RU2641683C1 - Способ получения керамических изделий сложной объемной формы - Google Patents

Способ получения керамических изделий сложной объемной формы Download PDF

Info

Publication number
RU2641683C1
RU2641683C1 RU2016146400A RU2016146400A RU2641683C1 RU 2641683 C1 RU2641683 C1 RU 2641683C1 RU 2016146400 A RU2016146400 A RU 2016146400A RU 2016146400 A RU2016146400 A RU 2016146400A RU 2641683 C1 RU2641683 C1 RU 2641683C1
Authority
RU
Russia
Prior art keywords
product
matrix
silicone
slip
hour
Prior art date
Application number
RU2016146400A
Other languages
English (en)
Inventor
Алесь Сергеевич Буяков
Светлана Петровна Буякова
Руслан Викторович Левков
Сергей Николаевич Кульков
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" (ТГУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" (ТГУ) filed Critical Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" (ТГУ)
Priority to RU2016146400A priority Critical patent/RU2641683C1/ru
Application granted granted Critical
Publication of RU2641683C1 publication Critical patent/RU2641683C1/ru

Links

Images

Abstract

Изобретение относится к технологии получения керамических изделий марок ВК-95 и ВК-94 и может быть использовано в медицине, в нефтегазовом комплексе и машиностроении для изготовления керамических изделий, работающих при повышенных температурах, под нагрузкой или в агрессивных средах. Способ обеспечивает получение керамических изделий сложной объемной формы с высокими техническими и функциональными (эксплуатационными) характеристиками. Способ включает изготовление матрицы, отливку изделия с помощью матрицы и термообработку полученного изделия. Из термопластичной пластиковой массы получают модель изделия 3D аддитивным формованием, погружают в силиконовую массу для получения силиконовой оболочки – матрицы изделия. В силиконовую матрицу отливают нагретый керамический шликер. Термообработка изделия включает: проведение предварительного спекания в течение 6 часов при температуре 300С с выдержкой 1 час, затем нагрев продолжают до 1100С в течение 11 часов с выдержкой в течение часа, охлаждением и механической обработкой, после чего проводят окончательное спекание при 1450-1700С с выдержкой в течение 1 часа в воздушной среде для ВК-95 и вакууме для ВК-94 с получением керамического изделия. 3 з.п. ф-лы, 2 ил., 3 пр.

