RU2629357C1 - СПИРО[2.3]ГЕКСАНОВЫЕ АМИНОКИСЛОТЫ - КОНФОРМАЦИОННО-ЖЕСТКИЕ АНАЛОГИ γ-АМИНОМАСЛЯНОЙ КИСЛОТЫ - И СПОСОБЫ ИХ ПОЛУЧЕНИЯ - Google Patents

СПИРО[2.3]ГЕКСАНОВЫЕ АМИНОКИСЛОТЫ - КОНФОРМАЦИОННО-ЖЕСТКИЕ АНАЛОГИ γ-АМИНОМАСЛЯНОЙ КИСЛОТЫ - И СПОСОБЫ ИХ ПОЛУЧЕНИЯ Download PDF

Info

Publication number
RU2629357C1
RU2629357C1 RU2016107211A RU2016107211A RU2629357C1 RU 2629357 C1 RU2629357 C1 RU 2629357C1 RU 2016107211 A RU2016107211 A RU 2016107211A RU 2016107211 A RU2016107211 A RU 2016107211A RU 2629357 C1 RU2629357 C1 RU 2629357C1
Authority
RU
Russia
Prior art keywords
hexane
spiro
acid
fold excess
mixture
Prior art date
Application number
RU2016107211A
Other languages
English (en)
Inventor
Елена Борисовна Аверина
Дмитрий Алексеевич Василенко
Николай Серафимович Зефиров
Владимир Александрович Палюлин
Дмитрий Иванович Осолодкин
Тамара Степановна Кузнецова
Николай Владимирович Яшин
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ)
Priority to RU2016107211A priority Critical patent/RU2629357C1/ru
Application granted granted Critical
Publication of RU2629357C1 publication Critical patent/RU2629357C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C227/00Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C227/14Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton from compounds containing already amino and carboxyl groups or derivatives thereof
    • C07C227/18Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton from compounds containing already amino and carboxyl groups or derivatives thereof by reactions involving amino or carboxyl groups, e.g. hydrolysis of esters or amides, by formation of halides, salts or esters
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C229/00Compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C229/46Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino or carboxyl groups bound to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/38Phosphonic acids [RP(=O)(OH)2]; Thiophosphonic acids ; [RP(=X1)(X2H)2(X1, X2 are each independently O, S or Se)]

Abstract

Изобретение относится к 5-аминоспиро[2.3]гексан-1-фосфоновой кислоте указанной ниже формулы, которая является конформационно-жестким аналогом γ-аминомасляной кислоты и обладает психотропным действием. Изобретение относится также к способу получения 5-аминоспиро[2.3]гексан-1-фосфоновой кислоты. 2 н.п. ф-лы, 2 пр.

