RU2638530C2 - ПРОИЗВОДНЫЕ 5-АМИНОИЗОКСАЗОЛА - КОНФОРМАЦИОННО-ЖЕСТКИЕ АНАЛОГИ γ-АМИНОМАСЛЯНОЙ КИСЛОТЫ И СПОСОБ ИХ ПОЛУЧЕНИЯ - Google Patents

ПРОИЗВОДНЫЕ 5-АМИНОИЗОКСАЗОЛА - КОНФОРМАЦИОННО-ЖЕСТКИЕ АНАЛОГИ γ-АМИНОМАСЛЯНОЙ КИСЛОТЫ И СПОСОБ ИХ ПОЛУЧЕНИЯ Download PDF

Info

Publication number
RU2638530C2
RU2638530C2 RU2016107212A RU2016107212A RU2638530C2 RU 2638530 C2 RU2638530 C2 RU 2638530C2 RU 2016107212 A RU2016107212 A RU 2016107212A RU 2016107212 A RU2016107212 A RU 2016107212A RU 2638530 C2 RU2638530 C2 RU 2638530C2
Authority
RU
Russia
Prior art keywords
acid
fold excess
solution
chemoselective
excess
Prior art date
Application number
RU2016107212A
Other languages
English (en)
Other versions
RU2016107212A (ru
Inventor
Елена Борисовна Аверина
Дмитрий Алексеевич Василенко
Николай Серафимович Зефиров
Тамара Степановна Кузнецова
Николай Владимирович Яшин
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ)
Priority to RU2016107212A priority Critical patent/RU2638530C2/ru
Publication of RU2016107212A publication Critical patent/RU2016107212A/ru
Application granted granted Critical
Publication of RU2638530C2 publication Critical patent/RU2638530C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D261/00Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings
    • C07D261/02Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings not condensed with other rings
    • C07D261/06Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings not condensed with other rings having two or more double bonds between ring members or between ring members and non-ring members
    • C07D261/10Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings not condensed with other rings having two or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D261/14Nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6527Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07F9/653Five-membered rings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Изобретение относится к 5-аминоизоксазол-3-фосфоновой кислоте общей формулы 1, которая является конформационно-жестким аналогом γ-аминомасляной кислоты (ГАМК). Способ получения 5-аминоизоксазол-3-фосфоновой кислоты осуществляют путем добавления к диэтиловому эфиру винилфосфоновой кислоты 1,5-2,5-кратного избытка диизопропилэтиламина и 1,5-3-кратного избытка тетранитрометана. Затем образующиеся нитроэфиры восстанавливают неразрушающей изоксазольный фрагмент хемоселективной системой, содержащей 2-20-кратный по отношению к нитроэфиру избыток восстановителя, с последующим гидролизом полученных аминоэфиров. В качестве хемоселективной системы используют 30-40 мас.% суспензию цинка в уксусной кислоте, содержащую 5-15-кратный избыток цинка по отношению к нитроэфиру. Также в качестве хемоселективной системы используют 30-50 мас.% раствор хлорида олова (II) в 96 об.% водном этаноле, содержащий 5-20-кратный избыток хлорида олова (II) по отношению к нитроэфиру, или используют 2-10 мас.% раствор дитионита натрия в 30-70 об.% водном метаноле, содержащий 2-10-кратный избыток дитионита натрия по отношению к нитроэфиру. Гидролиз аминоэфиров проводят 3-10-кратным избытком триметилсилилиодида с дальнейшей обработкой полученной смеси 75 об.% раствором пропиленоксида в метаноле, содержащим 20-40-кратный избыток пропиленоксида по отношению к аминоэфиру. Технический результат – 5-аминоизоксазол-3-фосфоновая кислота, которая является конформационно-жестким аналогом γ-аминомасляной кислоты (ГАМК). 2 н. и 4 з.п. ф-лы, 4 пр.