Description

Изобретение относится к технологии получения керамических изделий, обладающих сложной объемной формой, и может быть использовано в медицине, в нефтегазовом комплексе и машиностроении для изготовления керамических изделий, работающих при повышенных температурах, под нагрузкой или в агрессивных средах.
Известен способ получения керамических изделий на основе волластонита (RU 2298537, С04В 33/28, С04В 33/00, опубл. 10.05.2007) [1]. Способ включает приготовление формовочной массы путем одновременного мокрого помола концентрата природного волластонита 70-80%, каолина 10-20% и глины 5-10% с добавлением воды в количестве 27-32% от массы сухих компонентов, жидкого стекла и кальцинированной соды в качестве стабилизаторов до тонины помола с остатком на сите 0063-5-23%, формование изделий осуществляют методом шликерного литья в пористые формы. Обжигают изделия при температуре 950-1000°С в течение 1-3 ч.
Техническим результатом изобретения является упрощение технологии получения сложнопрофильных, крупногабаритных изделий на основе природного волластонита, обладающих высокой прочностью, термостойкостью и химической устойчивостью к алюминиевым сплавам до температуры 1000°С.
Недостатком известного способа является то, что этим способом невозможно изготовить небольшие керамические изделия сложной формы для нефтегазового оборудования. Такой способ не позволяет изготавливать изделия со сложной структурой поверхности или мелкими деталями. Ограничение вводится материалом, способом изготовления и конструкцией пористой литьевой формы.
Известен способ получения изделий из спеченного стеклокристаллического материала литийалюмосиликатного состава (RU 2170715, С03С 10/12, С04В 35/19, 20.07.2001) [2].
При получении изделий сложной формы используют простой, экологически чистый метод формования путем шликерного литья из высокоплотных водных суспензий в пористые формы. Материал измельчают мокрым способом до получения шликера с плотностью 1,97-2,05 г/см3, тониной помола с остатком на сите 0,063 мм 9-15% и рН 7,5-9,0. Технический результат изобретения - повышение плотности отформованных заготовок, снижение температуры обжига, уменьшение усадки изделий при обжиге.
Недостатком известного способа является также то, что этим способом невозможно изготовить небольшие керамические изделия сложной формы для нефтегазового оборудования.
Известен способ изготовления формы для литья керамических изделий под давлением, известный из SU 1699769, В28В 1/26, С04В 33/28, опубл. 1991 [3].
Изобретение относится к керамике и может быть использовано при изготовлении литейных форм для получения керамических изделий методом горячего литья под давлением. Целью изобретения является уменьшение трудозатрат при изготовлении формы и расширение ассортимента выпускаемых изделий с единицы литейной оснастки путем обеспечения возможности изменения расположения пуансонов в форме. На рабочей поверхности одной из крышек формы размещают трафарет со сквозными отверстиями на месте установки пуансонов 1-4, а их закрепление на крышке 5 производят отверждающимся составом, термостойким, в интервале температур литья 60-80°С с пределом прочности на отрыв не менее 11 МПа, причем трафарет 6 перед сборкой удаляют. Для получения изделий с различной по величине и конфигурации выемкой на месте удаленного трафарета размещают обечайку с отверстием, оформляющим выемку на изделиях, после чего пространство между обечайкой и крышкой заполняют сплавом с температурой плавления, не менее чем на 10°С превышающей температуру отливки изделий. Сплав удаляют после литья нагреванием.
Известно устройство для формования мелких изделий сложной конфигурации из керамических материалов, известное из патента RU 2005067, В28В 1/26, опубл. 1993 [4].
Использование: в области производства машин химических волокон, в частности при изготовлении деталей нитепроводящей гарнитуры формования путем заливки шликером. Сущность изобретения: устройство состоит из корпуса формы, выполненной из эластичного материала, например резины, и установленной в корпусе, а также плоской крышки, которая своей поверхностью плотно фиксирует форму в корпусе. В форме имеется внутренняя полость, воспроизводящая конфигурацию изделия. Материал формы имеет коэффициент Пуассона р. 0.465-0.5, относительно удлинение при разрыве 300-600%. Кроме того, материал формы сохраняет свои свойства при температуре, равной температуре заливаемого шликера. Форма в устройстве, с одной стороны, несжимаема, когда она находится внутри устройства, с другой стороны, она пластически деформируется, когда находится вне устройства, при этом изделие легко извлекается из нее путем перегибов и растяжений формы в разных направлениях. В этом устройстве реализуется способ получения мелких изделий сложной конфигурации из керамических материалов.
Сущность известного изобретения заключается в использовании резины в качестве материала литьевой матрицы при получении керамических изделий сложной геометрии методом литья шликера под давлением, нагретого до температуры плавления.
Недостатком изобретения является материал литьевых матриц - резина, которая подвержена деструкции при цикличном нагреве и охлаждении при создании керамических изделий методом литья керамического шликера под давлением. Необходимость использования внешнего металлического каркаса резиновой литьевой матрицы усложняет процесс получения керамических изделий.
Наиболее близким аналогом заявленного способа по совокупности существенных признаков и достигаемому техническому результату является способ получения керамических изделий, известный из US 2005/0023710, В29С 35/08, опубл. 03.02.2005 [5], в котором получают способом быстрого прототипирования из термопластичной пластиковой массы 3D модели из светоотверждаемой смолы, нанося смолу слой за слоем. Модели формуют в жидкой силиконовой резине (которая после отверждения обладает достаточной прочностью и эластичностью для удаления из нее моделей) с получением негативных форм (матриц). В силиконовые формы проводят инжекционное литье подогретого керамического термопластичного шликера. Затвердевшие отливки удаляют из матриц, проводят предварительное спекание для удаления связки, а затем полное спекание для получения плотности изделий, близкой к полной. Указанным способом получают мелкие изделия точной формы для зубных реставраций.
Технической проблемой предлагаемого изобретения является разработка способа получения керамических изделий сложной объемной формы с высокими техническими и функциональными (эксплуатационными) характеристиками.
Предлагаемый способ включает полный цикл технологических этапов, необходимых для получения керамических изделий сложной объемной формы.
Указанный технический результат достигается тем, что способ получения керамических изделий сложной объемной формы включает изготовление матрицы, отливку изделия с помощью матрицы и термообработку полученного изделия.
Для отливки изделия с помощью матрицы используют керамический шликер марок ВК-95 или ВК-94, а термообработку полученного изделия осуществляют:
