RU2639921C2 - Газотурбинный двигатель (варианты) - Google Patents

Газотурбинный двигатель (варианты) Download PDF

Info

Publication number
RU2639921C2
RU2639921C2 RU2015130236A RU2015130236A RU2639921C2 RU 2639921 C2 RU2639921 C2 RU 2639921C2 RU 2015130236 A RU2015130236 A RU 2015130236A RU 2015130236 A RU2015130236 A RU 2015130236A RU 2639921 C2 RU2639921 C2 RU 2639921C2
Authority
RU
Russia
Prior art keywords
outer casing
channel
turbine engine
gas turbine
casing
Prior art date
Application number
RU2015130236A
Other languages
English (en)
Other versions
RU2015130236A (ru
Inventor
Джон У. ФИННЕРАН
Дэрил Дж. ГРАБЕР
Джонатан М. ЛИГОН
Мринал МУНШИ
Мэттью Р. ПОРТЕР
Евгений П. ШТЕЙМАН
Original Assignee
Сименс Акциенгезелльшафт
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сименс Акциенгезелльшафт filed Critical Сименс Акциенгезелльшафт
Publication of RU2015130236A publication Critical patent/RU2015130236A/ru
Application granted granted Critical
Publication of RU2639921C2 publication Critical patent/RU2639921C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/06Fluid supply conduits to nozzles or the like
    • F01D9/065Fluid supply or removal conduits traversing the working fluid flow, e.g. for lubrication-, cooling-, or sealing fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/12Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/14Casings modified therefor
    • F01D25/145Thermally insulated casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/16Arrangement of bearings; Supporting or mounting bearings in casings
    • F01D25/162Bearing supports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/30Exhaust heads, chambers, or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes
    • F05D2240/128Nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/15Heat shield

Abstract

Газотурбинный двигатель включает внешний кожух, канал для отвода выхлопных газов, охлаждающий канал, панельную структуру и воздуховод. Канал для отвода выхлопных газов расположен внутри внешнего кожуха и содержит внешнюю и внутреннюю стенки канала, формирующие кольцевой проход и распложенные радиально внутрь от внешнего кожуха. Охлаждающий канал связан с наружной поверхностью внешнего кожуха и имеет вход канала и выход канала. Панельная структура расположена вокруг внешнего кожуха и радиально отстоит от его наружной поверхности с формированием охлаждающего канала между ними. Панельная структура содержит множество панельных секций с простирающимися в осевом направлении зазорами между смежными панельными секциями, расположенными по окружности на расстоянии друг от друга, причем зазоры обеспечивают прохождение окружающего воздуха в охлаждающий канал. Воздуховод включает входной конец, гидравлически сообщающийся с выходом канала, и выходной конец, гидравлически сообщающийся с областью пониженного давления относительно входного конца воздуховода. В области выходного конца воздуховода расположена выходная полость, в которой формируется пониженное давление для того, чтобы засасывать воздух из канала охлаждения в воздуховод. В другом варианте газотурбинный двигатель включает распорку, простирающуюся от внешнего кожуха до корпуса подшипника, и экранирующую структуру, окружающую распорку, чтобы защищать ее от отработанных газов. В еще одном варианте газотурбинного двигателя внешний кожух содержит выхлопной кожух, содержащий расположенные вверх и вниз по потоку фланцы, выступающие радиально наружу от наружной поверхности указанного внешнего кожуха. Панельная структура содержит расположенный вверх по потоку конец, закрепленный на расположенном вверх по потоку фланце, и расположенный вниз по потоку конец, закрепленный на расположенном вниз по потоку фланце. Группа изобретений позволяет повысить надежность газотурбинного двигателя за счет обеспечения охлаждения его внешнего кожуха. 3 н. и 14 з.п. ф-лы, 14 ил.