Description

Область техники
Изобретение относится к новым спиро[2.3]гексановым аминокислотам, содержащим аминогруппу в 5-ом положении, карбоксильную группу (или группу биоизостерную карбоксильной, в частности фосфонатную) в 1-ом положении спиро[2.3]гексанового фрагмента и являющимся в силу своего строения конформационно-жесткими аналогами γ-аминомасляной кислоты (ГАМК), а также к способам их получения.
Уровень техники
ГАМК (формула 1) является важнейшим тормозным нейромедиатором центральной нервной системы (ЦНС) человека и млекопитающих; принимает участие в нейромедиаторных и метаболических процессах в мозге, играя ведущую роль в патогенезе тревоги, судорог и многих других патологических состояний ЦНС [
Figure 00000001
. The rise of new GABA pharmacology. // Neuropharmacology, 2011, Vol. 60, №7-8, P. 1042-1049].
Figure 00000002
Интерес к синтезу конформационно-жестких (конформационно-ограниченных) аналогов ГАМК обусловлен тем, что соединения данной группы могут обладать высокой селективностью по отношению к отдельным биомишеням ГАМК. Создание конформационно-жестких аналогов природных физиологически-активных веществ (ФАВ) на основе соединений, содержащих малые и средние циклы или их спирокомбинацию, является современным приемом медицинской химии по созданию селективных синтетических ФАВ [F.E. Boyer, J.V.N. V. Prasad, A.L. Choy, L. Chupak, M.R. Dermyer, Q. Ding, M.D. Huband, W. Jiao, T. Kaneko, V. Khlebnikov, J.-Y. Kim, M.S. Lall, S.N. Maiti, K. Romero, X. Wu. Synthesis and SAR of novel conformationally-restricted oxazolidinones possessing Gram-positive and fastidious Gram-negative antibacterial activity. Part 1: Substituted pyrazoles // Bioorg. Med. Chem. Lett., 2007, Vol. 17, №16, P. 4694-4698]. Важную роль здесь играют аминокислоты, содержащие циклопропановый фрагмент, поскольку они обладают разнообразной физиологической активностью и выполняют важные функции в живых организмах. Циклопропановые аминокислоты входят в состав высокоэффективных фармацевтических препаратов, играют важную роль в изучении процессов метаболизма и механизмов действия ферментов. Встроенные в пептидные последовательности, они изменяют структуру белка и, как следствие, биологические свойства. Это связано с тем, что наличие в молекуле трехчленного кольца ограничивает вращение вокруг С-С связи. Заместители оказываются жестко закрепленными в пространстве, но при этом, в отличие от непредельных аминокислот, сохраняют асимметрические центры [К. Yamaguchi, Y. Kazuta, К. Hirano, S. Yamada, A. Matsuda, S. Shuto. Synthesis of 1-arylpiperazyl-2-phenylcyclopropanes designed as antidopaminergic agents: Cyclopropane-based conformationally restricted analogs of haloperidol // Bioorg. Med. Chem., 2008, Vol. 16, №19, P. 8875-8881].
Наиболее близкими к предлагаемому по технической сущности являются аналоги ГАМК - 1-аминоспиро[2.3]гексан-1,5-дикарбоновая кислота (2а) [N.V. Yashin, Е.В. Averina, T.S. Kuznetsova, N.S. Zefirov. Catalytic cyclopropanation of methylenecyclobutanes using ethylnitrodiazoacetate. Synthesis of sprirohexane amino acids // Tetrahedron Lett., 2003, Vol. 44, №45, P. 8241-8244] и 1-аминоспиро[2.3]гексан-5-карбоновая кислота (2b) [Патент RU 2468000 C2, H.B. Яшин, A.B. Чемагин, T.C. Кузнецова, H.C. Зефиров. Спироциклические циклопропановые аминокислоты - аналоги гамма-аминомасляной кислоты с ограниченной конформационной подвижностью и фармацевтические композиции на основе их. Дата публикации заявки 27.11.2012, Бюл. №33], содержащие спиро[2.3]гексановые фрагменты. Структурные формулы соединений 2а, 2b приведены ниже (2).
Figure 00000003
Синтез аминокислот 2а, b основан на реакции [1+2]-циклоприсоединения этил(нитро)диазоацетата к метиловому эфиру (3-метилен)циклобутанкарбоновой кислоты, протекающей с образованием 1-этил-5-метил-1-нитроспиро[2.3]гексан-1,5-дикарбоксилата (3) (схема 3) [N.V. Yashin, Е.В. Averina, T.S. Kuznetsova, N.S. Zefirov. Catalytic cyclopropanation of methylenecyclobutanes using ethylnitrodiazoacetate. Synthesis of sprirohexane amino acids // Tetrahedron Lett., 2003, Vol. 44, №45, P. 8241-8244]. Дальнейшее восстановление нитрогруппы аддукта 3 (формула 3) с последующим гидролизом сложноэфирных групп позволяет получить аминокислоту 2а. Проведение для аддукта 3 реакций селективного гидролиза и декарбоксилирования карбоксильного фрагмента у атома углерода, связанного с нитро-группой, восстановления нитрогруппы и гидролиза второй сложноэфирной группы приводит к образованию аминокислоты 2b [Патент RU 2468000].
Figure 00000004
Существенным недостатком спиро[2.3]гексановых аминокислот 2а, b является структурная ограниченность предложенных в работах соединений исключительно аминокарбоновыми кислотами. При этом введение в структуру полициклических циклопропановых аминокислот вместо карбоксильной группы группировки биоизостерной ей, например, фосфоновой, позволило бы получить выход к другим перспективным соединениям с возможно большей активностью и селективностью по отношению к биомишеням ГАМК, что обусловлено иной химической природой и размерами фосфонатного фрагмента по сравнению с карбоксильным.
Другим недостатком известного метода синтеза спиро[2.3]гексановых аминокислот 2а, b является невозможность использования предложенных в работах подходов для получения биоизостерных (в частности, фосфоновых) конформационно-жестких аналогов ГАМК, т.к. используемая на первой стадии синтеза реакция присоединения нитродиазоуксусного эфира к метиловому эфиру (3-метилен)циклобутанкарбоновой кислоты делает дальнейшее введение в получаемый спироциклический аддукт группы биоизостерной карбоксильной (в частности, фосфонатной группы) принципиально невозможной при сохранении в структуре свободной аминогруппы. На основании изучения источников информации можно сделать вывод о том, что в настоящее время отсутствуют методы синтеза биоизостерных (в частности, фосфоновых) конформационно-жестких аналогов ГАМК, содержащих спиро[2.3]гексановый фрагмент.
К недостаткам известных способов получения спиро[2.3]гексановых аминокислот 2а, b, изложенных в работах, также следует отнести невозможность получения на их основе 5-аминоспиро[2.3]гексан-1-овых кислот, т.е. аминокислот со структурой, в которой амино-группа расположена в 5-ом положении, а карбоксильная группа - в 1-ом положении спиро[2.3]гексанового фрагмента. Подобное расположение фармакофорных групп относительно базового конформационно-жесткого фрагмента позволяет зафиксировать новые конформации ГАМК, что может иметь хорошую перспективу с точки зрения поиска соединений с улучшенной селективностью по отношению к биомишеням ГАМК. Из анализа источников информации следует, что в настоящее время отсутствуют методы синтеза 5-аминоспиро[2.3]гексан-1-овых кислот.
Раскрытие изобретения
Задачей настоящего изобретения является получение новых спиро[2.3]гексановых аминокислот, являющихся конформационно-жесткими аналогами γ-аминомасляной кислоты (ГАМК), а также разработка способов их получения.
Поставленная задача достигается получением спиро[2.3]гексановой аминокислоты общей формулы:
Figure 00000005
где Z=CO2H (формула ) и Z=PO3H2 (формула 1b).
Также поставленная задача решается способом получения новой 5-аминоспиро[2.3]гексан-1-карбоновой кислоты ()
Figure 00000006