- предварительным спеканием изделия путем нагрева в течение 6 часов до температуры 300°С и выдержкой в течение 1 часа, затем нагрев продолжают до 1100°С в течение 11 часов с выдержкой в течение 1 часа при максимальной температуре в воздушной среде для шликера ВК-95 и вакууме для щликера ВК-94 с последующей его механической обработкой;
- окончательным спеканием изделия в воздушной среде при температуре 1450-1700°С с выдержкой в течение 1 часа в воздушной среде для шликера ВК-95 и вакууме для шликера ВК-94.
Изготовление матрицы включает:
- 3D аддитивное формование заданной модели сложной объемной формы изделия из термопластичной пластиковой массы,
- погружение полученной модели изделия в силиконовую массу для получения силиконовой оболочки - матрицы изделия,
- полимеризацию силиконовой оболочки - матрицы изделия,
- извлечение пластиковой модели изделия из готовой матрицы.
В качестве термопластичной пластиковой массы используют: ABS-пластик (акрилонитрилбутадиенстирол), PLA-пластик (полилактид) или нейлон.
В качестве силиконовой массы используют жидкую массу на основе полиорганосилоксанов, полимеризующуюся при контакте с воздухом или отвердителем.
Раскрытие сущности изобретения.
Предлагаемый способ включает в себя изготовление модели будущего изделия методом аддитивного 3D производства, получение силиконовой матрицы и заливку ее пластичной шликерной массой с последующим спеканием изделия.
В последнее время использование метода 3D аддитивного производства для определенных целей широко используется в различных областях промышленности, медицины и других отраслях народного хозяйства.
Использование в предлагаемом изобретении метода 3D аддитивного производства для изготовления модели будущего изделия из термопластичной пластиковой массы имеет ряд преимуществ по сравнению с общеизвестными:
- изготовление модели с применением традиционных методов (изготовление модели с помощью слесарно-столярного инструмента) не обеспечивает высокую точность и качество детализации изделия;
- изготовление модели с применением установок лазерной резки или фрезерных станков с ЧПУ значительно увеличивает стоимость производства, а сложность формы модели не всегда позволяет использовать данные средства.
При этом в предлагаемом изобретении для изготовления модели будущего изделия используют в качестве термопластичной пластиковой массы: ABS-пластик (акрилонитрилбутадиенстирол), PLA-пластик (полилактид) или нейлон.
Также надо отметить, что известное изготовление матриц [1-3] из:
- гипса не обеспечивает высокого уровня детализации изделий и значительно уступает по этому показателю силиконовым матрицам. Матрицы из гипса так же не обладают упругостью и эластичностью, присущих силикону, что сокращает количество повторных использований;
- металла увеличивает стоимость производства, а сложность формы модели не всегда позволяет изготовить металлическую матрицу, либо усложняет ее конструкцию.
Имеет ряд преимуществ использование в предлагаемом изобретении силикона для изготовления матриц, чего нельзя сказать о резине, используемой в изобретении [4]. В отличие от резиновой матрица из силикона не смачиваема керамическим термопластичным шликером, что предотвращает возможное возникновение дефектов поверхности изделия при изъятии его из литьевой матрицы.
При этом в качестве силиконовой массы используют жидкую массу на основе полиорганосилоксанов, полимеризующуюся при контакте с воздухом или соответствующей жидкостью - отвердителем.
Отливка изделия с помощью матрицы включает:
- заполнение матрицы нагретым керамическим шликером с последующим его охлаждением при комнатной температуре,
- извлечение керамического изделия из матрицы.
При этом в качестве керамического шликера используют термопластичные шликеры на основе парафин-восковой смеси марок ВК-95 или ВК-94.
Термообработка полученного изделия включает:
- проведение предварительного спекания керамического изделия с последующей его механической обработкой,
- проведение окончательного спекания изделия.
Предварительное спекание керамического изделия проводят путем нагрева в течение 6 часов до температуры 300°С и выдержкой в течение 1 часа, затем нагрев продолжается до 1100°С в течение 11 часов с выдержкой в течение 1 часа при максимальной температуре в воздушной среде для шликера ВК-95 и вакууме для ВК-94.
Окончательное спекание керамического изделия проводят в воздушной среде при температуре 1450-1700°С с выдержкой в течение 1 часа в воздушной среде для шликера ВК-95 и вакууме для ВК-94.
Осуществление изобретения.
Методом аддитивного 3D формования изготавливают модель необходимого изделия из ABS, PLA или нейлона. Пластиковую модель заданного изделия изготавливают методом последовательного послойного нанесения расплавленного ABS, PLA или нейлона с толщиной слоя 150 мкм. Матрицу изделия изготавливают из температуростойкого полимера на основе полиорганосилоксанов (силикон), выдерживающего нагрев без потери прочности до 300°С.
Для получения силиконовой матрицы изделия готовят смесь из пластичного силикона и отвердителя, полимеризующегося в течение нескольких часов, что обеспечивает высокую точность воспроизведения формы и структуры поверхности модели изделия, которая может быть повышена с помощью применения таких процессов, как центрифугирование и вакуумирование.
Полученную пластиковую модель изделия окунают в приготовленную смесь пластичного силикона и отвердителя, чтобы на поверхности пластиковой модели остался слой приготовленной смеси пластичного силикона и отвердителя. По истечении определенного времени (нескольких часов), после отверждения силиконовой оболочки (матрицы) на поверхности пластиковой модели изделия, модель извлекают из оболочки.
Полученная силиконовая матрица обладает высокими упругими свойствами, что обеспечивает ее долгую эксплуатацию.
Силиконовую матрицу заполняют нагретым керамическим шликером марок ВК-95 или ВК-94. Заполнение формы керамическим шликером осуществляют при атмосферном давлении либо посредством инжекционной литьевой машины. Заливка шликера марок ВК-95 и ВК-94 происходит в диапазоне температур 70-80°С, что обеспечивает достаточную пластичность массы шликера и предотвращает появление пор в изделии. После остывания полученное изделие извлекают из формы и подвергают предварительному спеканию в воздушной среде для шликера ВК-95 и вакууме для ВК-94. Для этого деталь помещается в керамический тигель, заполненный керамическим порошком оксида алюминия (Al2O3), таким образом, чтобы порошок покрывал деталь полностью слоем, толщина которого не менее трети толщины изделия по нормали. Отверстия в изделии также заполняются порошком Al2O3. Предварительное спекание осуществляют путем нагрева в течение 6 часов до температуры 300°С и выдержкой в течение 1 часа, затем нагрев продолжается до 1100°С в течение 11 часов с выдержкой в течение 1 часа при максимальной температуре. В результате предварительного спекания получают керамическое изделие, обладающее достаточно высокой твердостью и прочностью, оставляющее возможность механической обработки твердосплавным или алмазным инструментом.