Description

ПЕРЕКРЕСТНАЯ ССЫЛКА НА СВЯЗАННЫЕ ЗАЯВКИ
Данная заявка является частичным продолжением и испрашивает приоритет американской патентной заявки №13/314311, поданной 8 декабря 2011 г., которая включена в настоящий документ посредством ссылки во всей ее полноте, как если бы она была полностью сформулирована в настоящем документе.
ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
Настоящее изобретение относится к газотурбинным двигателям и, более конкретно, к структурам для обеспечения тепловой защиты для ограничения нагревания внешнего кожуха газотурбинного двигателя.
ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ
Газотурбинный двигатель обычно включает в себя секцию компрессора, секцию камеры сгорания, турбинную секцию и выпускную секцию. При работе секция компрессора может всасывать окружающий воздух и сжимать его. Сжатый воздух из секции компрессора входит в одну или более камер сгорания в секции камеры сгорания. Сжатый воздух смешивается с топливом в камерах сгорания, и топливно-воздушная смесь может быть сожжена в камерах сгорания для того, чтобы сформировать горячий рабочий газ. Горячий рабочий газ направляется к турбинной секции, где он расширяется через чередующиеся ряды стационарных деталей с аэродинамическим профилем и вращающихся деталей с аэродинамическим профилем и используется для генерации мощности, которая может приводить в движение ротор. Расширенный газ, выходящий из турбинной секции, может быть затем удален из двигателя через выпускную секцию.
В типичном газотурбинном двигателе отбираемый от компрессора воздух, представляющий собой часть сжатого воздуха, получаемого из одной или более ступеней компрессора, может использоваться в качестве охлаждающего воздуха для охлаждения компонентов турбинной секции. Дополнительный отбираемый от компрессора воздух может также быть подан в части выпускной секции, например, для охлаждения частей выпускной секции и поддержания температуры выхлопного кожуха турбины ниже предопределенной температуры посредством воздушного потока принудительной конвекции, обеспечиваемого внутри внешнего корпуса двигателя. Прогресс в технологии газотурбинных двигателей привел к повышению температур и к связанным с этим деформациям внешнего кожуха из-за теплового расширения. Деформация кожуха может увеличить напряжения в кожухе и в компонентах, которые крепятся к нему внутри двигателя, таких как опорные раскосы. Дополнительное напряжение, которое может работать в комбинации с низкоцикличной усталостью, может способствовать образованию трещин, разрывам или отказам опорных раскосов, которые крепятся к кожуху для поддержки корпуса заднего подшипника.
Задачей настоящего изобретения является устранение недостатков предшествующего уровня техники.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Для решения поставленной задачи предлагается, в соответствии с одним аспектом настоящего изобретения, газотурбинный двигатель, включающий в себя внешний кожух, определяющий центральную продольную ось, и поверхность внешнего кожуха, проходящую по окружности вокруг центральной продольной оси. Проход отработанного газа определяется внутри внешнего кожуха для отведения потока отработанного газа из турбинной секции газотурбинного двигателя. Охлаждающий канал связан с наружной поверхностью внешнего кожуха и имеет вход канала и выход канала. Предусмотрен также воздуховод, который включает в себя входной конец, гидравлически сообщающийся с выходом канала, а также выходной конец, гидравлически сообщающийся с областью пониженного давления относительно входного конца воздуховода. В выходной полости, располагающейся у выходного конца воздуховода, формируется пониженное давление на выходном конце для того, чтобы затягивать воздух из охлаждающего канала в воздуховод.
Воздуховод может включать в себя проход, простирающийся от внутренней поверхности внешнего кожуха к расположению выходной полости в направлении радиально внутрь прохода отработанного газа.
Газотурбинный двигатель может включать в себя распорку, простирающуюся в направлении радиально внутрь от внутренней поверхности внешнего кожуха, и воздуховод может быть определен экраном защиты от излучения, проходящим вокруг распорки и прикрепленным к внутренней поверхности внешнего кожуха.
Сквозные отверстия во внешнем кожухе могут определять выход охлаждающего канала для прохода окружающего воздуха от наружной поверхности внешнего кожуха к воздуховоду.
Охлаждающий канал может быть определен между внешней поверхностью внешнего кожуха и панельной структурой, опирающейся на внешний кожух, и окружающий воздух может проходить через панельную структуру и входить в охлаждающий канал.
Панельная структура может включать в себя множество панельных секций с простирающимися в осевом направлении зазорами между смежными панельными секциями, расположенными с промежутками по окружности, причем эти зазоры позволяют окружающему воздуху проходить в часть канала.
Во внешнем кожухе могут быть предусмотрены сквозные отверстия, определяющие выход охлаждающего канала для прохода окружающего воздуха от наружной поверхности внешнего кожуха к воздуховоду. Для управления температурой внешнего кожуха может быть предусмотрена система теплового барьера/охлаждения, включающая в себя:
внутренний изолирующий слой, поддерживаемый на внутренней поверхности внешнего кожуха, противоположной наружной поверхности внешнего кожуха, который простирается по окружности вдоль внутренней поверхности внешнего кожуха и обеспечивает тепловое сопротивление от энергии, излучаемой при прохождении отработанного газа, расположенного радиально внутри внешнего кожуха; и
охлаждающий канал, определяемый панельной структурой, расположенной в радиальном направлении на расстоянии от наружной поверхности внешнего кожуха, и простирающийся вокруг окружности наружной поверхности внешнего кожуха, причем канал конвекционного охлаждения в целом выровнен в осевом направлении с внутренним изолирующим слоем и образует путь потока для потока окружающего воздуха, охлаждающего наружную поверхность внешнего кожуха.
Внешний изолирующий слой может поддерживаться панельной структурой и закрывать ее. Внешний кожух может включать в себя выхлопной кожух турбины, и может включать в себя выхлопной диффузор, определяющий проход для отработанного газа у осевой локализации внутреннего изолирующего слоя.
В соответствии с другим аспектом настоящего изобретения предлагается газотурбинный двигатель, включающий в себя выпускную секцию, включающую в себя внешний кожух, определяющий центральную продольную ось, и внешнюю поверхность внешнего кожуха, простирающуюся по окружности вокруг центральной продольной оси. Канал для отвода выхлопных газов располагается внутри внешнего кожуха и определяется между внешней стенкой канала и внутренней стенкой канала, и канал для отвода выхлопных газов определяет проход для горячих отработанных газов, выходящих из турбинной секции газотурбинного двигателя. Корпус заднего подшипника располагается радиально внутрь от внутренней стенки канала, и распорка проходит от внешнего кожуха до корпуса подшипника для поддержания корпуса подшипника.
Экранирующая структура окружает распорку для того, чтобы защитить распорку от отработанных газов. Во внешней поверхности внешнего кожуха формируется воздушное отверстие, гидравлически сообщающееся с радиальным проходом, простирающимся между распоркой и частью экранирующей структуры. Дискообразная полость располагается смежно со ступенью турбинной секции и гидравлически сообщается с радиальным проходом. Дискообразная полость находится под давлением ниже, чем давление окружающего воздуха за пределами газовой турбины, для создания потока окружающего воздуха через воздушное отверстие в дискообразную полость.
Экранирующая структура может включать в себя экран распорки, окружающий распорку, и экран защиты от излучения, расположенный между экраном распорки и распоркой.
Радиальный проход может определяться внутренней поверхностью экрана защиты от излучения и внешней поверхностью распорки.
Экран защиты от излучения может проходить через кольцевой зазор, определенный между внешней стенкой канала и внешним кожухом.
Экран защиты от излучения может включать в себя внешний в радиальном направлении конец, прикрепленный к внутренней поверхности внешнего кожуха и окружающий воздушное отверстие.
Туннельная полость может определяться радиально внутрь от внутренней стенки канала и располагаться дальше по течению от дискообразной полости, причем туннельная полость получает окружающий воздух до того, как окружающий воздух войдет в дискообразную полость.
Охлаждающий канал может быть определен между внешней поверхностью внешнего кожуха и панельной структурой, опирающейся на внешний кожух, и окружающий воздух, входящий в воздушное отверстие, проходит через панельную структуру и входит в охлаждающий канал.
Охлаждающий канал может простираться по окружности вокруг выхлопного кожуха, а панельная структура может включать в себя множество панельных секций с проходящими в осевом направлении зазорами, определяемыми между смежными панельными секциями, расположенными по кругу на некотором расстоянии друг от друга, причем эти зазоры обеспечивают прохождение окружающего воздуха в часть канала.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
В дальнейшем изобретение поясняется описанием вариантов его осуществления, приводимых со ссылками на сопровождающие чертежи, на которых:
Фиг. 1 представляет собой поперечное сечение через часть газотурбинного двигателя, включая выпускную секцию, иллюстрирующее аспекты настоящего изобретения;
Фиг. 2 представляет собой частично срезанный вид в изометрии выпускной секции, иллюстрирующий аспекты настоящего изобретения;
Фиг. 2А представляет собой вид в изометрии нижней части структуры, проиллюстрированной на Фиг. 2, иллюстрирующий главное отверстие для впуска воздуха;
Фиг. 2В представляет собой вид в изометрии снизу структуры, проиллюстрированной на Фиг. 2, иллюстрирующий дополнительные отверстия для впуска воздуха;
Фиг. 3 представляет собой поперечное осевое сечение выпускной секции, схематически иллюстрирующее воздушный поток, обеспечиваемый вокруг внешнего кожуха газотурбинного двигателя;
Фиг. 4 представляет собой вид в изометрии и в разрезе части выпускной секции, смежной с положением верхней мертвой точки выпускной секции;
Фиг. 5 представляет собой вид в изометрии, иллюстрирующий сегмент изолирующего слоя в соответствии с одним аспектом настоящего изобретения;
Фиг. 6 представляет собой поперечное сечение через часть газотурбинного двигателя, включая выпускную секцию, иллюстрирующее дополнительный аспект настоящего изобретения;
Фиг. 7 представляет собой частично срезанный вид в изометрии выпускной секции, иллюстрирующий аспекты настоящего изобретения, показанные на Фиг. 6;
Фиг. 8 представляет собой увеличенное поперечное сечение структуры распорки, проиллюстрированной на Фиг. 7;
Фиг. 9 представляет собой увеличенный разрезанный вид в изометрии части структуры раскоса, иллюстрирующий впадины, сформированные в экране защиты от излучения структуры распорки;
Фиг. 10 представляет собой вид в изометрии экрана защиты от излучения;
Фиг. 11 представляет собой вид в изометрии части наружной поверхности внешнего кожуха для выпускной секции, показывающей сквозные отверстия для прохождения окружающего воздуха в кожух; и
Фиг. 12 представляет собой вид в изометрии панельной структуры с изоляцией, иллюстрирующий перемычки, формирующие зазоры между секциями панельной структуры.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
В последующем подробном описании предпочтительного варианта осуществления делается ссылка на сопроводительные чертежи, которые являются его частью, на которых показывается посредством иллюстрации, а не посредством ограничения, конкретный предпочтительный вариант осуществления, с помощью которого может быть реализовано настоящее изобретение. Следует понимать, что могут быть использованы другие варианты осуществления и что изменения могут быть выполнены без отступлений от сущности и объема защиты настоящего изобретения.