который заключается в том, что в 3-(метилен)циклобутанкарбоновой кислоте с использованием модифицированной реакции Курциуса [S.I. Kozhushkov, A.F. Khlebnikov, R.R. Kostikov, D.S. Yufit, A. de Meijere. Scalable synthesis of (1-cyclopropyl)cyclopropylamine hydrochloride // Beilstein J. Org. Chem. 2011. 7. P. 1003 -1006] производится трансформация карбоксильной группы в аминогруппу, защищенную Вос-фрагментом, далее осуществляется взаимодействие диазоуксусного эфира и трет-бутилового эфира N-(3-метиленциклобутил)карбаминовой кислоты, взятых в соотношении 1:1.2-2, в присутствии 1-10 мольных % тетраацетата диродия с образованием трет-бутилового эфира N-[1-(этоксикарбонил)спиро[2.3]гекс-5-ил]карбаминовой кислоты, последовательное удаление Вос-группы [S.I. Kozhushkov, A.F. Khlebnikov, R.R. Kostikov, D.S. Yufit, A. de Meijere. Scalable synthesis of (1-cyclopropyl)cyclopropylamine hydrochloride // Beilstein J. Org. Chem. 2011. 7. P. 1003 -1006] которого под действием 3-6N раствора хлороводорода в диэтиловом эфире и гидролиз [N.V. Yashin, Е.В. Averina, T.S. Kuznetsova, N.S. Zefirov. Catalytic cyclopropanation of methylenecyclobutanes using ethylnitrodiazoacetate. Synthesis of sprirohexane amino acids // Tetrahedron Lett., 2003, Vol. 44, №45, P. 8241-8244] под действием 2-5-кратного избытка 1N водного раствора гидроксида натрия приводят к получению 5-аминоспиро[2.3]гексан-1-карбоновой кислоты. При этом способ включает трансформацию карбоксильной группы в аминогруппу, которая осуществляется в результате реакции 3-(метилен)циклобутанкарбоновой кислоты, этилхлорформиата и триэтиламина, взятых в соотношении 1:1-1.5:1, с последующим взаимодействием с 1.1-1.7-кратным избытком азида натрия и более чем 10-кратным избытком трет-бутанола.
Поставленная задача также решается способом получения новой 5-аминоспиро[2.3]гексан-1-фосфоновой кислоты (1b)
Figure 00000007
который заключается в том, что осуществляется взаимодействие метилового эфира 3-(метилен)циклобутанкарбоновой кислоты и диазофосфонового эфира, взятых в соотношении 5:0.5-2, в присутствии 1-10 мольных % тетраацетата диродия, в полученном метиловом эфире 1-(диэтоксифосфорил)спиро[2.3]гексан-5-карбоновой кислоты проводят гидролиз метоксикарбонильной группы под действием 3-10-кратного избытка 1N раствора соляной кислоты и далее с использованием модифицированной реакции Курциуса [S.I. Kozhushkov, A.F. Khlebnikov, R.R. Kostikov, D.S. Yufit, A. de Meijere. Scalable synthesis of (l-cyclopropyl)cyclopropylamine hydrochloride // Beilstein J. Org. Chem. 2011. 7. P. 1003-1006] производится трансформация карбоксильной группы в аминогруппу, защищенную Вос-фрагментом, с образованием трет-бутилового эфира N-[1-(диэтоксифосфорил)спиро[2.3]гекс-5-ил]карбаминовой кислоты, последовательное удаление Вос-группы [S.I. Kozhushkov, A.F. Khlebnikov, R.R. Kostikov, D.S. Yufit, A. de Meijere. Scalable synthesis of (l-cyclopropyl)cyclopropylamine hydrochloride // Beilstein J. Org. Chem. 2011. 7. P. 1003-1006] которого под действием более чем 50-кратного избытка 3-6 N раствора хлороводорода в диэтиловом эфире и расщепление диэтоксифосфорильной группы [A. Fadel. A useful synthesis of 1-aminocyclopropanephosphonic acid from cyclopropanone acetal // J. Org. Chem. 1999. V. 64. №13. P. 4953-4955] под действием 3-7-кратного избытка триметилсилилбромида в дихлорметане с последующей обработкой полученной смеси более чем 50-кратным избытком 72% об. раствора пропиленоксида в 96% об. водном этаноле приводят к получению 5-аминоспиро[2.3]гексан-1-фосфоновой кислоты. При этом способ может включать трансформациию карбоксильной группы в аминогруппу, которая осуществляется в результате реакции метилового эфира 1-(диэтоксифосфорил)спиро[2.3]гексан-5-карбоновой кислоты, этилхлорформиата и триэтиламина, взятых в соотношении 1:1-2:1, с последующим взаимодействием с 1.5-2.0-кратным избытком азида натрия и более чем 10-кратным избытком трет-бутанола.
Техническим результатом предлагаемого технического решения является получение аминокислот, содержащих 5-аминоспиро[2.3]гексановый фрагмент и спиро[2.3]гексанфосфоновый фрагмент - биоизостерных конформационно-жестких аналогов ГАМК, а также расширение круга спирановых аминокислот, представляющих интерес в качестве конформационно-жестких аналогов ГАМК.
Полученные спиро[2.3]гексановые аминокислоты представляют собой конформационно-жесткие аналоги γ-аминомасляной кислоты, где фармакофорные группы (карбокси- и фосфонатная группа в 1-ом положении и аминогруппа в 5-ом положении) жестко закреплены относительно спирогексанового фрагмента. Получение соединений с ограниченной конформационной подвижностью может иметь хорошую перспективу с точки зрения поиска соединений с улучшенной селективностью по отношению к биомишеням ГАМК. В отличие от ациклических аналогов полученные аминокислоты имеют фиксированные конформации, что может обеспечить оптимальное связывание данных соединений с рецепторами ГАМК.
Предложенная схема получения аминокислоты 1а приведена ниже (4).
Figure 00000008
Предложенная схема получения аминокислоты 1b приведена ниже (5).
Figure 00000009
Осуществление изобретения
3-Метиленциклобутанкарбоновую кислоту [Н.N. Cripps, J.К. Williams, W.Н. Sharkey. Chemistry of cyclobutanes. I. Synthesis of methylenecyclobutanes. // Journal of American Chemical Society, 1959, Vol. 81, №11, P. 2723-2728], метиловый эфир 3-метиленциклобутанкарбоновой кислоты [Н.N. Cripps, J.К. Williams, W. H. Sharkey. Chemistry of cyclobutanes. I. Synthesis of methylenecyclobutanes. // Journal of American Chemical Society, 1959, Vol. 81, №11, P. 2723-2728], диэтиловый эфир (диазо)метилфосфоновой кислоты [D. Seyferth, R.S. Marmor, P. Hilbert. Some reactions of dimethylphosphono-substituted diazoalkanes. (MeO)2P(O)CR transfer to olefins and 1,3-dipolar additions of (MeO)2P(O)C(N2)R // Journal of Organic Chemistry, 1971. Vol. 36. №10. P. 1379-1386] и этиловый эфир диазоуксусной кислоты [Л. Титце, Т. Айхер, Препоративная органическая химия, Москва "Мир", 1999, С. 274] получали по известным методикам. Остальные реагенты являются коммерчески доступными, все процедуры, если не оговорено особо, осуществляли при комнатной температуре или температуре окружающей среды, то есть в диапазоне от 18 до 25°С; выпаривание растворителя осуществляли с использованием роторного испарителя, при пониженном давлении с температурой бани 50-60°С; контроль за ходом реакции осуществляли при помощи тонкослойной хроматографии (ТСХ), время реакции указано только для иллюстрации; структуру и чистоту всех выделенных соединений подтверждали, по меньшей мере, одним из следующих методов: ТСХ (пластины для ТСХ с предварительно нанесенным силикагелем 60 F254 Merck), масс-спектрометрия, элементный анализ или ядерный магнитный резонанс (ЯМР). Выход продукта приведен только для иллюстрации. Колоночную флэш-хроматографию осуществляли, используя Merck силикагель 60 (230-400 меш ASTM). Для ионообменной хроматографии использовали ионообменную смолу "Dowex 50WX8-100" (Sigma-Aldrich Со Ltd). Масс-спектры высокого разрешения (HRMS) положительных ионов зарегистрирован на спектрометре Jeol GCMate II при энергии ионизации 70 eV. Данные ЯМР определяли при 400 МГц (Bruker Avance-400 спектрометр), используя дейтерированный хлороформ (99,8% D), или дейтерированный метанол (99,8% D), или дейтерированную воду (99,9% D) в качестве растворителя, если не указано иное, относительно тетраметилсилана (TMS) в качестве внутреннего стандарта, миллионных долях (м.д.); обычные используемые сокращения следующие: с - синглет, д - дублет, т - триплет, кв - квартет, м - мультиплет, шир. - широкий и так далее. Химические символы имеют свои обычные значения: мкм (микрометр(ы)), мкл (микролитр(микролитры)), мкг (микрограмм(микрограммы)), М (моль(моли) на литр), л (литр(литры)), мл (миллилитр(миллилитры)), г (грамм(граммы)), мг (миллиграмм(миллиграммы)), моль(моли), ммоль(миллимоль(миллимоли)). Термин «гидролиз» означает химическую реакцию сложных эфиров с водой или иным(и) реагентом(ами) с образованием соответствующей кислоты.
