RU2642634C1 - Способ переработки костей для получения гидроксиапатита - Google Patents
Способ переработки костей для получения гидроксиапатита Download PDFInfo
- Publication number
- RU2642634C1 RU2642634C1 RU2017110631A RU2017110631A RU2642634C1 RU 2642634 C1 RU2642634 C1 RU 2642634C1 RU 2017110631 A RU2017110631 A RU 2017110631A RU 2017110631 A RU2017110631 A RU 2017110631A RU 2642634 C1 RU2642634 C1 RU 2642634C1
- Authority
- RU
- Russia
- Prior art keywords
- bones
- heat treatment
- bone
- hydroxyapatite
- grinding
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B25/00—Phosphorus; Compounds thereof
- C01B25/16—Oxyacids of phosphorus; Salts thereof
- C01B25/26—Phosphates
- C01B25/32—Phosphates of magnesium, calcium, strontium, or barium
Landscapes
- Meat, Egg Or Seafood Products (AREA)
Abstract
Изобретение относится к получению гидроксиапатита. Предложен способ переработки костей с получением гидроксиапатита. Способ включает измельчение и обезжиривание костей и их термическую обработку. Перед термообработкой печь с газоотводом нагревают до температуры 700-1000°С и производят термическую обработку при заданной температуре. Образовавшиеся пиролизные газы выводят через газоотвод и конденсируют. Измельчение осуществляют на фрагменты толщиной 3-8 мм, а обезжиривание осуществляют в кипящей воде, с добавлением карбонатной соли и органической кислоты. Изобретение обеспечивает возможность проведения способа без использования дополнительных расходных материалов, в одну стадию, при сохранении качества получаемого продукта. 1 з.п. ф-лы, 5 ил., 1 табл., 5 пр.
Description
Изобретение относится к области переработки костей и может найти применение при их утилизации на предприятиях мясной и рыбной промышленности, с целью получения из них гидроксиапатита и органической жидкости.
Кости представляют собой вторичный материал, состоящий из минеральных и органических компонентов. В существующей практике на предприятиях агропромышленного комплекса большая часть получаемой продукции при переработке костей состоит из органических компонентов, которые используются в пищевых целях (мясная масса, костный жир, пищевые добавки) либо в производстве сухих кормов и клеежелатиновой продукции, минеральные компоненты как продукт не извлекаются. [Рециклинг отходов в АПК / Голубев И.Г., Шванская И.А., Коноваленко Л.Ю., Лопатников М.В. М.: ФГБНУ «Росинформагротех», 2011, стр. 102].
Известен способ безотходной переработки кости [Патент РФ №2037302, МПК А23K 1/10, А22С 17/04, опубл. 19.06.1995], включающий предварительное измельчение кости, отделение жира от кости, его сепарирование, повторное измельчение кости, ее нагревание, сушку и калибровку с получением двух фракций, одну из которых направляют на получение шрота, а другую - на измельчение и получение кормовой муки.
Квинтэссенцией предлагаемого изобретения является увеличение выхода мясной массы, глубокая переработка с разделением органической и минеральной части кости в патенте не отражается, это является на наш взгляд недостатком, поскольку как органические, так и минеральные компоненты имеют широкие области практического применения.
Известен способ получения биологического гидроксиапатита из костей сельскохозяйственных животных [Патент РФ №2494751, МПК В82В 1/00, A61L 27/12, А61K 35/32, опубл. 10.10.2013] включающий предварительную очистку костей, измельчение их, растворение костной ткани в соляной кислоте с последующим осаждением гидроксиапатита осадителем, фильтрование, термическую обработку и измельчение осадка. Однако известный способ многостадиен, требует дорогостоящих реактивов и длителен по времени.