На Фиг. 1 для иллюстрации аспектов настоящего изобретения показана часть выпускной секции 10 газотурбинного двигателя, расположенная в осевом направлении после турбинной секции 12. Выпускная секция 10 обычно включает в себя цилиндрическую структуру, включающую в себя внешний кожух 11, проходящий по окружности вокруг обычно горизонтальной центральной продольной оси Ас, и формирует выступающую часть внешнего кожуха газотурбинного двигателя. Внешний кожух 11 выпускной секции 10 включает в себя выпускной цилиндр или выхлопной кожух 14 турбины, а также выпускную барабанную структуру 16, расположенную после выхлопного кожуха 14.
Выхлопной кожух 14 включает в себя выходной фланец 18 выхлопного кожуха, который проходит радиально наружу из выходного конца выхлопного кожуха 14, а барабанная структура 16 включает в себя входной фланец 20 барабанной структуры, который проходит радиально наружу из барабанной структуры 16. Выходной фланец 18 выхлопного кожуха и входной фланец 20 барабанной структуры упираются друг в друга в соединении 22, и могут быть скреплены обычным образом, например болтами (не показаны). В дополнение к этому, входной фланец 21 выхлопного кожуха проходит радиально наружу от входного конца выхлопного кожуха 14 и может быть прикреплен болтами к радиально проходящему фланцу 23 турбинной секции 12 для присоединения выхлопного кожуха 14 к турбинной секции 12.
Выхлопной кожух 14 включает в себя относительно толстую стенку, образующую структурный элемент или раму для поддержки корпуса 24 заднего подшипника, а также для поддержки по меньшей мере части выхлопного диффузора 26. Корпус 24 заднего подшипника предназначен для поддержки конца ротора 25 для газотурбинного двигателя.
Диффузор 26 включает в себя внутреннюю стенку 28 и внешнюю стенку 30, определяющие кольцевой проход для горячих отработанных газов 31 из турбинной секции 12. Корпус 24 подшипника поддерживается множеством структур 32 распорки. Каждая из структур 32 распорки включает в себя распорку 34, проходящую от соединения 36 на выхлопном кожухе 14 через диффузор 26 к соединению 38 на корпусе 24 подшипника для поддержания и обслуживания корпуса 24 подшипника в центральном положении внутри выхлопного кожуха 14. Структуры 32 распорки могут дополнительно включать в себя экран или обтекатель 40 распорки, окружающий распорку 34 для ее изоляции от горячих отработанных газов 31, проходящих через диффузор 26, см. также Фиг. 3.
В результате прохождения горячих отработанных газов 31 через диффузор 26 внешняя стенка 30 диффузора 26 излучает тепло радиально наружу по направлению к внутренней поверхности 42 выхлопного кожуха 14. Как было показано выше, обычные конструкции для охлаждения выхлопной секции турбины могут обеспечивать подачу отбираемого от компрессора воздуха из секции компрессора двигателя к выхлопной секции для обеспечения потока охлаждающего воздуха между диффузором и выхлопным кожухом для того, чтобы управлять или уменьшать температуру выхлопного кожуха посредством принудительной конвекции. В соответствии с одним аспектом настоящего изобретения предлагается система 44 теплового барьера/охлаждения для того, чтобы уменьшить и/или устранить использование отбираемого от компрессора воздуха для управления температурой выхлопного кожуха 14 и барабанной структуры 16.
Что касается Фиг. 2 и Фиг. 3, система 44 теплового барьера/охлаждения обычно включает в себя внутренний изолирующий слой 46 и канал 48 конвекционного охлаждения. Внутренний изолирующий слой 46 поддерживается на внутренней поверхности 42 кожуха и проходит по окружности, покрывая по существу всю внутреннюю поверхность 42 кожуха. Внутренний изолирующий слой 46 образует тепловой барьер между диффузором 26 и выхлопным кожухом 14 для обеспечения теплового сопротивления для энергии, излучаемой от внешней стенки 30 диффузора 26.
Внутренний изолирующий слой 46 предпочтительно формируется множеством сегментов 46а изолирующего слоя (Фиг. 5), в целом расположенных бок о бок друг с другом, и имеет продольную или осевую длину, которая примерно равна осевой длине выхлопного кожуха 14 для того, чтобы обеспечить тепловой барьер по существу для всей внутренней поверхности 42 выхлопного кожуха 14. Следовательно, существенная часть тепла, излучаемого диффузором 26, не достигает выхлопного кожуха 14, и таким образом стенка выхлопного кожуха 14 изолируется от тепловой нагрузки.
Обращаясь далее к Фиг. 5, сегменты 46а изолирующего слоя могут включать в себя прямоугольные сегментные элементы, имеющие передний край 50, задний край 52 и противолежащие боковые края 54, 56. Сегменты 46а изолирующего слоя имеют более низкую удельную теплопроводность, чем стенка выхлопного кожуха 14. Удельная теплопроводность сегментов 46а изолирующего слоя может иметь максимальную величину приблизительно 0,15 Вт/м-К, и предпочтительно составляет приблизительно 0,005 Вт/м-К для того, чтобы препятствовать переносу тепла от диффузора к кожуху 14 двигателя. Сегменты 46а изолирующего слоя могут располагаться на внутренней поверхности 42 выхлопного кожуха 14 с боковыми краями 54, 56 одного сегмента 46а изолирующего слоя, плотно примыкающими или зацепляющимися с боковыми краями 54, 56 смежного сегмента 46а изолирующего слоя.
Конструкция сегментов 46а изолирующего слоя может включать в себя пару противолежащих слоев 58, 60 листового металла и теплозащитный слой 62, расположенный между слоями 58, 60 листового металла и имеющий существенно более низкую удельную теплопроводность, чем слои 58, 60 листового металла. Множество металлических втулок 64 могут проходить через слои 58, 60 листового металла и теплозащитный слой 62 в установочных точках для сегментов 46а изолирующего слоя. В частности, каждая из металлических втулок 64 включает в себя жесткую структуру, определяющую предопределенное расстояние между слоями 58, 60 листового металла, и выполнена с возможностью приема крепежной структуры, такой как упор 66 (Фиг. 4), для прикрепления каждого сегмента 46а изолирующего слоя к выхлопному кожуху 14. Упоры 66 могут быть выполнены с возможностью ограниченного перемещения сегментов 46а изолирующего слоя относительно внутренней поверхности 42 кожуха, например, для того, чтобы предусмотреть термическое несоответствие между внутренним изолирующим слоем 46 и выхлопным кожухом 14. Например, каждый из упоров 66 может включать в себя штифт 67, имеющий радиально внешний конец, прикрепленный к внутренней поверхности 42 кожуха, а также снабженный резьбой радиально внутренний конец для приема гайки 69, чтобы удерживать сегмент 46а изолирующего слоя между гайкой и внутренней поверхностью 42 кожуха.
Сегменты 46а изолирующего слоя могут быть снабжены щелями 65, проходящими от задней кромки 52 к заднему ряду втулок 64, для того, чтобы облегчить сборку сегментов 46а изолирующего слоя с выхлопным кожухом 14. В частности, щели 65 облегчают надевание сегментов 46а изолирующего слоя на штифты 67 во время сборки путем обеспечения некоторой степени осевого перемещения заднего ряда втулок 64 на соответствующий ряд штифтов 67 в задней части выхлопного кожуха 14, где имеется минимальное пространство между выхлопным кожухом 14 и диффузором 26.
Можно заметить, что ограниченное расстояние может быть предусмотрено между смежными сегментами 46а изолирующего слоя в конкретных местах вокруг внутренней поверхности 42 кожуха. Например, в местах соединений 36, где раскосы 34 простираются внутрь от внутренней поверхности 42 кожуха, некоторое расстояние или зазор может быть предусмотрен между смежными сегментами 46а изолирующего слоя, расположенными смежно с любой стороной каждого раскоса 34.
Аналогичным образом, ограниченный зазор может присутствовать между сегментами 46а изолирующего слоя, которые являются непосредственно смежными со структурой, образующей горизонтальные соединения 92. Следует отметить, что альтернативная конфигурация сегментов 46а изолирующего слоя может быть предусмотрена для того, чтобы уменьшить зазоры в этих местах. Например, сегменты 46а изолирующего слоя могут быть выполнены с возможностью включения частей, которые близко проходят вокруг раскосов 34 и тем самым уменьшают области зазора, которые могут подвергнуть внутреннюю поверхность 42 кожуха воздействию теплового излучения.
Формирование множества сегментов 46а изолирующего слоя облегчает сборку внутреннего изолирующего слоя 46 с кожухом 14 двигателя, а также дополнительно обеспечивает ремонт выбранной части внутреннего изолирующего слоя 46. Например, в случае повреждения части внутреннего изолирующего слоя 46 конфигурация внутреннего изолирующего слоя 46 позволяет удалять и заменять отдельные сегменты 46а изолирующего слоя, которые могут иметь повреждение, без необходимости замены всего внутреннего изолирующего слоя 46.
Следует понимать, что, хотя была описана конкретная конструкция сегментов 46а изолирующего слоя, могут быть предусмотрены другие материалы и конструкции для сегментов 46а изолирующего слоя.
Например, сегменты 46а изолирующего слоя могут быть сформированы из известного керамического изолирующего материала, выполненного с возможностью обеспечения теплового сопротивления для поверхностей, таких как внутренняя поверхность 42 кожуха.
Что касается Фиг. 1, канал 48 конвекционного охлаждения проходит по окружности вокруг внешней поверхности 68 выхлопного кожуха 14, и обычно располагается в осевом направлении, простираясь от входного фланца 21 выхлопного кожуха до по меньшей мере выходного фланца 18 выхлопного кожуха, и предпочтительно простираясь до выходного фланца 70 барабанной структуры, проходя радиально наружу от выходного конца барабанной структуры 16. Канал 48 конвекционного охлаждения определяется панельной структурой 72, которая простирается от предшествующего положения 74, где она прикрепляется к выпускной секции 10 у входного фланца 21 выхлопного кожуха, до последующего положения 76, где она прикрепляется к выпускной секции 10 у выходного фланца 70 барабанной структуры. Панельная структура 72 располагается радиально на некотором расстоянии от внешней поверхности 68 кожуха для того, чтобы определить первую часть 78 канала 48 конвекционного охлаждения, то есть утопленную область между входным фланцем 21 выхлопного кожуха и выходным фланцем 18 выхлопного кожуха. Панельная структура 72 далее располагается радиально на некотором расстоянии от наружной поверхности 80 барабанной структуры 16 для того, чтобы определить вторую часть 82 канала 48 конвекционного охлаждения, то есть утопленную область между входным фланцем 20 барабанной структуры и выходным фланцем 70 барабанной структуры. Первая и вторая части 78, 82 охлаждающего канала определяют параллельные друг другу по окружности пути потока вокруг выпускной секции 10 и могут гидравлически сообщаться друг с другом через радиально внешние концы фланцев 18, 20.
Согласно Фиг. 2 и Фиг. 3, канал 48 конвекционного охлаждения включает в себя главный вход 84 подачи охлаждающего воздуха, расположенный в первом круговом расположении для обеспечения подачи окружающего воздуха к каналу 48 конвекционного охлаждения. Канал 48 конвекционного охлаждения дополнительно включает в себя выход 86 отработанного воздуха во втором круговом расположении, которое диаметрально противоположно первому круговому расположению. В соответствии с предпочтительным вариантом осуществления главный вход 84 подачи охлаждающего воздуха (Фиг. 2А) располагается в нижней мертвой точке внешнего кожуха 11 выпускной секции 10, а выход 86 отработанного воздуха располагается в верхней мертвой точке внешнего кожуха 11 выпускной секции 10.