Способ получения 5-аминоспиро[2.3]гексан-1-карбоновой кислоты, заключается в проведении четырехстадийного синтеза. На первой стадии синтеза в трехгорлую колбу, снабженную обратным холодильником, термометром, магнитной мешалкой и предварительно заполненную аргоном, вносят 3-5% раствор 3-(метилен)циклобутанкарбоновой кислоты в ацетоне, затем по каплям при интенсивном перемешивании при температуре -5±3°С вносят триэтиламин. После 10±2 мин перемешивания при той же температуре в реакционную смесь вносят этилхлорформиат. Компоненты - 3-(метилен)циклобутанкарбоновая кислота, этилхлорформиат и триэтиламин взяты в соотношении 1:1-1.5:1. Смесь перемешивают в течение 2±0.5 ч при той же температуре. Затем прибавляют 23-27% водный раствор азида натрия при 0±3°С, взятого в 1.1-1.7-кратном избытке по отношению к 3-(метилен)циклобутанкарбоновой кислоте, полученную смесь перемешивают еще 1.5-0.5 часа при той же температуре. После окончания перемешивания в реакционную смесь приливают ледяную воду (100±10 мл), экстрагируют порциями сначала холодного диэтилового эфира (3×15 мл), затем дихлорметаном (3×15 мл). Экстрагенты берут в объеме, не превышающем 0.5 объема прибавленной воды, органические вытяжки сушат над безводным сульфатом магния. Растворитель упаривают при пониженном давлении, к остатку прибавляют небольшое количество трет-бутанола, затем полученную смесь по каплям прибавляют к кипящему трет-бутанолу, взятому более чем 10-кратным избытком трет-бутанола по отношению к 3-(метилен)циклобутанкарбоновой кислоте и перемешивают. По окончании перемешивания растворитель упаривают при пониженном давлении. Продукт в индивидуальном состоянии выделяют методом препаративной колоночной хроматографии. На этой стадии синтеза, в ходе модифицированной реакции Курциуса производится трансформация карбоксильной группы в аминогруппу, защищенную Вос-фрагментом.
Далее в двухгорлую колбу, снабженную обратным холодильником и предварительно заполненную аргоном, вносят 3-5% раствор полученного алкена в дихлорметане и 1-10 мольных % тетраацетата диродия. Далее к полученной смеси при кипячении и интенсивном перемешивании прибавляют в течение 1±0.25 ч этилового эфира диазоуксусной кислоты (скорость прибавления 5±0.5 ммоль/ч), эфир берется в соотношении 1:1.2-2 по отношению к полученному на 1 стадии алкену. После окончания прибавления этилового эфира диазоуксусной кислоты реакционную смесь перемешивают при кипячении еще 1±0.25 ч. Растворитель упаривают при пониженном давлении. Продукт выделяют методом препаративной колоночной хроматографии.
Далее осуществляют последовательное удаление Вос-группы, для этого в колбу вносят 2-5% раствор полученного амида в диэтиловом эфире. К смеси при интенсивном перемешивании при 0±3°С приливают одной порцией 3-6N раствор хлороводорода в диэтиловом эфире. Реакционную смесь перемешивают при 0±5°С в течение 4-5 ч, а затем еще 18-25 часов при комнатной температуре. Растворитель упаривают при пониженном давлении, остаток сушат в вакууме над оксидом фосфора (V).
На заключительной стадии проводят гидролиз под действием водного раствора гидроксида натрия, для этого в одногорлую колбу вносят полученный этиловый эфир 5-аминоспиро[2.3]гексан-1-карбоновой кислоты гидрохлорид и 1N водного раствора NaOH, взятый в 2-5-кратном избытке. Смесь перемешивают при комнатной температуре в течение 48±3 ч. После окончания химической реакции растворитель упаривают при пониженном давлении. К полученному твердому остатку прибавляют 2-кратный избыток 1N раствора HCl по отношению к этиловому эфиру 5-аминоспиро[2.3]гексан-1-карбоновой кислоты гидрохлориду. Растворитель упаривают при пониженном давлении. Полученную 5-аминоспиро[2.3]гексан-1-карбоновую кислоту выделяют методом ионообменной хроматографии.
Способ получения 5-аминоспиро[2.3]гексан-1-фосфоновой кислоты заключается в проведении 5-стадийного синтеза, где на первой стадии в двухгорлую колбу, снабженную обратным холодильником и предварительно заполненную аргоном, вносят 15-20% раствор метилового эфира 3-метиленциклобутанкарбоновой кислоты в дихлорметане и 1-10 мольных % тетраацетата диродия и перемешивают. К полученной смеси при кипячении и интенсивном перемешивании в течение 1±0.1 ч прибавляют диэтиловый эфир (диазо)метилфосфоновой кислоты, взятый в соотношении 5:0.5-2 по отношению к метиловому эфиру 3-(метилен)циклобутанкарбоновой кислоты (скорость прибавления ~1 ммоль/ч). После окончания прибавления реакционную смесь перемешивают при кипячении еще 2±0.25 ч. Растворитель упаривают при пониженном давлении. Полученный эфир выделяют в индивидуальном состоянии методом препаративной колоночной хроматографии.
Далее в полученном метиловом эфире 1-(диэтоксифосфорил)спиро[2.3]гексан-5-карбоновой кислоты проводят гидролиз метоксикарбонильной группы, для этого в колбу вносят полученный эфир и 3-10-кратный избыток 1N раствора HCl. Смесь перемешивают в течение 2±0.5 ч при комнатной температуре. По окончании перемешивания растворитель упаривают при пониженном давлении. Полученную кислоту выделяют в индивидуальном состоянии методом препаративной колоночной хроматографии.
Далее с использованием модифицированной реакции Курциуса производят трансформацию карбоксильной группы в аминогруппу, защищенную Вос-фрагментом, для этого в трехгорлую колбу, снабженную обратным холодильником, термометром, магнитной мешалкой и предварительно заполненную аргоном, вносят 1-5% раствора 1-(диэтоксифосфорил)спиро[2.3]гексан-5-карбоновой кислоты в ацетоне, затем по каплям при интенсивном перемешивании при температуре -5±3°С вносят триэтиламин. После 10-15 мин перемешивания при той же температуре в реакционную смесь вносят этилхлорформиат. Компоненты - 1-(диэтоксифосфорил)спиро[2.3]гексан-5-карбоновая кислота, этилхлорформиат и триэтиламин взяты в соотношении 1-1:1-2:1. Смесь перемешивают в течение 2-4 ч при температуре -5±2°С. Затем прибавляют 1.5-2.0-кратный избыток водного раствора азида натрия при 0±5°С и полученную смесь перемешивают еще 1.5±0.5 часа при той же температуре. После окончания перемешивания в реакционную смесь прибавляют ледяную воду (30 мл), экстрагируют порциями сначала холодного диэтилового эфира (3×5 мл), затем дихлорметаном (3×5 мл). Экстрагенты берут в объеме, не превышающем 0.5 объема прибавленной воды, органические вытяжки сушат над безводным сульфатом магния. Растворитель упаривают при пониженном давлении, к остатку прибавляют небольшое количество трет-бутанола, затем полученную смесь по каплям прибавляют к кипящему трет-бутанолу, взятому более чем 10-кратным избытком трет-бутанола по отношению к 1-(диэтоксифосфорил)спиро[2.3]гексан-5-карбоновой кислоте, и перемешивают. По окончании перемешивания растворитель упаривают при пониженном давлении. Полученный амид выделяют методом препаративной колоночной хроматографии.
Далее последовательно удаляют Вос-группу трет-бутилового эфира N-[1-(диэтоксифосфорил)спиро[2.3]гекс-5-ил]карбаминовой кислоты, для этого в колбу вносят 1-5% раствор полученного амида в диэтиловом эфире, к раствору при интенсивном перемешивании при 0±5°С прибавляют одной порцией более чем 50-кратный избыток 3-6N раствора хлороводорода в диэтиловом эфире. Реакционную смесь перемешивают при 0±5°С в течение 4-5 ч, а затем еще 15-30 часов при комнатной температуре. Растворитель упаривают при пониженном давлении, остаток сушат в вакууме над оксидом фосфора (V).