Благодаря предварительному спеканию изделия, полностью погруженного в порошок оксида алюминия (Al2O3), обеспечиваются равномерная усадка изделия и удаление пластификаторов из шликера, предотвращается растрескивание и деформирование изделия.
Окончательное спекание происходит при температуре от 1400 до 1700°С с выдержкой не менее часа (нижний интервал), скорость нагрева не более 200°С в час в воздушной среде для шликера ВК-95 и вакууме для ВК-94. В результате конечного спекания получается высокопрочное керамическое изделие, не обладающее дефектами, такими как поры и трещины, с формой и геометрией любой сложности, размер которого ограничен только техническими возможностями производителя при спекании.
Примеры конкретного выполнения.
Пример 1
Получают трехмерную компьютерную томограмму висцеральной области скелета человека. На томограммах видны дефекты носовой и височной кости, а также верхней челюсти. На основе полученной томограммы строят трехмерную модель остеоимплантата (изделие), замещающего утерянные части скелета, фиг. 1. Модель была воспроизведена в ABS пластике посредством 3D печати в реальном масштабе. Модель производят выдавливанием («экструзией») и нанесением микрокапель расплавленного термопластика с формированием последовательных слоев, застывающих сразу после экструдирования. Пластиковая нить поступает в экструдер 3D принтера - устройство, оснащенное механическим приводом для подачи нити, нагревательным элементом для плавки материала и соплом, через которое осуществляется непосредственно экструзия. Экструдер перемещается в трех плоскостях под контролем компьютерной программы по траектории, соответствующей контурам будущего изделия. Модель строится слой за слоем, снизу вверх. Температура экструдера для плавки ABS нити в процессе 3D печати 230°С.
Далее получают силиконовую матрицу. Для этого смешивают силиконовую массу марки «ПЕНТЭЛАСТ-710» с отвердителем ТУ 2513-011-40245042-99 соответственно в весовой пропорции 10:1. Опускают пластиковую модель изделия в приготовленную смесь, после полимеризации пластиковую модель остеоимплантата извлекают из силиконовой матрицы.
Далее с помощью машины инжекционного формования изделий из керамического шликера заполняют силиконовую матрицу шликером марки «ВК 95», разогретым до 80°С под давлением 3 атм.
После остывания полученное керамическое изделие остеоимплантата извлекают и помещают в керамический тигель и полностью покрывают керамическим порошком Al2O3. Предварительное спекание проводят в воздушной среде с выдержкой при 300°С и 1100°С в течение 1 часа с общим временем предварительного спекания 19 часов. После остывания и извлечения из порошка Al2O3 изделие подвергают механической обработке слесарным инструментом для удаления поверхностных дефектов. Окончательное спекание производят при температуре 1600°С с нагревом 200°С/час и выдержкой в течение 1 часа. На фиг. 2 показано конечное керамическое изделие остеоимплантата.
Предел прочности при изгибе 300 МПа, прочность при сжатии 1800 МПа, плотность 3 г/см3.
Пример 2
Строят трехмерную компьютерную модель шарового затвора для оборудования нефтегазового комплекса. На основе полученного изображения строят трехмерную модель этого изделия. Модель была воспроизведена в PLA-пластике посредством 3D-печати в реальном масштабе.
Модель производят выдавливанием («экструзией») и нанесением микрокапель расплавленного термопластика с формированием последовательных слоев, застывающих сразу после экструдирования. Пластиковая нить поступает в экструдер 3D принтера - устройство, оснащенное механическим приводом для подачи нити, нагревательным элементом для плавки материала и соплом, через которое осуществляется непосредственно экструзия. Экструдер перемещается в трех плоскостях под контролем компьютерной программы по траектории, соответствующей контурам будущего изделия. Модель строится слой за слоем, снизу вверх. Температура экструдера для плавки PLA нити в процессе 3D печати 190°С.
Далее получают силиконовую матрицу. Для этого смешивают силиконовую массу марки «ПЕНТЭЛАСТ-710» с отвердителем ТУ 2513-011-40245042-99 соответственно в пропорции 10:1. Опускают пластиковую модель изделия в приготовленную смесь, после полимеризации пластиковую модель остеоимплантата извлекают из силиконовой матрицы.
Далее с помощью литейной машины силиконовая матрица заполнялась шликером марки «ВК-94», разогретым до 80°С под давлением 3 атм.
После остывания полученное керамическое изделие извлекают и помещают в керамический тигель и полностью покрывают керамическим порошком Al2O3. Предварительное спекание проводят в вакууме с выдержкой при 300°С и 1100°С в течение 1 часа с общим временем предварительного спекания 19 часов. После остывания и извлечения из порошка Al2O3 изделие подвергают механической обработке слесарным инструментом для удаления поверхностных дефектов.
Окончательное спекание производят при температуре 1700°С с нагревом 200°С/час и выдержкой в течение 1 часа в вакууме.
Предел прочности при сжатии 2600 МПа, плотность 3.8 г/см3.
Пример 3
Строят трехмерную компьютерную модель детали оборудования из области машиностроения. Модель была воспроизведена в нейлоне посредством 3D-печати в реальном масштабе.
Модель производят выдавливанием («экструзией») и нанесением микрокапель расплавленного термопластика с формированием последовательных слоев, застывающих сразу после экструдирования. Пластиковая нить поступает в экструдер 3D принтера - устройство, оснащенное механическим приводом для подачи нити, нагревательным элементом для плавки материала и соплом, через которое осуществляется непосредственно экструзия. Экструдер перемещается в трех плоскостях под контролем компьютерной программы по траектории, соответствующей контурам будущего изделия. Модель строится слой за слоем, снизу вверх. Температура экструдера для плавки PLA нити в процессе 3D печати 245°С.
Далее получают силиконовую матрицу. Для этого смешивают силиконовую массу марки «ПЕНТЭЛАСТ-710» с отвердителем ТУ 2513-011-40245042-99 соответственно в пропорции 10:1. Опускают пластиковую модель изделия в приготовленную смесь, после полимеризации пластиковую модель остеоимплантата извлекают из силиконовой матрицы.
Далее с помощью литейной машины силиконовая матрица заполняют шликером марки «ВК 95», разогретым до 80°С под давлением 3 атм.
После остывания полученное керамическое изделие извлекают и помещают в керамический тигель и полностью покрывают керамическим порошком Al2O3. Предварительное спекание проводят в воздушной среде с выдержкой при 300°С и 1100°С в течение 1 часа с общим временем предварительного спекания 19 часов. После остывания и извлечения из порошка Al2O3 изделие подвергают механической обработке слесарным инструментом для удаления поверхностных дефектов.
Окончательное спекание производят при температуре 1450°С с нагревом 200°С/час и выдержкой в течение 1 часа.
Предел прочности при изгибе 380 МПа, прочность при сжатии 2400 МПа, твердость по Виккерсу 21 ГПа, плотность 3.65 г/см3.