Description

Область техники
Изобретение относится к новым аминокислотам ряда изоксазола, содержащим аминогруппу в 5-м положении гетероцикла, карбоксильную группу (или группу биоизостерную карбоксильной, в частности, фосфонатную) в 3-ом положении изоксазольного фрагмента и являющимся в силу своего строения конформационно-жесткими аналогами γ-аминомасляной кислоты (ГАМК), а также к способу их получения. Подобное расположение фармакофорных групп относительно конформационно-жесткого фрагмента позволяет зафиксировать новые конформации ГАМК, что может иметь перспективу с точки зрения поиска соединений с улучшенной селективностью по отношению к биомишеням ГАМК.
Уровень техники
ГАМК является важнейшим тормозным нейромедиатором центральной нервной системы (ЦНС) человека и млекопитающих; принимает участие в нейромедиаторных и метаболических процессах в мозге, играя ведущую роль в патогенезе тревоги, судорог и многих других патологических состояний ЦНС [Н.
Figure 00000001
. The rise of new GABA pharmacology. // Neuropharmacology, 2011, Vol. 60, №7-8, P. 1042-1049].
Интерес к синтезу конформационно-жестких (конформационно-ограниченных) аналогов ГАМК обусловлен тем, что соединения данной группы могут обладать высокой селективностью по отношению к отдельным биомишеням ГАМК. Создание конформационно-жестких аналогов природных физиологически-активных веществ (ФАВ) на основе соединений, содержащих ароматический гетероциклический фрагмент, является современным приемом медицинской химии по созданию селективных синтетических ФАВ [Giomi, D.; Cordero, F.M.; Machetti, F. In Comprehensive Heterocyclic Chemistry; Katritzky, A.R.; Ramsden, C.A.; Scriven, E.F.V.; Taylor, R.J.K, Eds.; Elsevier: Oxford, 2008; Vol. 4, 365]. Важную роль здесь играют изоксазолсодержащие соединения, поскольку они обладают разнообразной физиологической активностью, в частности, 5-аминометилизоксазолы проявляют высокую агонистическую активность по отношению к ГАМК-рецепторам [P. Krogsgaard-Larsen, G.A. Johnston, D. Lodge, D.R. Curtis. A new class of GABA agonist. Nature, 1977, Vol. 268, P. 53-55; K.A Wafford, B. Ebert. Gaboxadol - a new awakening in sleep // Cur. Opin. Pharm. 2006, Vol. 6, P. 30-36].
Наиболее близкой к предлагаемому по технической сущности является 3-аминоизоксазолкарбоновая кислота 2 [A.P. Combs, В.М. Glass, R.B. Sparks, E.W. Yue. N-Hydroxyamidinoheterocycles as modulators of indoleamine 2,3-dioxygenase. Patent WO 2008/036653, 2008], содержащая изоксазольный фрагмент, синтез которой основан на реакции гетероциклизации метилового или этилового эфира 3-циано-2-метоксиакриловой кислоты 3 с гидроксимочевиной под действием металлического натрия с последующим кипячением образующегося метилового или этилового эфира 3-амино-5-метоксиизоксазололинкарбоновой кислоты 4 с концентрированной HCl [F. Lepage, В. Hublot, P.S. Adolphe. Preparation de derives de 3-aminoisoxazole et nouveaux 3-aminoisoxazoles intermediaries. Patent FR 2750425, 1998]. Образующийся в результате этих реакций этиловый эфир 3-аминоизоксазолкарбоновой кислоты 5 был подвергнут гидролизу гидроксидом лития в смеси растворителей ацетонитрил-вода [A.P. Combs, В.М. Glass, R.B. Sparks, E.W. Yue. N-Hydroxyamidinoheterocycles as modulators of indoleamine 2,3-dioxygenase. Patent WO 2008/036653, 2008]. Исходный эфир 3 был получен реакцией конденсации диметил- или диэтилоксалата с ацетонитрилом под действием гидрида натрия [F. Lepage, В. Hublot, P.S. Adolphe. Preparation de derives de 3-aminoisoxazole et nouveaux 3-aminoisoxazoles intermediaries. Patent FR 2750425, 1998].
Существенным недостатком известного способа получения 3-аминоизоксазолкарбоновой кислоты 2, изложенного в работах [A.P. Combs, В.М. Glass, R.B. Sparks, E.W. Yue. N-Hydroxyamidinoheterocycles as modulators of indoleamine 2,3-dioxygenase. [Patent WO 2008/036653, 2008; F. Lepage, B. Hublot, P.S. Adolphe. Preparation de derives de 3-aminoisoxazole et nouveaux 3-aminoisoxazoles intermediaries. Patent FR 2750425, 1998], является невозможность варьирования строения синтезируемой аминокислоты 2, т.е. указанным методом, например, нельзя получить аминокислоты, в которых аминогруппа была бы расположена в 5-ом положении гетероцикла, а карбоксильная группа - в 3-ом положении изоксазольного фрагмента, хотя аминокислоты с таким расположением фармакофорных групп перспективны с точки зрения поиска соединений с улучшенной селективностью по отношению к биомишеням ГАМК.