На заключительной стадии проводят расщепление диэтоксифосфорильной группы, для этого в колбу, снабженную обратным холодильником и магнитной мешалкой, вносят 5-10% раствор диэтилового эфира 5-аминоспиро[2.3]гексан-1-фосфоновой кислоты гидрохлорида в дихлорметане, затем к смеси при интенсивном перемешивании по каплям прибавляют 3-7-кратный избыток 20-30% раствора триметилсилилбромида в дихлорметане. Реакционную смесь кипятят 7-8 ч, растворитель удаляют при пониженном давлении. Полученную смесь обрабатывают более чем 50-кратным избытком 72% раствора пропиленоксида в 96% об. водном этаноле. Выпавшую в осадок 5-аминоспиро[2.3]гексан-1-фосфоновую кислоту отфильтровывают и перекристаллизовывают из этанола.
Соотношение компонентов, указанных в избытках, подразумевает мольное соотношение компонентов по отношению друг к другу.
Представленные ниже примеры конкретного осуществления изобретения приведены для предоставления специалистам в данной области техники полного описания проведения и применения анализа по изобретению, но не ограничивают предполагаемый авторами изобретения объем изобретения.
Пример 1. Получение 5-аминоспиро[2.3]гексан-1-карбоновой кислоты (1а).
трет-Бутиловый эфир N-[3-метиленциклобутил]карбаминовой кислоты (4).
В трехгорлую колбу емкостью 10 мл, снабженную обратным холодильником, термометром, магнитной мешалкой и предварительно заполненную аргоном, внесли 215 мг (1.91 ммоль) 3-метиленциклобутанкарбоновой кислоты и 6 мл ацетона, затем по каплям при интенсивном перемешивании при (-5°С) внесли 192 мг (1.91 ммоль) триэтиламина. После 10 мин перемешивания при той же температуре в реакционную смесь внесли 263 мг (2.43 ммоль) этилхлорформиата. Смесь перемешивали в течение 2 ч при (-5°С). Затем прибавили раствор 165 мг (2.54 ммоль) азида натрия в 0.5 мл воды при 0°С и перемешивали смесь еще 1.5 часа при той же температуре. После окончания перемешивания в реакционную смесь прибавили 100 мл ледяной воды, проэкстрагировали холодным диэтиловым эфиром (3×15 мл), затем дихлорметаном (3×15 мл) и высушили над безводным сульфатом магния. Растворитель упарили при пониженном давлении, к остатку прибавили 3 мл трет-бутанола. Полученную смесь по каплям прибавили к 20 мл кипящего трет-бутанола. По окончании перемешивания растворитель упарили при пониженном давлении. Продукт в виде белых кристаллов был выделен в индивидуальном состоянии методом препаративной колоночной хроматографии (Rf=0.65, элюент этилацетат/петролейный эфир = 1:2). Выход 315 мг (90%), т.п.л. 62°С.
ЯМР 1H (CDCl3, δ, м.д.): 1.42 с (9H, 3×СН3), 2.50-2.62 м (2H, су-Bu-СН2), 2.92-3.09 м (2H, су-Bu-CH2), 4.09-4.18 м (1H, су-Bu-СН), 4.79-4.82 м (2H, СН2), 4.92 уш. с (1H, -NH-). ЯМР 13С (CDCl3, δ, м.д.): 29.36 (3СН3), 40.71 (су-Bu-СН2), 41.70 (су-Bu-СН), 79.28 (С), 106.95 (СН2), 142.26 (cy-Bu-CH), 155.11 (С=O). HRMS (ESI, mlz) рассчитано для C10H17NO2 [M+Na]+, 206.1151; найдено 206.1150.
трет-Бутиловый эфир N-[1-(этоксикарбонил)спиро[2.3]гекс-5-ил]карбаминовой кислоты (5).
В двухгорлую колбу емкостью 25 мл, снабженную обратным холодильником и предварительно заполненную аргоном, внесли 270 мг (1.47 ммоль) алкена 4, 6 мл дихлорметана и 22 мг (0.05 ммоль, 5 мольных %) тетраацетата диродия. К полученной смеси при кипячении и интенсивном перемешивании прибавили в течение 1 ч 112 мг (0.98 ммоль) этилового эфира диазоуксусной кислоты (скорость прибавления 5 ммоль/ч). После окончания прибавления этилового эфира диазоуксусной кислоты реакционную смесь перемешивали при кипячении еще 1 ч. Растворитель упарили при пониженном давлении. Продукт в виде бесцветного масла был выделен в индивидуальном состоянии методом препаративной колоночной хроматографии (Rf=0.1, элюент этилацетат/петролейный эфир = 1:5). Выход 90 мг (34%), смесь двух изомеров в соотношении А/В = 4:5.
ЯМР 1Н (CDCl3, δ, м.д.) для смеси двух изомеров: 0.94 дд (2J=4.8 Гц, 3J=8.4 Гц, 1H, СН2 су-Pr) - для изомера А, 1.01 дд (2J=4.5 Гц, 3J=8.5 Гц, 1Н, СН2 су-Pr) - для изомера В, 1.10 дд (2J=4.8 Гц, 3J=5.5 Гц, 1Н, СН2, су-Pr) - для изомера А, 1.19 дд (2J=4.5 Гц, 3J=5.3 Гц 1Н, СН2, су-Pr) - для изомера В, 1.21 т (3J=7.1 Гц, 3Н, OCH2CH3) - для изомера В, 1.22 т (3J=7.2 Гц, 3Н, OCH2CH3) - для изомера А, 1.40 с (9Н+9Н, 3×СН3), 1.55 дд (2J=5.5 Гц, 3J=8.4 Гц, 1Н, СН, су-Pr) - для изомера А, 1.59 дд (2J=5.3 Гц, 3J=8.5 Гц, 1H, СН, су-Pr) - для изомера В, 2.00-2.58 м (4Н + 4Н, СН2, су-Bu-СН2), 4.06 к (3J=7.1 Гц, 2Н, ОСН2СН3) - для изомера А, 4.08 к (3J=7.1 Гц, 2Н, OCH2CH3) - для изомера В, 4.17-4.30 м (1Н + 1Н, су-Bu-СН), 4.76 уш. с.(1Н, -NH-) - для изомера В, 4.82 уш. с. (1Н, -NH-) - для изомера А. ЯМР 13С (CDCl3, δ, м.д.) для смеси двух диастереомеров: 14.36 (1JCH=127 Гц, OCH2CH3+OCH2CH3), 18.44 (1JCH=164 Гц, су-Pr-СН2), 20.51 (1JCH=163 Гц, су-Pr-СН2), 23.49 (7JCH=168 Гц, су-Pr-СН), 24.63 (1JCH=167 Гц, су-Pr-СН), 24.07 (Сспиро), 25.03 (Сспиро), 28.37 (1JCH=127 Гц, 3СН3+3СН3), 35.59 (1JCH=142 Гц, су-Bu-CH2), 37.39 (1JCH=142 Гц, су-Bu-CH2), 39.20 (1JCH=142 Гц, су-Bu-CH2), 39.33 (1JCH=142 Гц, су-Bu-CH2), 41.76 (1JCH=142 Гц, су-Bu-СН), 42.19 (1JCH=142 Гц, су-Bu-СН), 60.22 (1JCH=145 Гц, OCH2CH3), 60.28 (1JCH=145 Гц, OCH2CH3), 155.01 (2×С), 172.51 (-NH-C=O), 172.61 (-NH-C=O). HRMS (ESI, mlz) рассчитано для C14H23NO4 [M+Na]+, 292.1516; найдено, 292.1519.
Этилового эфира 5-аминоспиро[2.3]гексан-1-карбоновой кислоты гидрохлорид (6).
В колбу емкостью 10 мл внесли 40 мг (0.148 ммоль) амида 5 в 2 мл диэтилового эфира. К смеси при интенсивном перемешивании при 0°С прибавили одной порцией 9 мл 5N раствора хлороводорода в диэтиловом эфире. Реакционную смесь перемешивали при 0°С в течение 4 ч, а затем еще 20 часов при комнатной температуре. Растворитель упарили при пониженном давлении, остаток сушили в вакууме над оксидом фосфора (V). Стеклообразная масса. Выход 23 мг (74%), смесь двух изомеров в соотношении А/В=2:3. ЯМР 1Н (MeOD, δ, м.д.) для смеси двух изомеров: 1.02-1.32 м (1Н+1Н, су-Pr), 1.22 т (3Н+3Н, 3J=7 Гц, ОСН2СН 3+OCH2CH3), 1.55-1.79 м (1Н+1Н, су-Pr), 2.20-2.90 м (4Н+4Н, су-Bu), 3.88-4.31 м (3Н+3Н, ОСН 2СН3+су-Bu-СН), 8.57 уш. с (3Н+3Н, NH3). ЯМР 13С (MeOH-d, δ, м.д.) для смеси двух диастереомеров: 14.30 (1JCH=127 Гц, OCH2CH3+OCH2CH3), 18.84 (1JCH=164 Гц, су-Pr-CH2), 20.17 (1JCH=163 Гц, су-Pr-СН2), 22.97 (1JCH=168 Гц, су-Pr-CH), 23.80 (Сспиро), 24.25 (1JCH=167 Гц, су-Pr-CH), 24.77 (Сспиро), 32.63 (су-Bu-CH2), 34.49 (су-Bu-CH2), 35.55 (су-Bu-CH2), 35.78 (су-Bu-CH2), 42.02 (су-Bu-СН), 42.42 (су-Bu-СН), 60.46 (1JCH=145 Гц, OCH2+OCH2CH3), 172.16 (С=O), 172.24 (С=O). HRMS (ESI, mlz) рассчитано для C9H16NO2 [М]+, 170.1179; найдено 170.1176.
5-Аминоспиро[2.3]гексан-1-карбоновая кислота (1а).
В одногорлую колбу емкостью 10 мл внесли 23 мг (0.11 ммоль) гидрохлорида 6 и 0.33 мл 1N водного раствора NaOH. Смесь перемешивали при комнатной температуре в течение 48 ч. После окончания химической реакции растворитель упарили при пониженном давлении. К твердому остатку прибавили 0.22 мл 1N раствора HCl. Растворитель упарили при пониженном давлении. Аминокислота 1а была выделена методом ионообменной хроматографии (Dowex 50, элюент - 0.9 М водный раствор аммиака). Стеклообразная масса. Выход 10 мг (51%), смесь двух изомеров А/В=2:3. ЯМР 1H (MeOD, δ, м.д.) для смеси двух изомеров: 0.67 дд (2J=4.6 Гц, 3J=8.2 Гц, 1H, CH2 су-Pr) - для изомера А, 0.73 дд (2J=4.1 Гц, 3J=8.1 Гц, 1Н, CH су-Pr) - для изомера В, 0.94 дд (2J=4.6 Гц, 3J=5.6 Гц, 1Н, CH2, су-Pr) - для изомера А, 1.03 дд (2J=4.1 Гц, 3J=5.5 Гц 1Н, CH2, су-Pr) - для изомера В, 1.41 дд (2J=5.5 Гц, 3J=8.1 Гц, 1Н, СН, су-Pr) - для изомера В, 1.44 дд (2J=5.6 Гц, 3J=8.2 Гц, 1Н, СН, су-Pr) - для изомера А, 1.91-2.52 м (4Н+4Н, CH2, су-Bu-CH2), 3.47-3.61 м (1Н+1Н, су-Bu-СН). ЯМР 13С (MeOD, δ, м.д.) для изомера А: 16.58 (су-Pr-CH2), 21.17 (Сспиро), 39.13 (су-Bu-CH2), 41.16 (су-Bu-CH2), 43.55 (су-Bu-СН), 179.95 (СООН). ЯМР 13С (MeOD, δ, м.д.) для изомера В: 18.35 (су-Pr-CH2), 21.75 (Ccnupo), 27.07 (су-Pr-СН), 28.42 (су-Pr-СН), 37.68 (су-Bu-CH2), 41.22 (су-Bu-CH2), 43.85 (су-Bu-СН), 179.57 (СООН).
