляционный насос соответствующими трубопроводами соединен с первым баком-аккумулятором, в верхней части которого размещен второй бак-аккумулятор, соединенный с трубопроводами холодной воды и горячего водоснабжения, в средней части первого бак-аккумулятора размещены два датчика реле температуры, первый из которых соединен электрически с компрессором, а второй - с пиковым подогревателем, размещенный в нижней части первого бака-аккумулятора, соединенного с трубопроводами холодной воды и отопительных приборов, отличающаяся тем, что блок адаптивной температурной селекции выполнен в виде соединенных механически выходных трубопроводов воздушного теплообменника и земляного трубопровода с входным трубопроводом испарительно-конденсаторного агрегата в виде соединенных шарнирно через первый шаровой переключатель выходного трубопровода испарительно-конденсаторного агрегата с входными трубопроводами воздушного теплообменника и земляного трубопровода, причем на выходных трубопроводах воздушного теплообменника и земляного трубопровода размещены температурные датчики, подключенные электрически через первый блок сравнения к первому исполнительному блоку, кинематически связанному с первым шаровым переключателем, в виде соединенных механически выходного трубопровода солнечного концентратора и обобщенного трубопровода воздушного теплообменника или земляного трубопровода с входным трубопроводом испарительно-конденсаторного агрегата с входными трубопроводами солнечного концентратора и обобщенным трубопроводом воздушного теплообменника или земляного трубопровода, причем на выходном трубопроводе солнечного концентратора и обобщенном трубопроводе размещены температурные датчики, подключенные электрически через второй блок сравнения к второму исполнительному блоку, кинематически связанному со вторым шаровым переключателем.
RU2016152442A 2016-12-28 2016-12-28 Система автоматического управления микроклиматом в помещениях для размещения животных RU2645203C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016152442A RU2645203C1 (ru) 2016-12-28 2016-12-28 Система автоматического управления микроклиматом в помещениях для размещения животных

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016152442A RU2645203C1 (ru) 2016-12-28 2016-12-28 Система автоматического управления микроклиматом в помещениях для размещения животных

Publications (1)

Publication Number Publication Date
RU2645203C1 true RU2645203C1 (ru) 2018-02-16

Family

ID=61226778

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016152442A RU2645203C1 (ru) 2016-12-28 2016-12-28 Система автоматического управления микроклиматом в помещениях для размещения животных

Country Status (1)

Country Link
RU (1) RU2645203C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110243007A (zh) * 2019-06-13 2019-09-17 科希曼电器有限公司 一种太阳能辅助的空气源热泵系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2013714C1 (ru) * 1991-06-13 1994-05-30 Виталий Сергеевич Максимов Солнечный нагреватель
RU2206026C1 (ru) * 2001-10-09 2003-06-10 Дикарев Виктор Иванович Теплонасосная установка для отопления и горячего водоснабжения
FR2922634A1 (fr) * 2007-10-18 2009-04-24 Saunier Associes Soc Par Actio Procede et dispositif pour l'optimisation des performances d'une installation de transfert calorifique utilisant une source d'energie calorifique de nature geothermique
CN101988775A (zh) * 2010-11-16 2011-03-23 山东建筑大学 太阳能-空气-地能多源双机热泵供热空调复合系统
KR20130085696A (ko) * 2012-01-20 2013-07-30 한국에너지기술연구원 태양열 지중축열방식의 태양열겸용 히트펌프장치의 급탕 및 난방시스템
JP2014115016A (ja) * 2012-12-10 2014-06-26 Atago Seisakusho:Kk 地中熱利用冷暖房システム
RU156857U1 (ru) * 2015-04-09 2015-11-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кубанский государственный аграрный университет" Установка теплоснабжения

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2013714C1 (ru) * 1991-06-13 1994-05-30 Виталий Сергеевич Максимов Солнечный нагреватель
RU2206026C1 (ru) * 2001-10-09 2003-06-10 Дикарев Виктор Иванович Теплонасосная установка для отопления и горячего водоснабжения
FR2922634A1 (fr) * 2007-10-18 2009-04-24 Saunier Associes Soc Par Actio Procede et dispositif pour l'optimisation des performances d'une installation de transfert calorifique utilisant une source d'energie calorifique de nature geothermique
CN101988775A (zh) * 2010-11-16 2011-03-23 山东建筑大学 太阳能-空气-地能多源双机热泵供热空调复合系统
KR20130085696A (ko) * 2012-01-20 2013-07-30 한국에너지기술연구원 태양열 지중축열방식의 태양열겸용 히트펌프장치의 급탕 및 난방시스템
JP2014115016A (ja) * 2012-12-10 2014-06-26 Atago Seisakusho:Kk 地中熱利用冷暖房システム
RU156857U1 (ru) * 2015-04-09 2015-11-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кубанский государственный аграрный университет" Установка теплоснабжения

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110243007A (zh) * 2019-06-13 2019-09-17 科希曼电器有限公司 一种太阳能辅助的空气源热泵系统

Similar Documents

Publication Publication Date Title
Soni et al. Ground coupled heat exchangers: A review and applications
RU2249125C1 (ru) Система автономного электро- и теплоснабжения жилых и производственных помещений
US10260763B2 (en) Method and apparatus for retrofitting an air conditioning system using all-weather solar heating
US20150292809A1 (en) Method for operating an arrangement for storing thermal energy
US20090133424A1 (en) Direct Exchange System Design Improvements
US11549725B2 (en) System for storing and retrieving thermal energy
Sibbitt et al. Measured and simulated performance of a high solar fraction district heating system with seasonal storage
RU85989U1 (ru) Комбинированная система теплоснабжения
KR20150028491A (ko) 태양열원 및 지열원 복합 냉난방 시스템 제어장치 및 방법
RU2645203C1 (ru) Система автоматического управления микроклиматом в помещениях для размещения животных
US9512828B2 (en) Bi-field solar geothermal system
RU2636018C2 (ru) Система отопления и горячего водоснабжения помещений
JP6060463B2 (ja) ヒートポンプシステム
KR101110694B1 (ko) 히트펌프를 이용한 냉난방 장치
KR20110085546A (ko) 온풍시스템
US10072637B2 (en) Zero-fossil-fuel-using heating and cooling apparatus for residences and buildings
KR101547875B1 (ko) 이중 저수지를 이용한 냉난방 시스템
JP6164537B2 (ja) 冷温熱発生装置
Sarbu et al. Solar water and space heating systems
Rahnama et al. Geothermal energy for heating and cooling in agricultural greenhouses
RU2320891C1 (ru) Система автономного жизнеобеспечения в условиях низких широт
KR100907180B1 (ko) 주택의 에너지 절감시스템
Radomski et al. Integration of a heat exchanger on the supply air with the ground-source heat pump in a passive house–case study
RU2738527C1 (ru) Теплонасосная установка для отопления и охлаждения помещений
RU2206026C1 (ru) Теплонасосная установка для отопления и горячего водоснабжения