Таким образом из анализа источников информации следует, что в настоящее время отсутствуют методы синтеза 5-аминоизоксазолкарбоновых кислот.
Другим недостатком известного метода синтеза изоксазолсодержащих аминокислот 2 является невозможность использования предложенных в работах подходов для получения биоизостерных (в частности, фосфоновых) конформационно-жестких аналогов ГАМК, т.к. используемое на стадии гетероциклизации взаимодействие метилового или этилового эфира 3-циано-2-метоксиакриловой кислоты 3 с гидроксимочевиной делает дальнейшее введение в получаемый гетероциклический фрагмент группы, биоизостерной карбоксильной (в частности, фосфонатной группы), принципиально невозможной при сохранении в структуре свободной аминогруппы.
На основании изучения источников информации можно сделать вывод о том, что в настоящее время отсутствуют методы синтеза биоизостерных (в частности фосфоновых) конформационно-жестких аналогов ГАМК, содержащих изоксазольный фрагмент.
Раскрытие изобретения
Задачей настоящего изобретения является получение новых производных 5-аминоизоксазола - конформационно-жестких аналогов γ-аминомасляной кислоты и разработка способов их получения.
Поставленная задача достигается получением изоксазолсодержащей аминокислоты общей формулы 1
Figure 00000002
где Z=СО2Н (формула 1а) и Z=РО3Н2 (формула 1b).
Также поставленная задача решается способом получения новых 5-аминоизоксазол-3-карбоновой кислоты (1а) и 5-аминоизоксазол-3-фосфоновой кислоты (1b), заключающимся в том, что замещенные сложноэфирной группой алкены обрабатываются 1,5-2,5-кратным избытком диизопропиламином и 1,5-3-кратным избытком тетранитрометана, образующиеся при этом нитроэфиры восстанавливаются не разрушающей изоксазольный фрагмент хемоселективной системой [Glatthar R., Hintermann S., Vranesic I-T., Fused Pyrimidinone Compounds as MGLUR Ligands. WO 2008/107418 2008; Yashin N.V., Averina E.B., Grishin Y.K., Kuznetsova T.S., Zefirov N.S. Reduction of 1-Nitrospiro[2.2]pentanecarboxylates: Convenient Synthesis of Novel Polyspirocyclic Cyclopropane Amino Acids. Synthesis 2006, 279-284], содержащей 2-20-кратный по отношению к нитроэфиру избыток восстановителя, с последующим гидролизом полученных аминоэфиров. Для получения производных 5-аминоизоксазола при Z=СО2Н в качестве замещенных сложноэфирной группой алкенов используют метиловый или трет-бутиловый эфиры акриловой кислоты, а для получения производных 5-аминоизоксазола при Z=РО3Н2 в качестве замещенного сложноэфирной группой алкена используют диэтиловый эфир винилфосфоновой кислоты. При этом способ включает использование в качестве хемо-селективных систем для восстановления нитроэфиров 30-40% (по массе) суспензию цинка в уксусной кислоте, содержащую 5-15-кратный избыток цинка (восстановителя) по отношению к нитроэфиру, 30-50% мас. суспензию хлорида олова (II) в 96% об. водном этаноле, содержащую 5-20-кратный избыток хлорида олова (II) по отношению к нитроэфиру, 2-10% маc. раствор дитионита натрия в 30-70% об. водном метаноле, содержащий 2-10-кратный избыток дитионита натрия по отношению к нитроэфиру, а также использование 1-3% мас. раствора моногидрата гидроксида лития в смеси взятых в соотношении 3:1 тетрагидрофурана и воды, содержащего 5-10-кратный избыток гидроксида лития по отношению к аминоэфиру, или 30-65% мас. раствора уксусной кислоты, содержащего 50-100-кратный избыток уксусной кислоты по отношению к аминоэфиру в условиях микроволнового содействия для гидролиза аминоэфиров карбоновых кислот (Z=СО2Н) и 3-10-кратного избытка триметилсилилиодида с дальнейшей обработкой полученной смеси 75% об. раствором пропиленоксида в метаноле, содержащим 20-40 кратный избыток пропиленоксида по отношению к аминоэфиру для гидролиза аминоэфиров фосфоновых кислот (Z=PO3H2).