Как видно на Фиг. 2, выпускная секция 10 может быть сформирована из двух половин, то есть верхней половины 88 и нижней половины 90, соединенных вместе горизонтальным соединением 92. В соответствии с одним аспектом настоящего изобретения панельная структура 72 включает в себя увеличенные боковые части 94, сформированные как коробчатые секции, проходящие через горизонтальное соединение 92 из расположений выше и ниже горизонтального соединения 92. Боковые части 94 выполнены с возможностью обеспечения дополнительного зазора для воздушного потока вокруг горизонтального соединения 92, и могут дополнительно быть выполнены с возможностью обеспечения дополнительного воздушного потока к каналу 48 конвекционного охлаждения, как будет показано ниже.
Панельная структура 72 включает в себя индивидуальные панельные секции 72а, которые могут быть сформированы из листового металла, то есть являются относительно тонкими по сравнению с внешним кожухом 11. Панельные секции 72а искривлены таким образом, чтобы соответствовать кривизне внешнего кожуха 11, и проходят вниз от боковых частей 94 к главному входу 84 подачи охлаждающего воздуха, и проходят вверх от боковых частей 94 к выходу 86 отработанного воздуха. Панельные секции 72а формируются как в целом прямоугольные секции, простирающиеся между предшествующим и последующим расположениями 74, 76 на выпускной секции 10, и предпочтительно зацепляются или упираются друг в друга точно так же, как боковые части 94 в соединениях 98 внахлест вдоль простирающихся в осевом направлении краев панельных секций 72а. Панельные секции 72а и боковые части 94 могут быть присоединены к внешнему кожуху 11 выпускной секции с помощью любых обычных средств, и предпочтительно прикрепляются как съемные компоненты крепежными элементами, такими как болты или винты. Следует понимать, что, хотя увеличенные боковые части 94 изображены как коробчатые секции, эта часть панельной структуры 72 не нуждается в ограничении конкретной формой и может иметь любую конфигурацию, которая облегчает прохождение воздушного потока через горизонтальные соединения 92, которые как правило включают в себя увеличенные и простирающиеся радиально наружу фланцевые части внешнего кожуха 11 выпускной секции. Кроме того, следует отметить, что главный вход 84 подачи охлаждающего воздуха и выход 86 отработанного воздуха могут быть включены в соответствующие панельные секции 72а в соответствующих расположениях нижней мертвой точки и верхней мертвой точки вокруг панельной структуры 72.
Что касается Фиг. 2 и Фиг. 2В, боковые части 94 могут быть сформированы с нижней частью 100, простирающейся ниже горизонтального соединения 92 и заканчивающейся у обращенной вниз структуры 102 входа дополнительного воздуха. Структура 102 входа дополнительного воздуха может включать в себя первое и второе входные отверстия 104, 106 дополнительного воздуха, расположенные рядом друг с другом, каждое из которых проиллюстрировано как обращенное вниз отверстие в панельной структуре 72. Первое и второе входные отверстия 104, 106 дополнительного воздуха могут быть выровнены в осевом направлении соответственно над первой и второй частями 78, 82 канала. Входные отверстия 104, 106 дополнительного воздуха показаны как снабженные соответствующими закрывающими панелями или пластинами 108, 110, которые могут быть съемным образом прикреплены над отверстиями с помощью крепежных элементов 112, таких как болты или винты. Одна или обе из закрывающих пластин 108, 110 могут быть сдвинуты или удалены из входных отверстий 104, 106 дополнительного воздуха, с возможностью обеспечения поступления дополнительного или вспомогательного окружающего воздуха 116 в канал 48 конвекционного охлаждения через структуру 102 входа дополнительного воздуха, как дополнительно проиллюстрировано на Фиг. 3.
В соответствии с одним аспектом настоящего изобретения канал 48 конвекционного охлаждения получает окружающий воздух, поступающий самотеком через главный вход 84 подачи охлаждающего воздуха. Таким образом, воздух может быть подан в канал 48 конвекционного охлаждения без принуждения или силы давления на входе 84 подачи охлаждающего воздуха, чтобы передать воздух в главный конвекционный поток 114 подачи воздуха снаружи газотурбинного двигателя через главный вход 84 подачи охлаждающего воздуха. Главный вход 84 подачи охлаждающего воздуха может иметь такой диаметр, чтобы он проходил по меньшей мере через часть каждой из первой и второй частей 78, 82 канала так, чтобы часть главного конвекционного потока 114 подачи воздуха могла проходить непосредственно в каждую из частей 78, 82 канала.
Поток окружающего воздуха в канал 48 конвекционного охлаждения обеспечивает уменьшенный температурный градиент вокруг окружности выпускной секции 10 для того, чтобы уменьшить или минимизировать тепловые напряжения, которые могут образоваться при неравномерном распределении температур вокруг выпускной секции 10. В частности, напряжения, относящиеся к дифференциальному тепловому расширению выхлопного кожуха 14 и передаваемые к распоркам 34, могут быть уменьшены за счет увеличенной однородности охлаждающего потока, обеспечиваемого каналом 48 конвекционного охлаждения. Кроме того, рабочая температура выхлопного кожуха 14 может поддерживаться ниже нижнего предела текучести материала для того, чтобы избежать связанной с этим деформации ползучести кожуха, которая может вызвать увеличение напряжений в раскосах.
Многоканальная конфигурация охлаждения может быть обеспечена для канала 48 конвекционного охлаждения путем смещения или удаления по меньшей мере одной закрывающей пластины 108, 110 структуры 102 входа дополнительного воздуха с тем, чтобы увеличить количество мест подачи воздуха для конвекционного охлаждения. Следовательно, количество охлаждения, обеспечиваемого для частей 78, 82 канала, может регулироваться на турбинных двигателях при их эксплуатации с тем, чтобы увеличить или уменьшить охлаждение путем удаления или замены закрывающих пластин 108, 110. Например, может быть желательно обеспечить увеличение потока охлаждающего воздуха путем удаления одной или более закрывающих пластин 108, 110, или может быть желательно обеспечить уменьшение воздушного потока путем замены одной или более закрывающих пластин 108, 110 с тем, чтобы предотвратить или уменьшить поток 116 дополнительного воздуха, в зависимости от увеличения или уменьшения температуры окружающего воздуха. Кроме того, закрывающие пластины 108, 110 могут использоваться для оптимизации температуры выхлопного кожуха 14 и барабанной структуры 16 с тем, чтобы минимизировать термическое несоответствие между смежным оборудованием и компонентами.
Выход 86 отработанного воздуха располагается сверху канала 48 конвекционного охлаждения, так что горячий выходящий воздух 118 может вытекать за счет конвекции из канала 48 конвекционного охлаждения. Выход 86 отработанного воздуха может иметь такой диаметр, чтобы он проходил по меньшей мере через часть каждой из первой и второй частей 78, 82 канала так, чтобы горячий воздух, выходящий из канала 48 конвекционного охлаждения, мог быть передан непосредственно к выходу 86 отработанного воздуха из каждой из частей 78, 82 канала.
После этого горячий воздух, выходящий из выхода 86 отработанного воздуха, может быть выпущен из существующей жалюзийной структуры (не показана), предусматриваемой в настоящее время в существующих блоках газотурбинных двигателей.
Следует понимать, что конвекционный воздушный поток через канал 48 конвекционного охлаждения включает в себя поток охлаждающего воздуха, который может по существу приводиться в движение конвективной силой, производимой воздухом, нагреваемым вдоль внешней поверхности 68 кожуха и наружной поверхности 80 барабанной структуры 16. Горячий воздух внутри канала 48 конвекционного охлаждения поднимается за счет естественной конвекции и направляется к выходу 86 отработанного воздуха. По мере того, как воздух поднимается внутри канала 48 конвекционного охлаждения, он вовлекает окружающий воздух в канал 48 через главный вход 84 подачи охлаждающего воздуха, эффективно обеспечивая движущую силу для непрерывного потока охлаждающего воздуха в направлении вверх вокруг наружной поверхности внешнего кожуха 11. Аналогичным образом, при открывании одного или обоих входных отверстий 104, 106 дополнительного воздуха по бокам панельной структуры 72, естественная конвекция будет увлекать воздух вверх вокруг канала 48 через структуру 102 входа дополнительного воздуха к выходу 86 отработанного воздуха.
Следует отметить, что поскольку охлаждающий воздух течет вверх как конвекционный воздушный поток 48, внутри канала 48 конвекционного охлаждения будет создаваться более низкое давление, чем давление окружающего воздуха снаружи канала 48 конвекционного охлаждения. Следовательно, любая утечка в панельных соединениях 98 или в соединениях 97, 99 (Фиг. 2), где края панельных сегментов 72а крепятся к выпускной секции 10 в предшествующем и последующем расположениях 74, 76, будет происходить в направлении внутрь в канал 48 конвекционного охлаждения. В этой связи можно понять, что нет никакой необходимости в обеспечении герметичного соединения периферийных краев панельных сегментов 72а боковых частей 94, и что утечка в канал 48 конвекционного охлаждения может рассматриваться как преимущество, облегчающее функцию охлаждения системы 44 теплового барьера/охлаждения.
Опционально, как схематически проиллюстрировано на Фиг. 3, может быть предусмотрен блок 120 вентилятора, связанный с выходом 86 отработанного воздуха. Блок 86 вентилятора может обеспечивать дополнительный воздушный поток из выхода 86 отработанного воздуха для увеличения охлаждающей способности канала 48 конвекционного охлаждения с одновременным поддержанием потока окружающего воздуха в и через канал 48 конвекционного охлаждения. Альтернативно или в дополнение к этому, блок приточного вентилятора (не показан) может быть предусмотрен на главном входе 84 подачи охлаждающего воздуха для того, чтобы обеспечить увеличение потока окружающего воздуха в канал 48. Следует понимать, что даже при обеспечении блока вентилятора для облегчения потока через канал 48 конвекционного охлаждения, то есть блока 120 вентилятора на выходе 86 и/или блока вентилятора на входе 84, перемещение воздушного потока через канал 48 может создать пониженное давление внутри канала 48 относительно окружающей области, находящейся снаружи внешнего кожуха 11.
Канал 48 конвекционного охлаждения может быть дополнительно снабжен внешним изолирующим слоем 122, как показано на Фиг. 1, Фиг. 3 и Фиг. 4 (не показано на Фиг. 2). Внешний изолирующий слой может покрывать по существу всю внешнюю поверхность панельной структуры 72, определенную панельными сегментами 72а и боковыми частями 94, и имеет низкую удельную теплопроводность, чтобы в целом обеспечить тепловую защиту персоналу, работающему или проходящему рядом с выпускной секцией 10.
Что касается Фиг. 4, в барабанной структуре 16 может быть предусмотрен опциональный дополнительный или второй внутренний изолирующий слой 124, проходящий по окружности вокруг внутренней поверхности 126 сегмента барабана, радиально наружу от Z-образной пластины или пружинной структуры 128, предусмотренной для поддержания диффузора 26. Второй внутренний изолирующий слой 124 может включать в себя отдельные сегменты изолирующего слоя, имеющие конструкцию и удельную теплопроводность, подобные описанным для внутреннего изолирующего слоя 46. Кроме того, второй внутренний изолирующий слой 124 может быть смонтирован на внутренней поверхности 126 сегмента барабана аналогично тому, что описано для сегментов 46а внутреннего изолирующего слоя 46. Второй внутренний изолирующий слой 124 может быть предусмотрен для того, чтобы ограничить или минимизировать количество излучаемого тепла, передаваемого от диффузора 26 к барабанной структуре 16.
Следовательно, потребность в конвективном воздушном потоке для воздуха, текущего через вторую часть 82 канала 48 конвекционного охлаждения, может быть уменьшена за счет включения второго внутреннего изолирующего слоя 124.