Наиболее близким к предлагаемому изобретению по технической сущности является способ получения гидроксиапатита [BY №3656, МПК С01В 25/32, опубл. 30.12.2000], взятый в качестве прототипа. В прототипе предлагают способ, включающий предварительный нагрев костей животных до температуры 400-600°С в инертной среде, выдержку при этой температуре до полной карбонизации, обжиг в окислительной атмосфере при температуре 600-1200°С и измельчение. Квинтэссенцией предлагаемого изобретения является карбонизация кости с последующим сжиганием углеродного остатка путем окисления.
Недостатками способа является его длительность, двухстадийность, использование дорогостоящих инертных газов, полное сжигание органических компонентов кости без их использования.
Задачей настоящего изобретения является упрощение способа при сохранении высокого качества полученного гидроксиапатита и расширении функциональных возможностей способа.
Техническим результатом является разделение минеральных и органических компонентов кости на отдельные продукты, а именно минеральные компоненты в виде гидроксиапатита белого цвета с наличием карбонатных групп и микроэлементов, и органической жидкости, полученной путем конденсации пиролизного газа.
Поставленная задача решается тем, что способ переработки костей для получения гидроксиапатита включает измельчение и обезжиривание костей, термическую обработку в печи до получения продукта белого цвета и измельчение полученного продукта. Новым является то, что перед термической обработкой печь с газоотводом нагревают до температуры Т = 700-1000°С и производят термическую обработку предварительно высушенных после обезжиривания костей при заданной температуре с выделением пиролизных газов, которые выводят через газоотвод в печи и конденсируют. При этом измельчение осуществляют на фрагменты толщиной 3-8 мм, а обезжиривание осуществляют в кипящей воде, с добавлением карбонатной соли и органической кислоты.
Изобретение поясняется чертежами: фиг. 1 - типичная рентгеновская дифрактограмма минеральных компонентов костей, термически обработанных при температурах 700°С - 1000°С; фиг. 2 - типичные инфракрасные колебательные спектры минеральных компонентов костей, термически обработанных при температурах 700°С - 1000°С; фиг. 3 - типичные данные микроэлементного состава минеральных компонентов костей, термически обработанных при температурах 700°С - 1000°С; фиг. 4 - типичные снимки сканирующей электронной микроскопии минеральных компонентов костей, термически обработанных при температурах 700°С - 1000°С; фиг. 5 - типичные снимки просвечивающей электронной микроскопии минеральных компонентов костей, термически обработанных при температурах 700°С - 1000°С.
Предлагаемый способ осуществляют следующим образом: сырые кости измельчают на фрагменты толщиной 3-8 мм, затем обезжиривают путем помещения их в сосуд с герметично закрывающийся крышкой, добавляют питьевую воду из расчета, например, 12-15 литров на 1 кг костей, добавляют в воду карбонатную соль, например гидрокарбонат натрия из расчета, например, 3-5 грамм на 1 литр воды и органическую кислоту, например лимонную кислоту из расчета, например, 2-4 грамма на 1 литр воды, затем варят в кипящей воде при температуре 100-110°С до полного прекращения образования на поверхности воды жировой пленки и пены. Наличие в воде карбонатной соли и органической кислоты способствует увлечению выхода в водную среду органических компонентов кости. Обезжиренные фрагменты костей извлекают, промывают проточной питьевой водой и сушат, например кондуктивно-конвекционным методом.
Высушенные фрагменты костей термически обрабатывают путем загрузки их в предварительно разогретую до температуры 700-1000°С печь, на верхней стенке которой выполнено отверстие с газоотводом, например, электронагревательную камерную печь. Загрузку фрагментов костей в предварительно разогретую печь осуществляют, например, с помощью лотков, выполненных из термостойкого материала, пропускающего инфракрасное излучение, например кварца. После загрузки фрагментов костей в предварительно разогретую печь дверь печи закрывают, а фрагменты костей термически обрабатывают при заданной температуре до получения продукта белого цвета. При помещении высушенных костей в предварительно нагретую печь происходит нагрев каждого фрагмента костей во всем объеме, с высокой скоростью 102-103 град/сек, за счет подобранной толщины измельченных фрагментов костей 3-8 мм.