Claims (10)

1. Способ получения керамических изделий сложной объемной формы, включающий изготовление матрицы, отливку изделия с помощью матрицы и термообработку полученного изделия, отличающий тем, что для отливки изделия с помощью матрицы используют керамический шликер марок ВК-95 или ВК-94, а термообработку полученного изделия осуществляют:
- предварительным спеканием изделия путем нагрева в течение 6 часов до температуры 300°С и выдержкой в течение 1 часа, затем нагрев продолжают до 1100°С в течение 11 часов с выдержкой в течение 1 часа при максимальной температуре в воздушной среде для шликера ВК-95 и вакууме для шликера ВК-94 с последующей его механической обработкой;
- окончательным спеканием изделия в воздушной среде при температуре 1450-1700°С с выдержкой в течение 1 часа в воздушной среде для шликера ВК-95 и вакууме для шликера ВК-94.
2. Способ по п. 1, отличающийся тем, что изготовление матрицы включает:
- 3D аддитивное формование заданной модели сложной объемной формы изделия из термопластичной пластиковой массы,
- погружение полученной модели изделия в силиконовую массу для получения силиконовой оболочки - матрицы изделия,
- полимеризацию силиконовой оболочки - матрицы изделия,
- извлечение пластиковой модели изделия из готовой матрицы.
3. Способ по п. 2, отличающийся тем, что в качестве термопластичной пластиковой массы используют ABS-пластик (акрилонитрилбутадиенстирол), PLA-пластик (полилактид) или нейлон.
4. Способ по п. 2, отличающийся тем, что в качестве силиконовой массы используют жидкую массу на основе полиорганосилоксанов, полимеризующуюся при контакте с воздухом или отвердителем.
RU2016146400A 2016-11-27 2016-11-27 Способ получения керамических изделий сложной объемной формы RU2641683C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016146400A RU2641683C1 (ru) 2016-11-27 2016-11-27 Способ получения керамических изделий сложной объемной формы