Как описано выше, система 44 теплового барьера/охлаждения обеспечивает систему, в которой внутренний изолирующий слой 46 существенно уменьшает количество тепловой энергии, передаваемой внешнему кожуху 11 выпускной секции 10, и таким образом уменьшает потребность в охлаждении для того, чтобы поддерживать материал внешнего кожуха 11 ниже его предела текучести. Следовательно, конфигурация внешнего охлаждения, обеспечиваемая каналом 48 конвекционного охлаждения, обеспечивает соответствующее охлаждение внешнего кожуха 11 конвекционным воздушным потоком с одновременным уменьшением или устранением потребности в принудительном воздушном охлаждении внутренности внешнего кожуха 11. Устранение принудительного воздушного охлаждения внутренности внешнего кожуха 11, то есть путем поддержания подачи и отвода охлаждающего воздуха, внешнего по отношению к внешнему кожуху 11, позволяет избежать проблем, связанных с тепловым несоответствием или температурными градиентами между компонентами внутри внешнего кожуха 11.
Дополнительно к этому, поскольку подача воздуха для охлаждения внешнего кожуха 11 не требует отбираемого от компрессора воздуха и вообще не зависит непосредственно от подачи воздуха из газотурбинного двигателя, представленная система 44 теплового барьера/охлаждения не уменьшает мощность турбины, как это может происходить с системами, использующими отбираемый от компрессора воздух, и эффективность охлаждения представленной системы по существу не зависит от условий работы двигателя. Следовательно, настоящее изобретение может быть осуществлено без привлечения вторичного охлаждающего воздуха газотурбинного двигателя и может обеспечить уменьшенные требования к использованию вторичного охлаждающего воздуха с вытекающим из этого увеличением общего коэффициента полезного действия газотурбинного двигателя.
В соответствии с альтернативным аспектом настоящего изобретения поток через канал 48 конвекционного охлаждения может быть активно сформирован путем использования источника давления ниже давления окружающей среды внутри двигателя 10. В соответствии с этим аспектом, как изображено на Фиг. 6-10, структура 32 раскоса дополнительно включает в себя экранирующую структуру, включающую в себя экран 35 защиты от излучения, окружающий каждую из распорок 34, расположенную между распоркой 34 и экраном распорки или обтекателем 40. Экран 35 защиты от излучения и экран распорки или обтекатель 40 определяют экранирующую структуру, обеспечивающую тепловую защиту для распорки 34. Малый зазор 37 экрана распорки определяется экраном 35 защиты от излучения и представляет собой кольцевой зазор между наружной поверхностью раскоса 34 и внутренней поверхностью экрана 35. Экран 35 защиты от излучения может быть сформирован с впадинами 39 (см. Фиг. 9 и Фиг. 10), простирающимися внутрь к распорке 34 так, чтобы удерживать экран 35 на предопределенном расстоянии от распорки 34 и избежать формирования вибрационных режимов в экране 35. Экран 35 защиты от излучения экранирует распорку 34 от излучаемой тепловой энергии и, в соответствии с одним аспектом настоящего изобретения, зазор 37 экрана раскоса определяет путь потока охлаждающего воздуха.
В частности, зазор 37 экрана распорки формирует структуру воздуховода, определяющую путь или проход для охлаждающего воздуха, простирающийся радиальным образом внутрь вдоль распорки 34, и экран 35 защиты от излучения от входного конца у внутренней поверхности 42 кожуха к выходу у внутреннего конца 47 экрана, гидравлически сообщающийся с выходной полостью, определяемой областью пониженного давления внутри двигателя 10. В соответствии с одним аспектом настоящего изобретения путь воздуха, определяемый зазором 37 экрана распорки, включает в себя путь воздушного потока, гидравлически сообщающийся с давлением ниже давления окружающей среды, внутренним по отношению к двигателю, для того, чтобы вовлечь поток окружающего воздуха в канал 48. Как можно заметить на Фиг. 7, Фиг. 8 и Фиг. 10, экран 35 защиты от излучения формируется с радиально расширяющимся внешним концом, образованным расширяющимися частями 35а и 35b стенки, простирающимися в противоположных направлениях по окружности и проходящими через кольцевой зазор между внешней стенкой 30 канала 26 и внешним кожухом 11. В дополнение к этому, расширяющиеся части 35а, 35b соединяются отстоящими от них в осевом направлении концевыми стенками 35 с и 35d для того, чтобы сформировать закрытый путь потока между внешней стенкой 30 и внешним кожухом 11, который проходит до внутреннего конца 47 экрана 35 защиты от излучения. Как лучше всего видно на Фиг. 8, экран 35 защиты от излучения присоединяется к внешнему кожуху 11, например, как проиллюстрировано, множеством крепежных элементов 41, соединяющих расширяющиеся части 35а, 35b с внутренней поверхностью 42 кожуха, по существу герметизируя соединение радиально внешнего конца экрана защиты от излучения с внутренней поверхностью 42 кожуха. В кожухе 11 (см. Фиг. 12) формируется множество щелей 43 кожуха, то есть сквозных отверстий, простирающихся от внешней поверхности 68 кожуха к внутренней поверхности 42 кожуха, в области, герметизированной внешним концом экрана 35 защиты от излучения. Щели 43 кожуха определяют воздушные отверстия, обеспечивающие гидравлическую связь между охлаждающим каналом 48 и зазором 37 экрана распорки.
Экран 35 защиты от излучения простирается радиально внутрь между распоркой 34 и обтекателем 40, и включает в себя внутренний конец 47 экрана, который может быть расположен радиально внутрь от внутренней стенки 28 диффузора 26. Внутренний конец 47 экрана выпускает окружающий охлаждающий воздух 49 в выходную полость, включающую в себя внутренний диаметр или туннельную полость 51, где окружающий охлаждающий воздух 49 течет вперед к задней дискообразной полости 57, расположенной у щели 65 между дисковой структурой 59 последней ступени турбинной секции 12 и входным концом выпускной секции 10. В частности, задняя дискообразная полость 57 определяется в осевом направлении назад от дисковой структуры 59 и в осевом направлении вперед от радиальной уплотняющей структуры или перегородки 61, простирающейся радиально от корпуса 24 подшипника до внутренней стенки 28 канала 26. Следует понимать, что перегородка 61 может быть сформирована множеством сегментов, расположенных бок о бок друг к другу по окружности внутри двигателя 10, и что внешний конец каждого из сегментов, формирующих перегородку 61, может включать в себя полосковое уплотнение 61а, такое, которое может иметь эластичную или пружинную характеристику для контакта радиальной детали 61b с внутренней стенкой 28 диффузора 26. Внутренняя граница дискообразной полости 57 определяется у внутреннего герметичного соединения 63 между ротором 25 и корпусом 24 подшипника, а внешняя граница дискообразной полости 57 определяется передней в осевом направлении частью внутренней стенки 28 диффузора 26, простираясь вплоть до платформы 59а лопасти дисковой структуры 59 последней ступени.
Сегменты, формирующие перегородку 61, размещаются таким образом, что между ними образуются негерметичные зазоры, в том числе между смежными полосковыми уплотнениями 61а, так что поток текучей среды может проходить из туннельной полости 51 к задней дискообразной полости 57. В результате вращения дисковой структуры 59 потоком отработанных газов 31, проходящим щель 65, воздух извлекается из задней дискообразной полости 57, создавая пониженное давление ниже давления окружающей среды внутри задней дискообразной полости 57. Давление ниже давления окружающей среды внутри задней дискообразной полости 57 приводит в движение, то есть засасывает или побуждает, поток окружающего воздуха 49 из зазора 37 экрана распорки к задней дискообразной полости 57. Таким образом, давление ниже давления окружающей среды в задней дискообразной полости 57 создает поток окружающего воздуха 49, проходящий от охлаждающего канала 48 через щели 43 в кожухе 11 и радиально внутрь через зазор 37 экрана распорки к внутреннему концу 47 экрана. Окружающий воздух 49 течет через перегородку 61, то есть проходит через зазоры в перегородке 61 в заднюю дискообразную полость 57.
Следует понимать, что любой источник давления ниже давления окружающей среды, например, полость, внутри двигателя может быть использован для настоящего изобретения, при условии, что источник давления ниже давления окружающей среды не обеспечивается за счет мощности турбины. Кроме того, проходы, описанные для соединения пути окружающего воздуха экрана 35 защиты от излучения, то есть включающие в себя пути через перегородку 61, предложены как общее описание в целях примера, и могут включать в себя любые пути или проходы для сообщения давления ниже давления окружающей среды с внутренним концом 47 экрана 35 защиты от излучения.
Поскольку окружающий воздух 49 течет радиальным образом внутрь через зазор 37 экрана распорки каждой из структур 32 распорки, окружающий охлаждающий воздух засасывается через охлаждающий канал 48 круговым образом вдоль наружных поверхностей 68, 80 кожуха 11 к щелям 43 кожуха. Для того, чтобы обеспечить поток окружающего воздуха в охлаждающий канал, в панельной и/или изоляционной структуре, формирующей внешнюю границу охлаждающего канала 48, могут быть сформированы зазоры. В частности, как показано на Фиг. 11, ориентированные радиальным образом краевые части 72b панельной структуры 72 могут быть расположены у соединений 130 между смежными панельными секциями 72а. Краевые части функционируют так, чтобы обеспечить ограничители для позиционирования краев секций изолирующего слоя 122 с тем, чтобы сохранить проходящее в осевом направлении отверстие или зазор для прохождения окружающего воздуха между смежными секциями изолирующего слоя 122, размещенными на панельных секциях 72а. Зазоры, сформированные у соединений 130 между панельными секциями 72а, позволяют окружающему воздуху течь в охлаждающий канал 48 для прохождения вдоль наружных поверхностей 68, 80 кожуха 11 и в щели 43 кожуха. Местоположения панельных секций 72а и связанных с ними соединений 130 могут быть выбраны таким образом, чтобы, где это возможно, соединения 130 располагались по окружности на полпути между местоположениями структур 32 раскоса, так что окружающий воздух, проходящий в охлаждающий канал 48 через соединения 130, будет течь вдоль существенной части наружных поверхностей 68, 80, охлаждая кожух 11 по мере того, как воздух проходит к щелям 43 кожуха. После этого окружающий воздух проходит радиальным образом внутрь к задней дискообразной полости 57, как описано выше. Следовательно, зазоры у соединений 130 определяют вход в охлаждающий канал, а щели 43 кожуха определяют выход охлаждающего канала для сегментов охлаждающего канала 48, причем множество сегментов охлаждающего канала формируют непрерывный канал 48, расположенный вокруг внешней окружности кожуха 11.
В дополнение к обеспечению потока окружающего воздуха для охлаждения наружных поверхностей 68, 80 кожуха 11, окружающий воздух, проходящий в проходы 37 экрана распорки, формирует барьер охлаждающего воздуха вокруг распорок 34 для того, чтобы обеспечить дополнительную тепловую защиту для распорок 34. Следовательно, давление ниже давления окружающей среды в полости 57 используется для того, чтобы активно создавать поток окружающего воздуха для охлаждения кожуха 11, а также для обеспечения защитного охлаждающего потока к структуре 34 распорки без отбора энергии от двигателя для создания воздушного потока, как, например, при использовании отбираемого от компрессора воздуха.
Следует понимать, что аспекты настоящего изобретения, использующие давление ниже давления окружающей среды для засасывания окружающего воздуха через охлаждающий канал 48 и радиально внутрь вдоль распорок 34, могут использоваться с любым из аспектов внешнего изолирующего слоя 122 и внутренних изолирующих слоев 46, 124, описанных выше. Следует отметить, что для специалистов в данной области техники представляется очевидным, что наряду с вышеприведенными вариантами настоящего изобретения могут иметь место и другие варианты в объеме патентной охраны настоящего изобретения. Таким образом подразумевается, что приложенная формула изобретения покрывает все такие изменения и модификации, которые находятся в объеме охраны настоящего изобретения.