Пример 2. Получение 5-аминоспиро[2.3]гексан-1-фосфоновой кислоты (1b).
Метиловый эфир 1-(диэтоксифосфорил)спиро[2.3]гексан-5-карбоновой кислоты (7).
В двухгорлую колбу емкостью 10 мл, снабженную обратным холодильником и предварительно заполненную аргоном, внесли 725 мг (5.75 ммоль) метилового эфира 3-метиленциклобутанкарбоновой кислоты, 3 мл дихлорметана и 25 мг (0.058 ммоль, 5 мол. %) тетраацетата диродия. К полученной смеси при кипячении и интенсивном перемешивании прибавили в течение 1 ч 204 мг (1.15 ммоль) диэтилового эфира (диазо)метилфосфоновой кислоты (скорость прибавления ~1 ммоль/ч). После окончания прибавления реакционную смесь перемешивали при кипячении еще 2 ч. Растворитель упарили при пониженном давлении. Эфир 7 в виде бесцветного масла был выделен в индивидуальном состоянии методом препаративной колоночной хроматографии (Rf=0.4, элюент этилацетат/петролейный эфир = 1:1). Выход 152 мг (48%), смесь двух изомеров в соотношении 1:1.
ЯМР 1Н (CDCl3, δ, м.д.) для смеси двух изомеров: 0.82-0.86 м (1Н+1Н, су-Pr), 1.03-1.14 м (2Н+2Н, су-Pr), 1.33-1.38 м (6Н+6Н, 2×OCH2CH 3), 2.40-2.84 м (4Н+4Н, су-Bu-CH2), 3.26-3.31 м (1Н+1Н, су-Bu-СН), 3.71 с (3Н+3Н, ОСН3), 4.07-4.15 м (4Н+4Н, 2×ОСН2СН3). ЯМР 13С (CDCl3, δ, м.д.) для смеси двух диастереомеров: 14.5 (1JCP=192 Гц, су-Pr-СН) 15.5 (1JCP=192 Гц, су-Pr-СН), 16.0 (2JCP=5 Гц су-Pr-CH2), 16.1 (2×OCH2CH3), 16.7 (2JCP=5 Гц, су-Pr-CH2), 21.9 (2JCP=5 Гц, Сспиро), 22.5 (2JCP=5 Гц, Сспиро), 30.8 (3JCP=5 Гц, су-Bu-CH2), 32.0 (3JCP=5 Гц, су-Bu-CH2), 33.2 (3JCP=5 Hz, су-Bu-CH2), 33.3 (3JCP=5 Гц, су-Bu-CH2), 33.4 (су-Bu-СН), 33.3 (су-Bu-СН), 51.4 (2×ОСН3), 61.2 (2×OCH2CH3+2×OCH2CH3), 175.1 (СОО), 175.2 (СОО). ЯМР 31Р (CDCl3, δ, м.д.): 28.05, 28.06. Вычислено для C12H21O5P (%):. С 52.17, Н 7.66. Найдено, %. С 51.88, Н 7.62.
1-(Диэтоксифосфорил)спиро[2.3]гексан-5-карбоновая кислота (8).
В колбу емкостью 25 мл внесли 144 мг (0.52 ммоль) эфира 7 и 2.7 мл 1N раствора HCl. Смесь перемешивали в течение 2 ч при комнатной температуре. По окончании перемешивания растворитель упарили при пониженном давлении. Кислота 8 в виде бесцветного масла была выделена в индивидуальном состоянии методом препаративной колоночной хроматографии (Rf=0.25, элюент этилацетат). Выход 130 мг (95%), смесь двух изомеров в соотношении 1:1.
ЯМР 1Н (CDCl3, δ, м.д.) для смеси двух изомеров: 0.76-0.85 м (1Н+1Н, су-Pr), 0.92-1.07 м (1Н+1Н, су-Pr), 1.10-1.21 м (1Н+1Н, су-Pr), 1.24-1.34 м (6Н+6Н, 2×OCH2CH3), 2.12-2.21 м (1H, су-Bu-CH2), 2.30-2.40 м (1Н+1Н, су-Bu-CH2), 2.42-2.52 м (1Н+1Н, су-Bu-CH2), 2.58-2.65 м (1Н, су-Bu-CH2), 2.67-2.84 м (1Н+1Н, су-Bu-CH2), 3.15-3.30 м (1Н+1Н, cy-Bu-CH), 4.00-4.15 м (4H+4H, 2×OCH 2CH3), 8.56 уш. с (1Н+1Н, СООН). ЯМР 13С (CDCl3, δ, м.д.) для смеси двух диастереомеров: 14.6 (1JCP=192 Гц, су-Pr-СН) 15.6 (1JCP=192 Гц, су-Pr-СН), 16.3 (2×ОСН2СН3+2×ОСН2СН3), 16.6 (2JCP=5 Гц су-Pr-СН2), 17.0 (2JCP=5 Гц, су-Pr-СН2), 22.2 (2JCP=5 Гц, Сспиро), 22.8 (2JCP=5 Гц, Сспиро), 31.1 (3Jcp=5 Гц, су-Bu-CH2), 32.2 (3JCp=5 Гц, су-Bu-CH2), 33.4 (3JCP=5 Гц, су-Bu-CH2), 33.5 (3Jcp=5.48 Гц, су-Bu-CH2), 33.7 (су-Bu-СН), 33.8 (су-Bu-СН), 61.8 (2×ОСН2СН3), 61.9 (2×OCH2CH), 178.2 (СООН), 178.7 (СООН). ЯМР 31Р (CDCl3, δ, м.д.) для смеси двух диастереомеров: 28.5, 28.6. HRMS (ESI, mlz) рассчитано для C11H19PO5 [М+Н]+, 263.1043; найдено 263.1045.
трет-Бутиловый эфир N-[1-(диэтоксифосфорил)спиро[2.3]гекс-5-ил]карбаминовой кислоты (9).
В трехгорлую колбу емкостью 10 мл, снабженную обратным холодильником, термометром, магнитной мешалкой и предварительно заполненную аргоном, внесли 120 мг (0.46 ммоль) кислоты 8 и 3 мл ацетона, затем по каплям при интенсивном перемешивании при (-5°С) внесли 46 мг (0.46 ммоль) триэтиламина. После 10 мин перемешивания при той же температуре в реакционную смесь внесли 85 мг (0.79 ммоль) этилхлорформиата. Смесь перемешивали в течение 2 ч при (-5°С). Затем прибавили раствор 53 мг (0.82 ммоль) азида натрия в 0.3 мл воды при 0°С и перемешивали смесь еще 1.5 часа при той же температуре. После окончания перемешивания в реакционную смесь прибавили 30 мл ледяной воды, проэкстрагировали холодным диэтиловым эфиром (3×5 мл), затем дихлорметаном (3×5 мл) и высушили над безводным сульфатом магния. Растворитель упарили при пониженном давлении, к остатку прибавили 0.9 мл трет-бутанола. Полученную смесь по каплям прибавили к 7.5 мл кипящего трет-бутанола. По окончании перемешивания растворитель упарили при пониженном давлении. Амид 9 в виде бесцветного масла был выделен в индивидуальном состоянии методом препаративной колоночной хроматографии (Rf=0.2, элюент этилацетат/петролейный эфир = 1:4). Выход 61 мг (40%), смесь двух изомеров в соотношении 1:1.
Диэтиловый эфир 5-аминоспиро[2.3]гексан-1-фосфоновой кислоты гидрохлорид (10).
В колбу емкостью 10 мл внесли 50 мг (0.149 ммоль) амида 9 в 2 мл диэтилового эфира. К смеси при интенсивном перемешивании при 0°С прибавили одной порцией 9 мл 5N раствора хлороводорода в диэтиловом эфире. Реакционную смесь перемешивали при 0°С в течение 4 ч, а затем еще 20 часов при комнатной температуре. Растворитель упарили при пониженном давлении, остаток сушили в вакууме над оксидом фосфора (V). Стеклообразная масса. Выход 35 мг (87%), смесь двух изомеров в соотношении А/В = 1:1.
ЯМР 1Н (CDCl3, δ, м.д.) для смеси двух диастереомеров: 0.83-1.00 м (1Н+1Н, су-Pr), 1.05-1.20 м (2Н+2Н, су-Pr), 1.25-1.35 м (6Н+6Н, 2×ОСН2СН 3), 2.20-2.60 м (2Н+2Н, су-Bu-CH2), 2.65-2.85 (2Н+2Н, су-Bu-CH2) 2.90-3.05 м (1Н+1Н, су-Bu-СН), 3.95-4.20 м (4Н+4Н, 2×OCH2CH3), 8.70 уш. с (3Н+3Н, NH3). ЯМР 13С (CDCl3, δ, м.д.) для смеси двух диастереомеров: 13.1 (1JCP=192 Гц, су-Pr-СН), 14.9 (1JCP=192 Гц, су-Pr-СН), 15.5 (2Jcp=5 Гц, су-Pr-CH2), 16.4 (2×OCH2CH3+2×OCH2 CH3), 16.7 (2JCP=5 Гц, су-Pr-CH2), 20.5 (2JCP=5 Гц, Сспиро), 20.9 (2JCP=5 Гц, Сспиро), 32.9 (су-Bu-CH2), 33.0 (3JCP=5 Hz, су-Bu-CH2), 34.8 (3JCP=5 Hz, су-Bu-CH2), 35.9 (3JCP=5 Гц, су-Bu-CH2), 42.4 (2×су-Bu-СН), 61.9 (2×OCH2CH3+2×OCH2CH3). ЯМР 31Р (CDCl3, δ, м.д.) для смеси двух диастереомеров: 27.2, 27.9. HRMS (ESI, mlz) рассчитано для C10H20NO3P [М+Н]+, 234.1254; найдено 234.1263.
5-Аминоспиро[2.3]гексан-1-фосфоновая кислота (1b).
В колбу емкостью 10 мл, снабженную обратным холодильником и магнитной мешалкой, внесли 32 мг (0.12 ммоль) гидрохлорида 10 в 0.4 мл дихлорметана, затем к смеси при интенсивном перемешивании по каплям прибавили раствор 91.8 мг (0.6 ммоль) триметилсилилбромида в 0.24 мл дихлорметана. Реакционную смесь кипятили 7-8 ч, растворитель удалили при пониженном давлении. Остаток растворили в 2 мл 96% об. водного этанола, после чего при перемешивании прибавили 5 мл пропиленоксида. Выпавшую в осадок аминофосфоновую кислоту 1b отфильтровали и перекристаллизовали из этанола. Белые кристаллы, т.пл.=293°С. Выход 18 мг (87%), смесь двух изомеров в соотношении А/В=1:1.
ЯМР 1Н (D2O, δ, м.д.) для смеси двух изомеров: 0.84-0.98 м (2Н+2Н, су-Pr), 0.99-1.10 м (1Н+1Н, су-Pr), 2.28-2.57 м (3Н+2Н, су-Bu-CH2), 2.66-2.76 м (1H, су-Bu-CH2), 3.84-4.00 м (1Н+1Н, су-Bu-СН) (сигналы протонов NH2-группы и ОН-групп не наблюдаются). ЯМР 13С (D2O, δ, м.д.) для смеси двух диастереомеров: 14.7 (1JCP=185 Гц, су-Pr-СН), 15.1 (2JCP=5 Гц, су-Pr-CH2), 15.7 (2JCP=5 Гц, су-Pr-CH2), 15.8 (JJCP=185 Гц, су-Pr-СН), 19.2 (2JCP=5 Гц, Сспиро), 19.9 (2JCP=5 Гц, Сспиро), 32.1 (су-Bu-CH2), 33.6 (3JCP=5 Hz, cy-Bu-CH2), 34.8 (3JCP=5 Hz, cy-Bu-CH2), 35.1 (3JCP=5 Гц, cy-Bu-CH2), 41.7 (cy-Bu-CH), 42.0 (cy-Bu-CH). ЯМР 31P (D2O, δ, м.д.) для смеси двух диастереомеров: 26.6, 26.7. Вычислено для C6H12NO13P (%): С, 40.68; Н, 6.83; N, 7.91. Найдено: С, 40.60; Н, 6.99; N, 7.68.