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016146400A RU2641683C1 (ru) 2016-11-27 2016-11-27 Способ получения керамических изделий сложной объемной формы

Publications (1)

Publication Number Publication Date
RU2641683C1 true RU2641683C1 (ru) 2018-01-19

Family

ID=68235690

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016146400A RU2641683C1 (ru) 2016-11-27 2016-11-27 Способ получения керамических изделий сложной объемной формы

Country Status (1)

Country Link
RU (1) RU2641683C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2696533C1 (ru) * 2018-07-12 2019-08-02 Федеральное государственное бюджетное научное учреждение "Томский национальный исследовательский медицинский центр Российской академии наук" (Томский НИМЦ) Способ реконструкции сложных дефектов челюстно-лицевой области
RU2759878C1 (ru) * 2021-03-25 2021-11-18 Акционерное общество «Обнинское научно-производственное предприятие «Технология» им. А.Г.Ромашина» Способ формования керамических заготовок
RU2813271C1 (ru) * 2023-02-13 2024-02-08 Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт конструкционных материалов "Прометей" имени И.В. Горынина Национального исследовательского центра "Курчатовский институт" (НИЦ "Курчатовский институт" - ЦНИИ КМ "Прометей") Способ получения конструкционной керамики на основе тугоплавких карбидов для изделий сложной геометрии