Claims (38)

1. Газотурбинный двигатель, включающий в себя:
внешний кожух, содержащий выхлопной кожух, определяющий центральную продольную ось, и содержащий расположенный вверх по потоку фланец, расположенный вниз по потоку фланец, и наружную поверхность между указанными расположенными вверх по потоку и вниз по потоку фланцами, причем наружная поверхность упомянутого внешнего кожуха простирается вокруг центральной продольной оси, причем указанные расположенные вверх и вниз по потоку фланцы выступают радиально наружу от наружной поверхности указанного внешнего кожуха;
канал для отвода выхлопных газов, предусмотренный внутри внешнего кожуха и содержащий внешнюю стенку канала и внутреннюю стенку канала, формирующие кольцевой проход и распложенные радиально внутрь от внешнего кожуха для отведения потока отработанного газа из турбинной секции газотурбинного двигателя;
охлаждающий канал, который связан с наружной поверхностью упомянутого внешнего кожуха и имеет вход канала и выход канала;
панельную структуру, расположенную по окружности вокруг указанного внешнего кожуха и содержащую расположенный вверх по потоку конец, закрепленный на расположенном вверх по потоку фланце, и расположенный вниз по потоку конец, закрепленный на расположенном вниз по потоку фланце, причем указанная панельная структура радиально отстоит от указанной наружной поверхности с формированием указанного охлаждающего канала между панельной структурой и наружной поверхностью;
воздуховод, который включает в себя входной конец, гидравлически сообщающийся с упомянутым выходом канала, а также выходной конец, гидравлически сообщающийся с областью пониженного давления относительно упомянутого входного конца воздуховода; и
выходную полость в области упомянутого выходного конца воздуховода, в которой формируется пониженное давление для того, чтобы засасывать воздух из упомянутого канала охлаждения в упомянутый воздуховод, причем окружающий воздух проходит через указанную панельную структуру и поступает в указанный охлаждающий канал, при этом указанная панельная структура содержит множество панельных секций с простирающимися в осевом направлении зазорами между смежными панельными секциями, расположенными по окружности на расстоянии друг от друга, причем упомянутые зазоры обеспечивают прохождение окружающего воздуха в упомянутый охлаждающий канал.
2. Газотурбинный двигатель по п. 1, в котором упомянутый воздуховод включает в себя проход, простирающийся от внутренней поверхности упомянутого внешнего кожуха до местоположения упомянутой выходной полости радиально внутрь упомянутого прохода отработанного газа.
3. Газотурбинный двигатель по п. 2, включающий в себя распорку, простирающуюся радиально внутрь от упомянутой внутренней поверхности упомянутого внешнего кожуха, и упомянутый воздуховод определяется экраном защиты от излучения, простирающимся вокруг упомянутой распорки и присоединенным к упомянутой внутренней поверхности упомянутого внешнего кожуха.
4. Газотурбинный двигатель по п. 3, включающий в себя сквозные отверстия в упомянутом внешнем кожухе, определяющие упомянутый выход охлаждающего канала для прохождения окружающего воздуха от упомянутой наружной поверхности упомянутого внешнего кожуха к упомянутому воздуховоду.
5. Газотурбинный двигатель по п. 1, включающий в себя сквозные отверстия в упомянутом внешнем кожухе, определяющие упомянутый выход охлаждающего канала для прохождения окружающего воздуха от упомянутой наружной поверхности упомянутого внешнего кожуха к упомянутому воздуховоду.
6. Газотурбинный двигатель по п. 1, включающий в себя систему теплового барьера/охлаждения для управления температурой внешнего кожуха, включающую в себя:
внутренний изолирующий слой, поддерживаемый на внутренней поверхности упомянутого внешнего кожуха, противоположной упомянутой наружной поверхности упомянутого внешнего кожуха, простирающийся по окружности вдоль упомянутой внутренней поверхности упомянутого внешнего кожуха и обеспечивающий тепловое сопротивление от энергии, излучаемой упомянутым проходом отработанного газа, располагающимся радиально внутрь от упомянутого внешнего кожуха; и
упомянутый охлаждающий канал выровнен в осевом направлении с упомянутым внутренним изолирующим слоем и образует путь потока для потока окружающего воздуха, охлаждающего упомянутую наружную поверхность упомянутого внешнего кожуха.
7. Газотурбинный двигатель по п. 6, включающий в себя внешний изолирующий слой, поддерживаемый упомянутой панельной структурой и покрывающий ее.
8. Газотурбинный двигатель по п. 6, включающий в себя выхлопной диффузор, определяющий упомянутый проход отработанного газа в упомянутом осевом местоположении упомянутого внутреннего изолирующего слоя.
9. Газотурбинный двигатель, включающий в себя выпускную секцию, содержащую:
внешний кожух, определяющий центральную продольную ось, содержащий расположенный вверх по потоку фланец, расположенный вниз по потоку фланец и наружную поверхность, простирающуюся по окружности между расположенным вверх по потоку фланцем и расположенным вниз по потоку фланцем вокруг центральной продольной оси, причем расположенные вверх по потоку и вниз по потоку фланцы выступают радиально наружу от внешней поверхности внешнего кожуха;
панельную структуру, выступающую по окружности вокруг указанного внешнего кожуха и содержащую расположенные вверх по потоку и вниз по потоку концы, закрепленные на указанной выпускной секции, причем указанные панельная структура радиально отстоит от указанной наружной поверхности с формированием охлаждающего канала между указанной панельной структурой и наружной поверхностью; канал для отвода выхлопных газов, располагающийся внутри упомянутого внешнего кожуха и определяемый между внешней стенкой канала и внутренней стенкой канала, причем упомянутый канал для отвода выхлопных газов определяет проход для горячих отработанных газов, протекающих в осевом проходящем вниз по потоку направлении и выходящих из турбинной секции упомянутого газотурбинного двигателя; корпус заднего подшипника, расположенный радиально внутрь от упомянутой внутренней стенки канала;
распорку, простирающуюся от упомянутого внешнего кожуха до упомянутого корпуса подшипника;
экранирующую структуру, окружающую упомянутую распорку для того, чтобы защищать упомянутую распорку от упомянутых отработанных газов;
воздушное отверстие, сформированное через упомянутую наружную поверхность внешнего кожуха гидравлически сообщающееся с указанным охлаждающим каналом и гидравлически сообщающееся с радиальным проходом, простирающимся между упомянутой распоркой и частью упомянутой экранирующей структуры; и
дискообразную полость, располагающуюся рядом со ступенью упомянутой турбинной секции и гидравлически сообщающуюся с упомянутым радиальным проходом, причем упомянутая дискообразная полость находится под давлением ниже, чем давление окружающего воздуха снаружи упомянутого турбинного двигателя, для создания потока окружающего воздуха через упомянутое воздушное отверстие в упомянутую дискообразную полость.
10. Газотурбинный двигатель по п. 9, в котором упомянутая экранирующая структура включает в себя экран распорки, окружающий упомянутую распорку, и экран защиты от излучения, расположенный между упомянутым экраном распорки и упомянутой распоркой.
11. Газотурбинный двигатель по п. 10, в котором упомянутый радиальный проход определяется внутренней поверхностью упомянутого экрана защиты от излучения и внешней поверхностью упомянутой распорки.
12. Газотурбинный двигатель по п. 11, в котором упомянутый экран защиты от излучения простирается через кольцевой зазор, определяемый между упомянутой внешней стенкой канала и упомянутым внешним кожухом.
13. Газотурбинный двигатель по п. 12, в котором упомянутый экран защиты от излучения включает в себя радиально внешний конец, прикрепленный к внутренней поверхности упомянутого внешнего кожуха и окружающий упомянутое воздушное отверстие.
14. Газотурбинный двигатель по п. 9, включающий в себя туннельную полость, определяемую радиально внутрь от упомянутой внутренней стенки канала и располагающуюся в осевом, вниз по потоку направлении от упомянутой дискообразной полости, причем упомянутая туннельная полость получает упомянутый окружающий воздух до того, как упомянутый окружающий воздух войдет в упомянутую дискообразную полость.
15. Газотурбинный двигатель, включающий в себя:
внешний кожух, определяющий центральную продольную ось, и поверхность упомянутого внешнего кожуха, простирающуюся вокруг центральной продольной оси;
проход отработанного газа, предусмотренный внутри внешнего кожуха для отведения потока отработанного газа из турбинной секции газотурбинного двигателя;
охлаждающий канал, определенный между наружной поверхностью указанного внешнего кожуха и панельной структурой, поддерживаемой на указанном внешнем кожухе, причем охлаждающий канал имеет вход канала и выход канала, причем упомянутая панельная структура включает в себя множество панельных секций с простирающимися в осевом направлении зазорами между смежными панельными секциями, расположенными по окружности на некотором расстоянии друг от друга, причем упомянутые зазоры обеспечивают прохождение окружающего воздуха в упомянутый охлаждающий канал;
воздуховод, который включает в себя входной конец, гидравлически сообщающийся с упомянутым выходом канала, а также выходной конец, гидравлически сообщающийся с областью пониженного давления относительно упомянутого входного конца воздуховода; и
выходную полость у упомянутого выходного конца воздуховода, в которой формируется пониженное давление для того, чтобы засасывать воздух из упомянутого канала охлаждения в упомянутый воздуховод.
16. Газотурбинный двигатель по п. 9, содержащий охлаждающую систему с тепловым барьером для контролирования температуры внешнего кожуха, содержащую:
внутренний изолирующий слой, поддерживаемый на внутренней поверхности указанного внешнего кожуха, противолежащий указанной наружной поверхности указанного внешнего кожуха и простирающийся по окружности вдоль указанной внутренней поверхности указанного внешнего кожуха и обеспечивающий термическое сопротивление энергии, излучаемой каналом для отвода выхлопных газов, расположенным радиально внутри указанного внешнего кожуха; и
указанный охлаждающий канал проходит соосно с указанным внутренним изолирующим слоем и формирует проточный канал для потока окружающего воздуха, охлаждающего указанную наружную поверхность указанного внешнего кожуха.
17. Газотурбинный двигатель по п. 16, содержащий наружный изолирующий слой, поддерживаемый на указанной панельной структуре и покрывающий последнюю.
RU2015130236A 2013-01-22 2014-01-22 Газотурбинный двигатель (варианты) RU2639921C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/746,447 2013-01-22
US13/746,447 US10094285B2 (en) 2011-12-08 2013-01-22 Gas turbine outer case active ambient cooling including air exhaust into sub-ambient cavity
PCT/EP2014/051177 WO2014114653A2 (en) 2013-01-22 2014-01-22 Gas turbine outer case active ambient cooling including air exhaust into sub-ambient cavity