Claims (3)

1. 5-Аминоспиро[2.3]гексан-1-фосфоновая кислота формулы
Figure 00000010
2. Способ получения 5-аминоспиро[2.3]гексан-1-фосфоновой кислоты, заключающийся в том, что осуществляют взаимодействие метилового эфира 3-(метилен)циклобутанкарбоновой кислоты и диазофосфонового эфира, взятых в соотношении 5:0.5-2, в присутствии 1-10 мол.% тетраацетата диродия, в полученном метиловом эфире 1-(диэтоксифосфорил)спиро[2.3]гексан-5-карбоновой кислоты проводят гидролиз метоксикарбонильной группы под действием 3-10-кратного избытка 1 N раствора соляной кислоты и далее с использованием модифицированной реакции Курциуса производят трансформацию карбоксильной группы в аминогруппу, защищенную Вос-фрагментом, с образованием трет-бутилового эфира N-[1-(диэтоксифосфорил)спиро[2.3]гекс-5-ил]карбаминовой кислоты, последовательное удаление Вос-группы которого под действием более чем 50-кратного избытка 3-6 N раствора хлороводорода в диэтиловом эфире и расщепление диэтоксифосфорильной группы под действием 3-7-кратного избытка триметилсилилбромида в дихлорметане с последующей обработкой полученной смеси более чем 50-кратным избытком 72%-ного раствора пропиленоксида в 96 об.% водном этаноле приводят к получению 5-аминоспиро[2.3]гексан-1-фосфоновой кислоты, при этом трансформацию карбоксильной группы в аминогруппу осуществляют в результате реакции 1-(диэтоксифосфорил)спиро[2.3]гексан-5-карбоновой кислоты, этилхлорформиата и триэтиламина, взятых в соотношении 1:1-2:1, с последующим взаимодействием с 1.5-2.0-кратным избытком азида натрия и более чем 10-кратным избытком трет-бутанола.
RU2016107211A 2016-02-29 2016-02-29 СПИРО[2.3]ГЕКСАНОВЫЕ АМИНОКИСЛОТЫ - КОНФОРМАЦИОННО-ЖЕСТКИЕ АНАЛОГИ γ-АМИНОМАСЛЯНОЙ КИСЛОТЫ - И СПОСОБЫ ИХ ПОЛУЧЕНИЯ RU2629357C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016107211A RU2629357C1 (ru) 2016-02-29 2016-02-29 СПИРО[2.3]ГЕКСАНОВЫЕ АМИНОКИСЛОТЫ - КОНФОРМАЦИОННО-ЖЕСТКИЕ АНАЛОГИ γ-АМИНОМАСЛЯНОЙ КИСЛОТЫ - И СПОСОБЫ ИХ ПОЛУЧЕНИЯ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016107211A RU2629357C1 (ru) 2016-02-29 2016-02-29 СПИРО[2.3]ГЕКСАНОВЫЕ АМИНОКИСЛОТЫ - КОНФОРМАЦИОННО-ЖЕСТКИЕ АНАЛОГИ γ-АМИНОМАСЛЯНОЙ КИСЛОТЫ - И СПОСОБЫ ИХ ПОЛУЧЕНИЯ