Техническим результатом изобретения является получение новых аминокислот, содержащих фрагмент 5-аминоизоксазола и изоксазолфосфоновый фрагмент - биоизостерных конформационно-жестких аналогов ГАМК. Полученные изоксазолсодержащие аминокислоты представляют собой конформационно-жесткие аналоги γ-аминомасляной кислоты, где фармакофорные группы (карбокси- и фосфонатная группа в 3-ем положении и аминогруппа в 5-ом положении) жестко закреплены относительно изоксазольного фрагмента. Получение соединений с ограниченной конформационной подвижностью может иметь хорошую перспективу с точки зрения поиска соединений с улучшенной селективностью по отношению к биомишеням ГАМК. В отличие от ациклических аналогов полученные аминокислоты имеют фиксированные конформации, что может обеспечить оптимальное связывание данных соединений с рецепторами ГАМК.
Осуществление изобретения
Все используемые реагенты являются коммерчески доступными, все процедуры, если не оговорено особо, осуществляли при комнатной температуре или температуре окружающей среды, то есть в диапазоне от 18 до 25°С; выпаривание растворителя осуществляли с использованием роторного испарителя, при пониженном давлении при температуре бани примерно 50°С; контроль за ходом реакции осуществляли при помощи тонкослойной хроматографии (ТСХ), и время реакции указано только для иллюстрации; структуру и чистоту всех выделенных соединений подтверждали, по меньшей мере, одним из следующих методов: ТСХ (пластины для ТСХ с предварительно нанесенным силикагелем 60 F254 Merck), масс-спектрометрия или ядерный магнитный резонанс (ЯМР). Выход продукта приведен только для иллюстрации. Колоночную флэш-хроматографию осуществляли, используя Merck силикагель 60 (230-400 меш ASTM). Масс-спектры высокого разрешения (HRMS) положительных ионов зарегистрирован на спектрометре Jeol GCMate II при энергии ионизации 70 eV. Спектры ЯМР регистрировали на приборах Bruker Avance-400 (рабочая частота 400.1 и 100.6 МГц для 1Н и 13С, соответственно) и Agilent 400-MR (рабочая частота 400.0 и 100.6 МГц для 1Н и 13С, соответственно), используя дейтерированный хлороформ (99,8% D) или метанол (99,8% D) или вода (99,9% D) в качестве растворителя, если не указано иное, относительно тетраметилсилана (TMS) в качестве внутреннего стандарта, миллионных долях (м.д.); обычные используемые сокращения следующие: с - синглет, д - дублет, т - триплет, кв - квартет, м - мультиплет, шир. - широкий и так далее. Химические символы имеют свои обычные значения: мкм (микрометр(ы)), мкл (микролитр(микролитры)), мкг (микрограмм(микрограммы)), М (моль(моли) на литр), л (литр(литры)), мл (миллилитр(миллилитры)), г (грамм(граммы)), мг (миллиграмм(миллиграммы)), моль(моли), ммоль (миллимоль(миллимоли)). Термин «гидролиз» означает химическую реакцию сложных эфиров с водой или иным(и) реагентом(ами) с образованием соответствующей кислоты [Laufer S., Margutti S., Fritz M. Substituted Isoxazoles as Potent Inhibitors of p38 MAP Kinase. Chem. Med. Chem. 2006, 197-207; Hao J., Reinhard M., Henry S., Seest E., Belvo M., Monn J. Simple conversion of fully protected amino to zwitterions. Tetrahedron Lett. 2012, 53, 1433-1434; Fadel A. A Useful Synthesis of 1-Aminocyclopropanephosphonic Acid from Cyclopropanone Acetal. J. Org. Chem. 1999, 64, 4953-4955].
Способ получения производных 5-аминоизоксазола в общем виде представляет собой 3-стадийный синтез, где на первой стадии в результате взаимодействия 10-20% диоксанового раствора тетранитрометана, взятого в 1.5-3-кратном избытке по отношению к замещенному сложноэфирной группой алкену, при охлаждении до (-5)-5°С по каплям добавляют третичный амин, взятый в 1.5-2.5-кратном избытке по отношению к замещенному сложноэфирной группой алкену. Полученную смесь перемешивают при охлаждении 3-10 мин, после чего добавляют замещенный сложноэфирной группой алкен. Затем охлаждение убирают и реакционную смесь продолжают перемешивать при комнатной температуре в течение 15-40 часов. Далее растворитель отгоняют при пониженном давлении, остаток выдерживают при 50±5°С при 1±0.5 мм рт.ст. в течение 1-3 часов. Полученный нитроэфир используют в следующей стадии без дополнительной очистки. В качестве третичных аминов могут быть использованы диизопропилэтиламин, триэтиламин, трибутиламин, пиридин.