В процессе высокоскоростного нагрева фрагментов костей происходит термодеструкция органических компонентов и выделение пиролизных газов из костей, которые выводят через газоотвод в печи и конденсируют путем охлаждения. При конденсации пиролизного газа, выделяемого в процессе термической обработке и деструкции органических компонентов кости, получают органическую жидкость темного цвета со сложным химическим составом. Органическая жидкость является горючей и может использоваться в качестве энергетического и химического сырья. В условиях промышленной переработки из 1 тонны переработанных костей можно получать более 200 кг органической жидкости с теплотворной способностью порядка 15-20 МДж на 1 кг.
Термически обработанные фрагменты костей извлекаются из печи, естественным образом охлаждаются и направляются на испытания, идентификацию или использование. Испытания и идентификация проводятся для определения качества гидроксиапатита, а именно цвета продукта, отсутствия органических компонентов, наличия карбонатных групп и микроэлементов, фазового состава гидроксиапатита, а также структуры и размеров кристаллов.
В настоящее время гидроксиапатит нашел широкое практическое применение в качестве медицинского, косметического, экологического, химического и технического материала, благодаря его уникальным физико-химическим свойствам, а именно изоморфной замещаемости катионных и анионных единиц в кристалле, избирательной аффинной адсорбции соединений и элементов различной природы, биосовместимости, а также наноразмерности кристаллов, термоустойчивости и каталитической активности.
Примеры практической реализации способа
Пример 1. 1 кг лопаточной говяжьей кости после обвалки измельчают на фрагменты толщиной 3-8 мм, помещают в автоклав, заливают 10 литров питьевой воды, добавляют 40 грамм гидрокарбоната натрия и 30 грамм лимонной кислоты и обезжиривают в кипящей воде при температуре 110°С в течение 6 часов. По окончании обезжиривания автоклав естественным образом охлаждают, бульон сливают в отдельно подготовленную емкость, фрагменты кости извлекают, промывают горячей проточной водой и сушат кондуктивно-конвекционным методом. Высушенные кости равномерно размещают на лотки и вводят в предварительно разогретую до температур 800°С электронагревательную печь, на стенке которой выполнено отверстие с газоотводом, соединенной с системой конденсации. Термическую обработку проводят в течение 30 минут при заданной температуре до получения продукта белого цвета. Выделившийся в результате термической обработки пиролизный газ выводят через отверстие с газоотводом и в системе конденсации охлаждают и конденсируют в жидкость, а несконденсированную часть дожигают. Затем сконденсированную жидкость собирают и подготавливают для использования, а полученный из костей продукт белого цвета извлекают из печи, охлаждают, измельчают на электрической мельнице, просеивают через сита и анализируют. Результаты приведены в таблице.
Пример 2. Проводят процесс, как описано в примере 1, но температура предварительно разогреваемой печи составляет 700°С.
Пример 3. Проводят процесс, как описано в примере 1, но температура предварительно разогреваемой печи составляет 1000°С.
Пример 4. Проводят процесс, как описано в примере 1, но температура предварительно разогреваемой печи составляет 1200°С.
Пример 5. Проводят процесс, как описано в примере 1, но температура предварительно разогреваемой печи составляет 600°С.
Из таблицы видно, что термически обработанные фрагменты костей (примеры 1-4) представляют собой материал белого цвета без органических продуктов, за исключением примера 5, в котором присутствуют оттенки серого цвета и органические продукты в количестве 4% масс.