Publications (2)

Publication Number Publication Date
RU2015130236A RU2015130236A (ru) 2017-03-03
RU2639921C2 true RU2639921C2 (ru) 2017-12-25

Family

ID=50033480

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015130236A RU2639921C2 (ru) 2013-01-22 2014-01-22 Газотурбинный двигатель (варианты)

Country Status (6)

Country Link
US (1) US10094285B2 (ru)
EP (1) EP2954174A2 (ru)
JP (1) JP6142000B2 (ru)
CN (1) CN105008675B (ru)
RU (1) RU2639921C2 (ru)
WO (1) WO2014114653A2 (ru)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2524211B (en) * 2012-12-29 2021-05-26 United Technologies Corp Turbine frame assembly and method of designing turbine frame assembly
GB201308605D0 (en) * 2013-05-14 2013-06-19 Rolls Royce Plc A shroud arrangement for a gas turbine engine
US10801411B2 (en) * 2013-09-11 2020-10-13 Raytheon Technologies Corporation Ceramic liner for a turbine exhaust case
US9879556B2 (en) * 2014-04-11 2018-01-30 United Technologies Corporation Cooled finger seal
EP2957730B8 (en) * 2014-06-18 2017-07-19 Ansaldo Energia Switzerland AG Exhaust gas liner with fixation spots for a gas turbine
US10125686B2 (en) 2014-12-05 2018-11-13 General Electric Company Turbine engine assembly and method of manufacturing
US9746395B2 (en) * 2015-05-21 2017-08-29 Solar Turbines Incorporated Exhaust fume isolator for a gas turbine engine
CN106321166A (zh) * 2015-06-17 2017-01-11 北京华清燃气轮机与煤气化联合循环工程技术有限公司 一种燃气轮机支撑柱冷却结构
ES2774176T3 (es) * 2015-10-20 2020-07-17 MTU Aero Engines AG Carcasa intermedia para una turbina de gas
JP6580494B2 (ja) * 2016-01-22 2019-09-25 三菱日立パワーシステムズ株式会社 排気フレーム
US10577973B2 (en) * 2016-02-18 2020-03-03 General Electric Company Service tube for a turbine engine
FR3050229B1 (fr) * 2016-04-18 2018-04-27 Safran Aircraft Engines Carter d'echappement de turbomachine
FR3052488B1 (fr) * 2016-06-14 2018-05-25 Safran Aircraft Engines Carter d'echappement de turbomachine
RU2665797C1 (ru) * 2016-07-04 2018-09-04 Публичное акционерное общество "ОДК-Уфимское моторостроительное производственное объединение" (ПАО "ОДК-УМПО") Способ и устройство охлаждения вала авиационного газотурбинного двигателя
US20180149085A1 (en) * 2016-11-28 2018-05-31 General Electric Company Exhaust frame cooling via cooling flow reversal
US10837316B2 (en) 2017-08-25 2020-11-17 DOOSAN Heavy Industries Construction Co., LTD High thermal response exhaust diffuser strut collar
US10513939B2 (en) * 2017-09-13 2019-12-24 United Technologies Corporation Seal interface with a deflection control feature
FR3079560B1 (fr) * 2018-04-03 2020-10-09 Safran Aircraft Engines Dispositif de refroidissement pour une turbine d'une turbomachine
US20190345833A1 (en) * 2018-05-11 2019-11-14 United Technologies Corporation Vane including internal radiant heat shield
US10816205B2 (en) * 2018-05-30 2020-10-27 Raytheon Technologies Corporation Thermally isolated combustor pre-diffuser
US10907501B2 (en) * 2018-08-21 2021-02-02 General Electric Company Shroud hanger assembly cooling
FR3088955B1 (fr) * 2018-11-27 2020-12-25 Safran Aircraft Engines Turboréacteur à double flux comprenant un cône de sortie refroidi par son flux secondaire
US10767495B2 (en) * 2019-02-01 2020-09-08 Rolls-Royce Plc Turbine vane assembly with cooling feature
US11391179B2 (en) 2019-02-12 2022-07-19 Pratt & Whitney Canada Corp. Gas turbine engine with bearing support structure
US11346249B2 (en) 2019-03-05 2022-05-31 Pratt & Whitney Canada Corp. Gas turbine engine with feed pipe for bearing housing
US11428104B2 (en) 2019-07-29 2022-08-30 Pratt & Whitney Canada Corp. Partition arrangement for gas turbine engine and method
US11268408B2 (en) * 2019-10-31 2022-03-08 Chromalloy Gas Turbine Llc Method of repairing an engine case flange
US10975770B1 (en) 2019-12-05 2021-04-13 Hamilton Sundstrand Corporation Integral engine case precooler
US11905843B2 (en) 2020-04-01 2024-02-20 General Electric Company Liner support system
WO2021215323A1 (ja) 2020-04-24 2021-10-28 三菱パワー株式会社 断熱材アセンブリ及びガスタービン
CN112798305B (zh) * 2020-12-21 2022-11-22 中国空气动力研究与发展中心超高速空气动力研究所 一种水冷式矩形喷管
CN113553716B (zh) * 2021-07-27 2022-05-10 中国人民解放军国防科技大学 一种多层固定的高温燃气通道设计方法
EP4198270A1 (en) * 2021-12-20 2023-06-21 ANSALDO ENERGIA S.p.A. Exhaust gas casing for a heavy-duty gas turbine engine, heavy-duty gas turbine engine and method of retrofitting a heavy-duty gas turbine
US11927137B2 (en) * 2022-03-21 2024-03-12 Ge Infrastructure Technology Llc System and method for insulating components in an exhaust gas flow from a gas turbine
CN114810236A (zh) * 2022-06-30 2022-07-29 成都中科翼能科技有限公司 一种燃气轮机核心机的排气机匣结构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU333279A1 (ru) * В. А. Марть нов, А. П. Тать нкин, Е. В. Биз , Л. Д. Френкель Ленинградский металлический завод имени съездаКЛСИ Омерлно-техшшшбиблиотека
EP0344877A1 (en) * 1988-05-31 1989-12-06 General Electric Company Heat shield for gas turbine engine frame
US7373773B2 (en) * 2003-09-04 2008-05-20 Hitachi, Ltd. Gas turbine installation, cooling air supplying method and method of modifying a gas turbine installation
EP2187019A1 (en) * 2008-01-10 2010-05-19 Mitsubishi Heavy Industries, Ltd. Exhaust section structure of gas turbine and gas turbine
EP2261468A1 (en) * 2008-03-28 2010-12-15 Mitsubishi Heavy Industries, Ltd. Gas turbine