На второй стадии синтеза интенсивно перемешивают смесь полученного нитроэфира и не разрушающей изоксазольный фрагмент хемоселективной системы, содержащей 2-20-кратный избыток восстановителя по отношению к нитроэфиру, в атмосфере аргона при температуре (-10)-0°С. В качестве восстановителя используют системы: 30-40 мас. % суспензию цинка в уксусной кислоте, 30-50% мас. раствор хлорида олова (II) в 96% об. водном этаноле или 2-10% мас. раствор дитионита натрия в 30-70% об. водном метаноле. Реакционную смесь перемешивают в течение 4-6 ч, затем, при необходимости, смесь фильтруют через бумажный фильтр, растворитель отгоняют при пониженном давлении, остаток растворяют в 15-30 мл хлороформа и промывают насыщенным раствором гидрокарбоната натрия до достижения pH 7-8. Водный раствор несколько раз экстрагируют хлороформом, полученный экстракт высушивают над MgSO4, растворитель отгоняют при пониженном давлении, остаток очищают фильтрованием через слой силикагеля. В результате реакции получают аминоэфир, который подвергают реакции гидролиза (3-я стадия). Спектр ЯМР полученного производного 5-аминоизоксазола регистрируют на приборах Bruker Avance-400 или Agilent 400-MR.
Соотношение компонентов указанные в избытках, подразумевают мольное соотношение компонентов по отношению друг к другу.
Приведенные примеры конкретного осуществления изобретения приведены для предоставления специалистам в данной области техники полного описания проведения и применения анализа по изобретению, и подразумевают, что приведенные примеры не ограничивают предполагаемый авторами изобретения объем изобретения.
Пример 1. Получение 5-аминоизоксазол-3-карбоновой кислоты (1а)
Метиловый эфир 5-нитроизоксазол-3-карбоновой кислоты (6)
К раствору 0.30 мл (2.5 ммоль) тетранитрометана в 2 мл диоксана при охлаждении до 0°С добавили по каплям 0.26 г (2.0 ммоль) диизопропилэтиламина. Полученную смесь перемешивали при охлаждении 5 мин, после чего добавили 0.086 г (1.0 ммоль) метилового эфира акриловой кислоты. Затем охлаждение убрали и перемешивали реакционную смесь при комнатной температуре в течение 20 часов. Растворитель отогнали при пониженном давлении, остаток выдержали при 50°С при 1 мм рт.ст. в течение 2 часов, получили 0.15 г (87%) нитроэфира 6, который использовали в следующей стадии без дополнительной очистки.
Спектр 1Н ЯМР (CDCl3, δ м.д.): 4.05 (с, 3Н, СН3), 7.41 (с, 1H, СН).
Метиловый эфир 5-аминоизоксазол-3-карбоновой кислоты (7)
К интенсивно перемешиваемой смеси 80 мг (0.47 ммоль) 5-нитроизоксазола 6 и 0.6 мл (10.2 ммоль) уксусной кислоты в 4 мл изопропилового спирта в атмосфере аргона при температуре (-10)-0°С быстро прибавили 296 мг (4.7 ммоль) цинка. Реакционную смесь перемешивали в течение 4 ч, затем отфильтровали через бумажный фильтр, растворитель отгоняли при пониженном давлении, остаток растворяли в 20 мл хлороформа и промывали насыщенным раствором гидрокарбоната натрия (до pH 8). Водный раствор экстрагировали СНСЬ (3×10 мл), экстракт сушили над MgSO4, растворитель отгоняли при пониженном давлении, остаток очищали фильтрованием через 5 мл силикагеля (элюент СНСЬ). Получили 55 мг (82%) аминоэфира 7.
Спектр 1Н ЯМР (CDCl3, δ м.д.): 3.93 (с, 3Н, СН3), 4.63 (уш.с, 2H, NH2), 5.55 (с, 1H, СН). Спектр 13С ЯМР (CD3OD/CDCl3, δ, м.д.): 52.4 (СН3), 79.4 (СН), 156.8 (С), 161.1 (С), 171.1 (С). HRMS (ESI, m/z) рассчитано для C5H7N2O3 + [М+Н]+, 143.0457; найдено, 143.0452.
5-Аминоизоксазол-3-карбоновая кислота (1а)
К раствору 50 мг (0.35 ммоль) аминоэфира 7 в 12 мл смеси ТГФ-вода (3:1) добавили одной порцией 145 мг (3.5 ммоль) LiOH⋅Н2О. Смесь перемешивали при комнатной температуре в течение 5 ч, органический слой отделяли. В водный слой добавляли 0.2N раствор HCl до pH 5. Растворитель отгоняли при пониженном давлении. Получили 32 мг (71%) аминокислоты 1а.
Спектр 1Н ЯМР (D2O, δ м.д.): 5.39 (с, 1Н, СН). Спектр 13С ЯМР (D2O, δ м.д.): 80.4 (СН), 162.3 (С), 167.2 (С=O), 171.1 (CNH2).
Пример 2. Получение 5-аминоизоксазол-3-карбоновой кислоты (1а)
Трет-Бутиловый эфир 5-нитроизоксазол-3-карбоновой кислоты (8) К раствору 0.30 мл (2.5 ммоль) тетранитрометана в 2 мл диоксана при охлаждении до 0°С добавили по каплям 0.26 г (2.0 ммоль) диизопропилэтиламина. Полученную смесь дополнительно перемешивали при охлаждении 5 мин, после чего добавили 0.128 г (1.0 ммоль) трет-бутилового эфира акриловой кислоты. Затем охлаждение убрали и перемешивали реакционную смесь при комнатной температуре в течение 20 часов. Растворитель отогнали при пониженном давлении, остаток выдержали при 50°С при 1 мм рт.ст. в течение 2 часов, получили 0.180 г (84%) нитроэфира 8, который использовали в следующей стадии без дополнительной очистки.