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5204055A (en) * 1989-12-08 1993-04-20 Massachusetts Institute Of Technology Three-dimensional printing techniques
US20050023710A1 (en) * 1998-07-10 2005-02-03 Dmitri Brodkin Solid free-form fabrication methods for the production of dental restorations
RU2450998C2 (ru) * 2010-04-29 2012-05-20 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Способ создания конструкционного керамического материала
WO2014186769A1 (en) * 2013-05-17 2014-11-20 Uram Stuart Molds for ceramic casting
RU2600647C2 (ru) * 2015-01-27 2016-10-27 Общество с ограниченной ответственностью "ИНТЕХ-М" Способ получения трехмерных керамических изделий

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5204055A (en) * 1989-12-08 1993-04-20 Massachusetts Institute Of Technology Three-dimensional printing techniques
US20050023710A1 (en) * 1998-07-10 2005-02-03 Dmitri Brodkin Solid free-form fabrication methods for the production of dental restorations
RU2450998C2 (ru) * 2010-04-29 2012-05-20 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Способ создания конструкционного керамического материала
WO2014186769A1 (en) * 2013-05-17 2014-11-20 Uram Stuart Molds for ceramic casting
RU2600647C2 (ru) * 2015-01-27 2016-10-27 Общество с ограниченной ответственностью "ИНТЕХ-М" Способ получения трехмерных керамических изделий

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
с.6. *
формула. *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2696533C1 (ru) * 2018-07-12 2019-08-02 Федеральное государственное бюджетное научное учреждение "Томский национальный исследовательский медицинский центр Российской академии наук" (Томский НИМЦ) Способ реконструкции сложных дефектов челюстно-лицевой области
RU2759878C1 (ru) * 2021-03-25 2021-11-18 Акционерное общество «Обнинское научно-производственное предприятие «Технология» им. А.Г.Ромашина» Способ формования керамических заготовок
RU2813271C1 (ru) * 2023-02-13 2024-02-08 Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт конструкционных материалов "Прометей" имени И.В. Горынина Национального исследовательского центра "Курчатовский институт" (НИЦ "Курчатовский институт" - ЦНИИ КМ "Прометей") Способ получения конструкционной керамики на основе тугоплавких карбидов для изделий сложной геометрии

Similar Documents

Publication Publication Date Title
US5658506A (en) Methods of making spray formed rapid tools
CN108947537A (zh) 一种SiC陶瓷结构件及其制备方法
CN105834360A (zh) 采用3d打印制作壳模的铸造方法
CN106927798B (zh) 一种水溶性陶瓷型芯及其制备方法
CN108101519A (zh) 一种用于复杂结构零件定向凝固成形的陶瓷铸型制备方法
KR20170079937A (ko) 3d 프린팅 금형을 활용한 로스트왁스 주조방법
RU2641683C1 (ru) Способ получения керамических изделий сложной объемной формы
CN102717026A (zh) 一种填充金属粉浆料的光固化模具及其制作方法
CN104148580A (zh) 用于制造轮毂铸件的铸造树脂模具的快速制造方法
Liu et al. Fabrication of complicated ceramic parts by gelcasting based on additive manufactured acetone-soluble plastic mold
KR20120027166A (ko) 공동을 포함하는 물품을 제조하는 방법
US20230271353A1 (en) Method for producing moulded parts, in particular dental moulded parts
US6203734B1 (en) Low pressure injection molding of metal and ceramic powders using soft tooling
KR940005803B1 (ko) 석고주형을 이용한 공예품의 주조방법
US11548232B2 (en) Method of manufacturing isotropic parts utilizing additive manufacturing methods
CN111015895A (zh) 一种用于无机胶凝材料制品增材制造的成形装置与方法
CN113211601B (zh) 一种陶瓷芯及其制备方法和应用
Minev et al. The RepRap 3D printers for metal casting pattern making–capabilities and application
Singh et al. Indirect Rapid Tooling Methods in Additive Manufacturing
TW201720661A (zh) 採用3d打印殼模之鑄造方法
JP6853158B2 (ja) シリカ焼結体の製造方法
Chil-Chyuan et al. Study and Analysis of Process Parameters for Silicone Rubber Mold
Singh Comparison of Polyjet Printing and Silicon Moulding as Rapid Plastic Moulding Solution
JPS58189302A (ja) 粉末の成形方法
JPH08117247A (ja) 粉末焼結歯科用インレイの製造方法