Данные рентгенофазового анализа указывают, что химическая структура термически обработанных фрагментов костей (пример 1-3, 5) соответствует структуре гидроксиапатита (фиг. 1), за исключением примера 4, в котором присутствует фазы, не соответствующие гидроксиапатиту. Наличие в инфракрасных спектрах термически обработанных фрагментов костей (пример 1-3, 5), спектральных линий, относящихся к колебаниям фосфатных, гидроксильных и карбонат анионных групп (фиг. 2), дополнительно подтверждает химическую структуру гидроксиапатита с карбонатной группой, за исключением примера 4, в котором анионные группы отсутствуют. Согласно микроэлементному анализу термически обработанных фрагментов костей (пример 1-3, 5) присутствуют примеси ряда микроэлементов (натрия, магния, кремния и т.д.) (фиг. 3), за исключением примера 4, в котором микроэлементы не были обнаружены. Термическая обработка выше 1000°С приводит к изменению фазового состава на трикальцийфосфат Ca3(PO4)2 (пример 4) и для получения гидроксиапатита использовать нецелесообразно.
Данные электронной микроскопии демонстрируют, что термически обработанные фрагменты костей (пример 1-3) являются агломерированными нанокристаллами гидроксиапатита (фиг. 4). Агломерированные частицы кристаллов гидроксиапатита представляют собой форму пластин со средним размером 50-200 нм (фиг. 5). Таким образом, наиболее оптимальными температурами термической обработки являются режимы Т = 700-1000°С.
Настоящее изобретение упрощает способ получения гидроксиапатита без использования дополнительных расходных материалов путем одностадийности процесса, сокращения длительности термической обработки, при сохранении качества получаемого продукта. Одновременно способ позволяет получать органическую жидкость, которая может быть использована в качестве сырья в энергетическом и химическом производстве, что расширяет функциональные возможности данного способа.
Claims (2)
1. Способ переработки костей для получения гидроксиапатита, включающий измельчение и обезжиривание костей, термическую обработку в печи до получения продукта белого цвета и измельчение полученного продукта, отличающийся тем, что измельчение перед обезжириванием осуществляют на фрагменты толщиной 3-8 мм, перед термической обработкой печь с газоотводом нагревают до температуры Т=700-1000°С и производят термическую обработку предварительно высушенных после обезжиривания костей при заданной температуре, при этом образовавшиеся пиролизные газы выводят через газоотвод в печи и конденсируют.
2. Способ переработки костей для получения гидроксиапатита по п. 1, отличающийся тем, что обезжиривание осуществляют в кипящей воде, с добавлением карбонатной соли и органической кислоты.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2017110631A RU2642634C1 (ru) | 2017-03-29 | 2017-03-29 | Способ переработки костей для получения гидроксиапатита |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2017110631A RU2642634C1 (ru) | 2017-03-29 | 2017-03-29 | Способ переработки костей для получения гидроксиапатита |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2642634C1 true RU2642634C1 (ru) | 2018-01-25 |
Family
ID=61023736
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2017110631A RU2642634C1 (ru) | 2017-03-29 | 2017-03-29 | Способ переработки костей для получения гидроксиапатита |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2642634C1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2811486C1 (ru) * | 2023-05-22 | 2024-01-12 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский государственный технический университет имени Гагарина Ю.А." (СГТУ имени Гагарина Ю.А.) | Энтеросорбент на основе кремнийзамещенного биогенного гидроксиапатита кальция |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2278655C1 (ru) * | 2005-04-15 | 2006-06-27 | Общество с ограниченной ответственностью "Научно-производственная компания ВИТАФОРМ-Р" | Способ получения биосовместимого материала для стоматологии |