Спектр 1Н ЯМР (CDCl3, δ м.д.): 1.65 (с, 9Н, 3СН3), 7.34 (с, 1Н, СН).
Трет-Бутиловый эфир 5-аминоизоксазол-3-карбоновой кислоты (9)
К интенсивно перемешиваемой смеси 100 мг (0.47 ммоль) 5-нитроизоксазола 8 и 0.6 мл (10.2 ммоль) уксусной кислоты в 4 мл изопропилового спирта в атмосфере аргона при температуре (-10)-0°С быстро прибавили 296 мг (4.7 ммоль) цинка. Реакционную смесь перемешивали в течение 4 ч, затем отфильтровали через бумажный фильтр, растворитель отгоняли при пониженном давлении, остаток растворяли в 20 мл хлороформа и промывали насыщенным раствором гидрокарбоната натрия (до pH 8). Водный раствор экстрагировали CHCl3 (3×10 мл), экстракт сушили над MgSO4, растворитель отгоняли при пониженном давлении, остаток очищали фильтрованием через 5 мл силикагеля (элюент СНСl3). Получили 75 мг (87%) аминоэфира 9.
Спектр 1H ЯМР (CDCl3, δ м.д.): 1.59 (с, 9Н, 3СН3), 4.55 (уш.с, 2Н, NH2), 5.48 (с, 1Н, СН). Спектр 13С ЯМР (CDCl3, δ, м.д.): 28.0 (3×СН3), 80.7 (СН), 83.2 (С), 158.8 (С), 159.5 (С), 169.4 (С). HRMS (ESI, m/z) рассчитано для C8H13N2O3 + [М+Н]+, 185.0926; найдено, 185.0921.
5-Аминоизоксазол-3-карбоновая кислота (1а)
К раствору 50 мг (0.27 ммоль) аминоэфира 9 в смеси 1.4 мл уксусной кислоты и 2.6 мл воды нагревали до 160°С в бытовой микроволновой печи в течение 3 мин. Реакционную смесь охлади до комнатной температуры, растворитель удаляли, остаток сушили в вакууме. Получили 17 мг (49%) аминокислоты 1а.
Спектр 1Н ЯМР (D2O, δ м.д.): 5.39 (с, 1H, СН). Спектр 13С ЯМР (D2O, δ м.д.): 80.4 (СН), 162.3 (С), 167.2 (С=O), 171.1 (CNH2).
Пример 3. Получение 5-аминоизоксазол-3-фосфоновой кислоты (1b)
Диэтиловый эфир 5-нитроизоксазол-3-фосфоновой кислоты (10)
К раствору 0.30 мл (2.5 ммоль) тетранитрометана в 2 мл диоксана при охлаждении до 0°С добавили по каплям 0.26 г (2.0 ммоль) диизопропилэтиламина. Полученную смесь дополнительно перемешивали при охлаждении 5 мин, после чего добавили 0.164 г (1.0 ммоль) диэтилового эфира фосфоновой кислоты. Затем охлаждение убрали и перемешивали реакционную смесь при комнатной температуре в течение 20 часов. Растворитель отогнали при пониженном давлении, остаток выдержали при 50°С при 1 мм рт.ст. в течение 2 часов, получили 0.22 г (88%) нитроэфира 10, который использовали в следующей стадии без дополнительной очистки.
Спектр 1Н ЯМР (CDCl3, δ м.д.): 1.40 (т, 3J=7.2 Гц, 6Н, 2СН3), 4.26-4.35 (м, 4Н, 2СН2), 7.26 (с, 1H, СН). Спектр 31P ЯМР (CDCl3, δ м.д.); -0.10.
Диэтиловый эфир 5-аминоизоксазол-3-фосфоновой кислоты (11)
К раствору 150 мг (0.6 ммоль) 5-нитроизоксазола 10 в 2 мл этанола при перемешивании постепенно прибавили 1.134 г (6 ммоль) хлорида олова (II). Реакционную смесь перемешивали в течение 4 ч. Растворитель отгоняли при пониженном давлении, остаток растворяли в 15 мл хлороформа и нейтрализовали насыщенным водным раствором гидрокарбоната натрия (до pH 7-8). Водный раствор экстрагировали CHCl3 (3×20 мл), объединенный органический экстракт сушили над MgSO4, растворитель отгоняли при пониженном давлении. Остаток очищали фильтрованием через 5 мл силикагеля (элюент CHCl3). Получили 120 мг (91%) аминоэфира 11.
Спектр 1Н ЯМР (CDCl3, δ м.д.): 1.37 (т, 3J=7,1 Гц, 6Н, 2СН3), 4.19-4.27 (м, 4Н, 2СН2), 4.94 (уш.с, 2Н, NH2), 5.41 (с, 1Н, СН). Спектр 13С ЯМР (CDCl3, δ, м.д.): 16.2 (2СН3), 63.5 (2СН2), 82.1 (СН), 156.6 (С), 169.9 (С). Спектр 31Р ЯМР (CDCl3, δ м.д.): 5.47. HRMS (ESI, m/z) рассчитано для C7H14N2O4P+ [М+Н]+, 221.0691; найдено, 221.0694.
5-Аминоизоксазол-3-фосфоновая кислота (1b)
В раствор 60 мг (0.28 ммоль) аминофосфоната 11 в атмосфере аргона добавили по каплям 336 мг (1.68 ммоль) триметилсилилиодида. Реакционную смесь перемешивали в течение 1 ч при комнатной температуре. Растворитель отгоняли при пониженном давлении, к остатку добавили 1.0 мл метанола и 3.0 мл пропиленоксида. Реакционную смесь охладили до 0-5°С. Выпавший осадок отфильтровали и промыли холодным метанолом (3×1 мл).
Выход 8 мг (17%) аминокислоты 1b.
Спектр 1Н ЯМР (D2O, δ м.д.): 5.50 (с, 1H, СН). Спектр 13С ЯМР (D2O, δ м.д.): 78.1 (СН), 164.5 (С), 172.6 (CNH2). Спектр 31Р ЯМР (D2O, δ м.д.): 15.22.
Пример 4. Получение 5-аминоизоксазол-3-карбоновой кислоты (1а) проводят аналогично примеру 1, при этом для восстановления 5-нитроизоксазола 6 используют 3-кратный избыток дитионита натрия в виде 5% раствора в метаноле.