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2402841A (en) * 1944-06-26 1946-06-25 Allis Chalmers Mfg Co Elastic fluid turbine apparatus
US3058302A (en) 1955-02-07 1962-10-16 Avro Aircraft Ltd Means inducing a flow of cooling air for gas turbine engines
US3034298A (en) 1958-06-12 1962-05-15 Gen Motors Corp Turbine cooling system
US3077074A (en) 1958-09-10 1963-02-12 Gen Motors Corp Regenerative gas turbine
US4156342A (en) * 1976-06-11 1979-05-29 Westinghouse Canada Limited Cooling apparatus for a bearing in a gas turbine
CA1134627A (en) * 1979-08-09 1982-11-02 Clayton G. Coffey System for infrared emission suppression (sires)
US4369016A (en) 1979-12-21 1983-01-18 United Technologies Corporation Turbine intermediate case
US4987736A (en) * 1988-12-14 1991-01-29 General Electric Company Lightweight gas turbine engine frame with free-floating heat shield
US4989406A (en) 1988-12-29 1991-02-05 General Electric Company Turbine engine assembly with aft mounted outlet guide vanes
US4979872A (en) 1989-06-22 1990-12-25 United Technologies Corporation Bearing compartment support
US5201846A (en) 1991-11-29 1993-04-13 General Electric Company Low-pressure turbine heat shield
JP2954797B2 (ja) * 1992-10-05 1999-09-27 株式会社東芝 蒸気タ−ビンの強制冷却装置
US5292227A (en) 1992-12-10 1994-03-08 General Electric Company Turbine frame
US5273397A (en) 1993-01-13 1993-12-28 General Electric Company Turbine casing and radiation shield
US5628182A (en) 1993-07-07 1997-05-13 Mowill; R. Jan Star combustor with dilution ports in can portions
US5593274A (en) 1995-03-31 1997-01-14 General Electric Co. Closed or open circuit cooling of turbine rotor components
US5680767A (en) 1995-09-11 1997-10-28 General Electric Company Regenerative combustor cooling in a gas turbine engine
US5669812A (en) * 1996-02-21 1997-09-23 Braden Manufacturing Exhaust gas diffuser interface
FR2750451B1 (fr) * 1996-06-27 1998-08-07 Snecma Dispositif de soufflage de gaz de reglage de jeux dans une turbomachine
GB2326706A (en) 1997-06-25 1998-12-30 Europ Gas Turbines Ltd Heat transfer structure
FR2766231B1 (fr) * 1997-07-18 1999-08-20 Snecma Dispositif d'echauffement ou de refroidissement d'un carter circulaire
FR2766232B1 (fr) * 1997-07-18 1999-08-20 Snecma Dispositif de refroidissement ou d'echauffement d'un carter circulaire
JP2002523661A (ja) * 1998-08-18 2002-07-30 シーメンス アクチエンゲゼルシヤフト タービン車室
US6146090A (en) 1998-12-22 2000-11-14 General Electric Co. Cooling/heating augmentation during turbine startup/shutdown using a seal positioned by thermal response of turbine parts and consequent relative movement thereof
US6295803B1 (en) 1999-10-28 2001-10-02 Siemens Westinghouse Power Corporation Gas turbine cooling system
US6266954B1 (en) 1999-12-15 2001-07-31 General Electric Co. Double wall bearing cone
US6584766B1 (en) * 2000-03-24 2003-07-01 General Electric Co. Methods and apparatus for minimizing thermal stresses in a centerbody
US6379108B1 (en) 2000-08-08 2002-04-30 General Electric Company Controlling a rabbet load and air/oil seal temperatures in a turbine
DE10233113A1 (de) * 2001-10-30 2003-05-15 Alstom Switzerland Ltd Turbomaschine
US6719524B2 (en) * 2002-02-25 2004-04-13 Honeywell International Inc. Method of forming a thermally isolated gas turbine engine housing
CN100516469C (zh) 2003-04-07 2009-07-22 阿尔斯通技术有限公司 涡轮机
DE10336432A1 (de) 2003-08-08 2005-03-10 Alstom Technology Ltd Baden Gasturbine und zugehöriges Kühlverfahren
DE102004041271A1 (de) * 2004-08-23 2006-03-02 Alstom Technology Ltd Einrichtung und Verfahren zum Kühlen eines Gehäuses einer Gasturbine bzw. einer Brennkammer
US7493769B2 (en) 2005-10-25 2009-02-24 General Electric Company Assembly and method for cooling rear bearing and exhaust frame of gas turbine
JP4681458B2 (ja) 2006-01-17 2011-05-11 三菱重工業株式会社 ガスタービン排気部の冷却構造及び該構造を備えたガスタービン設備
US8083471B2 (en) * 2007-01-22 2011-12-27 General Electric Company Turbine rotor support apparatus and system
JP5047000B2 (ja) 2008-02-27 2012-10-10 三菱重工業株式会社 排気室の連結構造及びガスタービン
EP2863021B1 (en) * 2008-02-27 2016-05-25 Mitsubishi Hitachi Power Systems, Ltd. Gas turbine support structure
US8079804B2 (en) 2008-09-18 2011-12-20 Siemens Energy, Inc. Cooling structure for outer surface of a gas turbine case
JP2010229920A (ja) 2009-03-27 2010-10-14 Chugoku Electric Power Co Inc:The 排気ダクト保護装置及びガスタービン複合発電プラント
US9133721B2 (en) 2010-11-15 2015-09-15 Siemens Energy, Inc. Turbine transition component formed from a two section, air-cooled multi-layer outer panel for use in a gas turbine engine
US8979477B2 (en) 2011-03-09 2015-03-17 General Electric Company System for cooling and purging exhaust section of gas turbine engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU333279A1 (ru) * В. А. Марть нов, А. П. Тать нкин, Е. В. Биз , Л. Д. Френкель Ленинградский металлический завод имени съездаКЛСИ Омерлно-техшшшбиблиотека
EP0344877A1 (en) * 1988-05-31 1989-12-06 General Electric Company Heat shield for gas turbine engine frame
US7373773B2 (en) * 2003-09-04 2008-05-20 Hitachi, Ltd. Gas turbine installation, cooling air supplying method and method of modifying a gas turbine installation
EP2187019A1 (en) * 2008-01-10 2010-05-19 Mitsubishi Heavy Industries, Ltd. Exhaust section structure of gas turbine and gas turbine
EP2261468A1 (en) * 2008-03-28 2010-12-15 Mitsubishi Heavy Industries, Ltd. Gas turbine

Also Published As

Publication number Publication date
US10094285B2 (en) 2018-10-09
RU2015130236A (ru) 2017-03-03
CN105008675B (zh) 2017-03-08
EP2954174A2 (en) 2015-12-16
US20140286763A1 (en) 2014-09-25
JP2016508557A (ja) 2016-03-22
WO2014114653A3 (en) 2014-09-18
JP6142000B2 (ja) 2017-06-07
WO2014114653A2 (en) 2014-07-31
CN105008675A (zh) 2015-10-28

Similar Documents

Publication Publication Date Title
RU2639921C2 (ru) Газотурбинный двигатель (варианты)
US8894359B2 (en) Gas turbine engine with outer case ambient external cooling system
US11143106B2 (en) Combustion section heat transfer system for a propulsion system
US20130149107A1 (en) Gas turbine outer case active ambient cooling including air exhaust into a sub-ambient region of exhaust flow
RU2638114C2 (ru) Сборка турбины в турбинном двигателе
US8500392B2 (en) Sealing for vane segments
US10550767B2 (en) Gas turbine engine recuperator with floating connection
US7972107B2 (en) Device for cooling a turbomachine turbine casing
JP6367559B2 (ja) ターボ機械の冷却が改善された移行ダクト
US9810097B2 (en) Corrugated mid-turbine frame thermal radiation shield
US9303528B2 (en) Mid-turbine frame thermal radiation shield
RU2558731C2 (ru) Конструкция монтажа направляющих лопаток сопла входного канала радиальной газовой турбины двигателя
JPH01305132A (ja) 支持構造
US8091364B2 (en) Combustion chamber wall, gas turbine installation and process for starting or shutting down a gas turbine installation
JP2016506475A (ja) ガスタービンシールアセンブリおよびシール支持体
US9664062B2 (en) Gas turbine engine with multiple component exhaust diffuser operating in conjunction with an outer case ambient external cooling system
CA2936180A1 (en) Multiple spoke cooling system and method
EP2948646A2 (en) Gas turbine engine with multiple component exhaust diffuser operating in conjunction with an outer case ambient external cooling system
JP2016504527A (ja) 排出流の補助周囲領域の内部を空気を排出する、動的に周囲を冷却する外側ケースを具備するガスタービン
US11015470B2 (en) Diffuser flex seal assembly
CN116291877A (zh) 重型燃气涡轮发动机、其排气气体外壳及其改装方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200123