RU2393819C1 (ru) * | 2006-05-12 | 2010-07-10 | Сеул Нэшнл Юниверсити Индастри Фаундейшн | Способ приготовления заменителя костного трансплантата, не содержащего прионов |
RU2604411C1 (ru) * | 2015-07-14 | 2016-12-10 | Общество с ограниченной ответственностью "Научно-Производственное Объединение "Би-Джи Техно" | Способ получения биоактивного гидроксиапатита |
-
2017
- 2017-03-29 RU RU2017110631A patent/RU2642634C1/ru not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2278655C1 (ru) * | 2005-04-15 | 2006-06-27 | Общество с ограниченной ответственностью "Научно-производственная компания ВИТАФОРМ-Р" | Способ получения биосовместимого материала для стоматологии |
RU2393819C1 (ru) * | 2006-05-12 | 2010-07-10 | Сеул Нэшнл Юниверсити Индастри Фаундейшн | Способ приготовления заменителя костного трансплантата, не содержащего прионов |
RU2604411C1 (ru) * | 2015-07-14 | 2016-12-10 | Общество с ограниченной ответственностью "Научно-Производственное Объединение "Би-Джи Техно" | Способ получения биоактивного гидроксиапатита |
Non-Patent Citations (1)
Title |
---|
Зелинечко Е.А. и др. Исследование свойств гидроксиапатита, выделенного из костной ткани сельскохозяйственных животных, Химия в интересах устойчивого развития, 20, 2012, с. 543-548. * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2811486C1 (ru) * | 2023-05-22 | 2024-01-12 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский государственный технический университет имени Гагарина Ю.А." (СГТУ имени Гагарина Ю.А.) | Энтеросорбент на основе кремнийзамещенного биогенного гидроксиапатита кальция |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1156086A (en) | Low energy rendering process for separating and recovering stabilized dry fat and stabilized dry low fat proteinaceous materials from raw organic material | |
RU2642634C1 (ru) | Способ переработки костей для получения гидроксиапатита | |
RU2487152C2 (ru) | Способ производства желатина | |
TWI362393B (en) | A new process for the preparation of collagen peptide from fish scale | |
JPH11323752A (ja) | シリカ、セルロースおよびリグニン高含有素材の製造法 | |
Abdullah et al. | Preparation and characterization of calcium hydroxyphosphate (Hydroxyapatite) from tilapia fish bones and scales via calcination method | |
JP4696236B2 (ja) | コンドロイチンの製造方法 | |
KR101442482B1 (ko) | 단백질 및 아미노산 공급원으로서의 돼지털 분말 제조방법 | |
Fara et al. | Effect of calcination on the properties of hydroxyapatite from Tilapia fish bones | |
Pawar et al. | Development of hydroxyapatite from waste mutton bones and its application for hexavalent chromium removal from aqueous solutions-Adsorption isotherms and kinetics study | |
WO2010082807A1 (es) | Obtención de quitina de residuos de camarón por microondas y/o autoclavado en combinación con ácidos orgánicos en una sola etapa | |
RU2472355C1 (ru) | Способ получения натуральной минеральной пищевой добавки | |
JP6892647B2 (ja) | 飼料製造装置及び飼料製造方法 | |
JP7373330B2 (ja) | ヒドロキシアパタイトの製造方法 | |
Khalid et al. | Characterizations of calcium oxide from calcined eggshell waste | |
KR100781322B1 (ko) | 멸치젓에서 고농축의 칼슘분말을 추출하는 방법 및 그고농축 칼슘분말 | |
RU2675576C1 (ru) | Способ получения активного угля на основе растительных отходов | |
Mezenova et al. | The process of modifying cattle meat and bone raw materials by high-temperature hydrolysis | |
RU2781627C1 (ru) | Способ получения желатина из кожи трески | |
RU2810511C1 (ru) | Способ получения рыбного коллагенового гомогенизата | |
RU2134523C1 (ru) | Способ получения белкового гидролизата из моллюсков | |
Kumoro et al. | Effect of temperature and particle size on the Alkaline extraction of protein from chicken bone waste | |
JP2011109928A (ja) | 家畜骨残渣の処理方法 | |
SU814314A1 (ru) | Способ отделени м са от кости | |
ATE249755T1 (de) | Verfahren zur herstellung von funktionellen bestandteilen aus wachsartigem maismehl, danach hergestellte produkte und ihre verwendungen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PC41 | Official registration of the transfer of exclusive right |
Effective date: 20180928 |
|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20190330 |