Claims (7)

1. 5-Аминоизоксазол-3-фосфоновая кислота общей формулы 1
Figure 00000003
2. Способ получения 5-аминоизоксазол-3-фосфоновой кислоты по п. 1, характеризующийся тем, что к диэтиловому эфиру винилфосфоновой кислоты добавляют 1,5-2,5-кратный избыток диизопропилэтиламина и 1,5-3-кратный избыток тетранитрометана, образующиеся при этом нитроэфиры восстанавливают неразрушающей изоксазольный фрагмент хемоселективной системой, содержащей 2-20-кратный по отношению к нитроэфиру избыток восстановителя, с последующим гидролизом полученных аминоэфиров.
3. Способ по п. 2, отличающийся тем, что в качестве хемоселективной системы используют 30-40 мас.% суспензию цинка в уксусной кислоте, содержащую 5-15-кратный избыток цинка по отношению к нитроэфиру.
4. Способ по п. 2, отличающийся тем, что в качестве хемоселективной системы используют 30-50 мас.% раствор хлорида олова (II) в 96 об.% водном этаноле, содержащий 5-20-кратный избыток хлорида олова (II) по отношению к нитроэфиру.
5. Способ по п. 2, отличающийся тем, что в качестве хемоселективной системы используют 2-10 мас.% раствор дитионита натрия в 30-70 об.% водном метаноле, содержащий 2-10-кратный избыток дитионита натрия по отношению к нитроэфиру.
6. Способ по п. 2, заключающийся в том, что гидролиз аминоэфиров проводят 3-10-кратным избытком триметилсилилиодида с дальнейшей обработкой полученной смеси 75 об.% раствором пропиленоксида в метаноле, содержащим 20-40-кратный избыток пропиленоксида по отношению к аминоэфиру.
RU2016107212A 2016-02-29 2016-02-29 ПРОИЗВОДНЫЕ 5-АМИНОИЗОКСАЗОЛА - КОНФОРМАЦИОННО-ЖЕСТКИЕ АНАЛОГИ γ-АМИНОМАСЛЯНОЙ КИСЛОТЫ И СПОСОБ ИХ ПОЛУЧЕНИЯ RU2638530C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016107212A RU2638530C2 (ru) 2016-02-29 2016-02-29 ПРОИЗВОДНЫЕ 5-АМИНОИЗОКСАЗОЛА - КОНФОРМАЦИОННО-ЖЕСТКИЕ АНАЛОГИ γ-АМИНОМАСЛЯНОЙ КИСЛОТЫ И СПОСОБ ИХ ПОЛУЧЕНИЯ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016107212A RU2638530C2 (ru) 2016-02-29 2016-02-29 ПРОИЗВОДНЫЕ 5-АМИНОИЗОКСАЗОЛА - КОНФОРМАЦИОННО-ЖЕСТКИЕ АНАЛОГИ γ-АМИНОМАСЛЯНОЙ КИСЛОТЫ И СПОСОБ ИХ ПОЛУЧЕНИЯ