Related Child Applications (1)

Application Number Title Priority Date Filing Date
RU2017118967A Division RU2659404C1 (ru) 2017-05-31 2017-05-31 Способ получения 5-аминоспиро[2.3]гексан-1-карбоновой кислоты

Publications (1)

Publication Number Publication Date
RU2629357C1 true RU2629357C1 (ru) 2017-08-29

Family

ID=59797749

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016107211A RU2629357C1 (ru) 2016-02-29 2016-02-29 СПИРО[2.3]ГЕКСАНОВЫЕ АМИНОКИСЛОТЫ - КОНФОРМАЦИОННО-ЖЕСТКИЕ АНАЛОГИ γ-АМИНОМАСЛЯНОЙ КИСЛОТЫ - И СПОСОБЫ ИХ ПОЛУЧЕНИЯ

Country Status (1)

Country Link
RU (1) RU2629357C1 (ru)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2468000C2 (ru) * 2011-03-03 2012-11-27 Запольский Максим Эдуардович Спироциклические циклопропановые аминокислоты - аналоги гамма-аминомасляной кислоты, с ограниченной конформационной подвижностью и фармацевтические композиции на их основе

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2468000C2 (ru) * 2011-03-03 2012-11-27 Запольский Максим Эдуардович Спироциклические циклопропановые аминокислоты - аналоги гамма-аминомасляной кислоты, с ограниченной конформационной подвижностью и фармацевтические композиции на их основе

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
S.I. KOZHUSHKOV ET AL., Scalable synthesis of (1-cyclopropyl)cyclopropylamine hydrochloride, BEILSTEIN J. ORG. CHEM., 2011, 7, 1003-1006. J. WEINSTOCK, A Modified Curtius Reaction, J. ORG. CHEM., 1961, 26, 3511. *
База данных Pubchem [онлайн] NCBI; номер CID 82594230 (20.10.2014). База данных Pubchem [онлайн] NCBI; номер CID 96732998 (11.12.2015). База данных Pubchem [онлайн] NCBI; номер CID 96732999 (11.12.2015). *

Similar Documents

Publication Publication Date Title
SU795465A3 (ru) Способ получени 4-(полиалкокси-фЕНил)-2-пиРРОлидОНОВ
US11370739B2 (en) Sacubitril intermediate and preparation method thereof
JP5683273B2 (ja) 光学活性カルボン酸の製造方法
CA3120235A1 (en) C10-cyclic substituted 13-membered macrolides and uses thereof
CA3120148A1 (en) C10-alkylene substituted 13-membered macrolides and uses thereof
RU2659404C1 (ru) Способ получения 5-аминоспиро[2.3]гексан-1-карбоновой кислоты
RU2629357C1 (ru) СПИРО[2.3]ГЕКСАНОВЫЕ АМИНОКИСЛОТЫ - КОНФОРМАЦИОННО-ЖЕСТКИЕ АНАЛОГИ γ-АМИНОМАСЛЯНОЙ КИСЛОТЫ - И СПОСОБЫ ИХ ПОЛУЧЕНИЯ
Vassiliou et al. Three component Kabachnik-Fields condensation leading to substituted aminomethane-P-hydroxymethylphosphonic acids as a tool for screening of bacterial urease inhibitors
Paraskar et al. A novel Cu (OTf) 2 mediated three component high yield synthesis of α-aminophosphonates
EP3710592B1 (en) Microbiological process for the preparation of amides
Szabó et al. Synthesis of α‐aminophosphinates by the hydrophosphinylation of imines
EP0382114A2 (de) Phosphinesterhaltige N-Acyl-2-aminosäureamide, Verfahren zu ihrer Herstellung und N-Acyl-2-aminosäurenitrile als Vorprodukte
Han et al. Synthesis and fungicidal activity of O‐alkyl O‐aryl O‐2‐(stearamido) ethyl phosphates
EP2441749B1 (en) Nitro group-containing ether compound and method for producing same
US7235688B1 (en) Process for preparing histone deacetylase inhibitors and intermediates thereof
Rodríguez-Alvarado et al. Design, organocatalytic synthesis, and bioactivity evaluation of enantiopure fluorinated LpxC inhibitors
RU2638530C2 (ru) ПРОИЗВОДНЫЕ 5-АМИНОИЗОКСАЗОЛА - КОНФОРМАЦИОННО-ЖЕСТКИЕ АНАЛОГИ γ-АМИНОМАСЛЯНОЙ КИСЛОТЫ И СПОСОБ ИХ ПОЛУЧЕНИЯ
KR20060060020A (ko) 1-카바모일사이클로알킬카복실산 화합물, 이의 제조방법 및이의 용도
WO2019079706A1 (en) ANTIBIOTICS BASED ON AMINOGLYCOSIDE
WO2005051891A1 (es) Utilización de derivados de ciclopropenilesfingosina para la elaboración de una composición farmacéutica moduladora de la actividad de ceramidasa, y sus aplicaciones
Tripathi et al. Synthesis and Antitubercular Evaluation of Diverse Glycosylated Ureas from D-Glucose
Ohata et al. Synthesis and Biological Activity of Enantiomeric Pairs of 5-(Alk-2-enyl) thiolactomycin and 5-[(E)-Cycloalk-2-enylidenemethyl] thiolactomycin Congeners
RU2658837C1 (ru) Способ получения 5-аминоизоксазолкарбоновой кислоты
KR100576740B1 (ko) 스핑고신 전구체 화합물, 그 제조방법 및 이를 이용한 스핑고신
JP3726996B2 (ja) サイトキサゾンの合成方法