Publications (2)

Publication Number Publication Date
RU2016107212A RU2016107212A (ru) 2017-09-01
RU2638530C2 true RU2638530C2 (ru) 2017-12-14

Family

ID=59798542

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016107212A RU2638530C2 (ru) 2016-02-29 2016-02-29 ПРОИЗВОДНЫЕ 5-АМИНОИЗОКСАЗОЛА - КОНФОРМАЦИОННО-ЖЕСТКИЕ АНАЛОГИ γ-АМИНОМАСЛЯНОЙ КИСЛОТЫ И СПОСОБ ИХ ПОЛУЧЕНИЯ

Country Status (1)

Country Link
RU (1) RU2638530C2 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU385418A3 (ru) * 1970-06-26 1973-05-29
EP0043024A1 (de) * 1980-07-02 1982-01-06 Hüls Troisdorf Aktiengesellschaft Verfahren zur Herstellung von 5-Aminoisoxazolen
FR2750425A1 (fr) * 1996-07-01 1998-01-02 Novapharme Preparation de derives de 3-amino-isoxazole et nouveaux 3-amino-isoxazoles intermediaires
WO2008036653A2 (en) * 2006-09-19 2008-03-27 Incyte Corporation N-hydroxyamidinoheterocycles as modulators of indoleamine 2,3-dioxygenase
WO2008107418A1 (en) * 2007-03-05 2008-09-12 Novartis Ag Fused pyrimidinone compounds as mglur ligands

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU385418A3 (ru) * 1970-06-26 1973-05-29
EP0043024A1 (de) * 1980-07-02 1982-01-06 Hüls Troisdorf Aktiengesellschaft Verfahren zur Herstellung von 5-Aminoisoxazolen
FR2750425A1 (fr) * 1996-07-01 1998-01-02 Novapharme Preparation de derives de 3-amino-isoxazole et nouveaux 3-amino-isoxazoles intermediaires
WO2008036653A2 (en) * 2006-09-19 2008-03-27 Incyte Corporation N-hydroxyamidinoheterocycles as modulators of indoleamine 2,3-dioxygenase
WO2008107418A1 (en) * 2007-03-05 2008-09-12 Novartis Ag Fused pyrimidinone compounds as mglur ligands

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
База данных REGISTRY [онлайн] *
База данных REGISTRY [онлайн] RN 1367940-06-4, 15.04.2012 найдено в STN. *
найдено в STN. *

Also Published As

Publication number Publication date
RU2016107212A (ru) 2017-09-01

Similar Documents

Publication Publication Date Title
JP4227649B2 (ja) Cci−779の位置選択的合成
RU2447072C2 (ru) Способ получения n-(1,3,5-дитиазинан-5-ил)-изоникотинамида и n-(2,4,6-триметил-1,3,5-дитиазинан-5-ил)-изоникотинамида
RU2627698C2 (ru) Натриевая соль (2s, 5r)-6-бензилокси-7-оксо-1,6-диаза-бицикло[3.2.1]октан-2-карбоновой кислоты и ее получение
EP3424899B1 (en) Sacubitril intermediate and preparation method thereof
EP0678514A1 (de) 3,5-Disubstituierte Tetrahydrofuran-2-one
MX2007010338A (es) Derivado de isoxazolina y nuevo proceso para prepararlo.
CZ2014502A3 (cs) Nová forma sofosbuviru a způsob její přípravy
AU2021276066A1 (en) Process of preparing butyl-(5S)-5-({2-(4-(butoxycarbonyl)phenyl)ethyl}(2-(2-{(3-chloro-4'-(trifluoromethyl)(biphenyl)-4-yl)methoxy}phenyl)ethyl)amino)-5,6,7,8-tetrahydroquinoline-2-carboxylate
KR101018983B1 (ko) 콤브레타스타틴의 제조방법 및 중간체
RU2638530C2 (ru) ПРОИЗВОДНЫЕ 5-АМИНОИЗОКСАЗОЛА - КОНФОРМАЦИОННО-ЖЕСТКИЕ АНАЛОГИ γ-АМИНОМАСЛЯНОЙ КИСЛОТЫ И СПОСОБ ИХ ПОЛУЧЕНИЯ
AU2021314375A1 (en) Method for large-scale synthesis of tetrodotoxin
RU2658837C1 (ru) Способ получения 5-аминоизоксазолкарбоновой кислоты
JP2022517993A (ja) アナンダミド化合物
Song et al. Synthesis and Herbicidal Activity of α‐Hydroxy Phosphonate Derivatives Containing Pyrimidine Moiety
TWI314932B (en) New synthesis of a camptothecin subunit
JP2008531487A5 (ru)
EP2528906A2 (en) Process for the preparation of temsirolimus and its intermediates
RU2620379C2 (ru) СПОСОБ ПОЛУЧЕНИЯ ПРОИЗВОДНЫХ 2-ФЕНИЛ[1,2,4]ТРИАЗОЛО[1,5-а]ПИРИДИНА
Kanishi et al. Synthesis of macrocyclic (nnn)(1, 3, 5) cyclophane polylactones.
RU2629357C1 (ru) СПИРО[2.3]ГЕКСАНОВЫЕ АМИНОКИСЛОТЫ - КОНФОРМАЦИОННО-ЖЕСТКИЕ АНАЛОГИ γ-АМИНОМАСЛЯНОЙ КИСЛОТЫ - И СПОСОБЫ ИХ ПОЛУЧЕНИЯ
RU2659404C1 (ru) Способ получения 5-аминоспиро[2.3]гексан-1-карбоновой кислоты
JP3157262B2 (ja) 新規オキサゾリジノン誘導体
JP4059667B2 (ja) スルフォスチン及びその類縁体の製造中間体の製造方法
CN116789559A (zh) 一种曲霉明a及其类似物的合成方法
EP0564658A1 (en) 2- (2,3-dicarboxycyclopropyl) glycine and a process for its preparation.