RU2637312C1 - Способ получения кетона малины - Google Patents

Способ получения кетона малины Download PDF

Info

Publication number
RU2637312C1
RU2637312C1 RU2016148283A RU2016148283A RU2637312C1 RU 2637312 C1 RU2637312 C1 RU 2637312C1 RU 2016148283 A RU2016148283 A RU 2016148283A RU 2016148283 A RU2016148283 A RU 2016148283A RU 2637312 C1 RU2637312 C1 RU 2637312C1
Authority
RU
Russia
Prior art keywords
raspberry ketone
tert
ketone
raspberry
compound
Prior art date
Application number
RU2016148283A
Other languages
English (en)
Inventor
Алексей Петрович Крысин
Original Assignee
Федеральное государственное бюджетное учреждение науки Новосибирский институт органической химии им. Н.Н. Ворожцова Сибирского отделения Российской академии наук (НИОХ СО РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Новосибирский институт органической химии им. Н.Н. Ворожцова Сибирского отделения Российской академии наук (НИОХ СО РАН) filed Critical Федеральное государственное бюджетное учреждение науки Новосибирский институт органической химии им. Н.Н. Ворожцова Сибирского отделения Российской академии наук (НИОХ СО РАН)
Priority to RU2016148283A priority Critical patent/RU2637312C1/ru
Application granted granted Critical
Publication of RU2637312C1 publication Critical patent/RU2637312C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/61Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
    • C07C45/65Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by splitting-off hydrogen atoms or functional groups; by hydrogenolysis of functional groups

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Изобретение относится к способу получения кетона малины, который используют в парфюмерии в качестве душистого компонента и как отдушку лекарственных средств. Способ заключается в том, что 4-(3',5'-ди-трет-бутил-4'-гидроксифенил)-бутан-2-он и толуол нагревают с раствором AlCl3 в нитрометане при температуре 30-50°C и после разложения реакционной массы водой целевой продукт выделяют кристаллизацией органического слоя. Предлагаемый способ позволяет получить кетон малины, не содержащий трудно отделяемых от него примесей с портящим его запахом при использовании простой технологии. 3 пр.

Description

Обладая запахом и вкусом малины, содержащийся в ее плодах 4-(4'-гидроксифенил) бутан-2-он (1, он же кетон малины, зарубежные его названия: Raspberry ketone, «rheosmin», «фрамбинон». «оксифеналон»), широко используется в парфюмерии [ЕР 12624473 (2002)]в качестве душистого компонента в получении кулинарных изделий и как отдушка лекарственных средств [US 6222062(2001)].
Соединение 1 малотоксично: ЛД50>5 г/кг (крысы, перорально) [Хейфиц Л.А. Душистые вещества и другие продукты в парфюмерной промышленности. С. 157-158]. Оно - действующее начало средств косметики, используемых с целью защиты кожи человека от лейкодермитов, воспалений, эритерм, возникающих на незащищенной коже под действием солнечных лучей и радиационного облучения [WO 2008/47382 (2008)].
Обладая противовоспалительным [Jin Boo Jeong. Hyung Jin Jeong. Food and Chtv. Toxicology v.48 (2010) 2148-2153] и антимикробным действием US 6248765(2001), кетон малины может выступить как противораковое средство [Glu K.U., Inti H.S., Ozgur A., Seen Н., Tutar Y.// Turkich J. Chem v. 39, N1 (2015) P. 179-193] при лечении меланомы. Кетон малины рекомендуется при лечении диабета второго типа [US 6046227(2000) А-1] и как компонент диеты при похудении тучных лиц [Cube R.V., Vernier J.M., Hutchinson J.U., Gardntr M.F. at all.// Life Sci. v. 77 N2 (2005) P. 194-204]. Он используется в качестве промежуточного продукта в синтезе новых душистых веществ. А.И. Кузнецов, Р.Т. Аласади, И.М. Сенон, Т.М. Серова.// Изв. АН сер. хим. 2015. №4. С. 962-964.
Для внедрения в промышленность разработаны отечественные технологии получения синтетического кетона малины высшего качества, обладающего вкусом и запахом малины.
Наиболее привлекательным казался одностадийный способ получения кетона малины взаимодействием фенола и метилвинилкетона в присутствии различных кислотных катализаторов (H2SO4, Н3РО4, AlCl3, FeCl3). Из них наиболее удобным катализатором оказалась серная кислота [Г.В. Шимайская, Л.А. Хейфиц, Г.И. Молдаванская, О.И. Пахомова //Масло-жировая промышленность 1978. №3. С. 34-36]. Содержание кетона малины в реакционной массе достигает 63% при проведении реакции при -5°С в течение 3.5 часов и молярном соотношении метилвинилкетон, фенол и серная кислота 1:4:0,5.
Figure 00000001
Однако авторы от дальнейшей технологической проработки этого способа отказались из-за высокой токсичности его для работников, находящихся в контакте с высокотоксичными фенолом и метилвинилкетоном; больших потерь кетона малины в процессе его очистки до требований высшего качества (приобретения им малинового запаха и вкуса), а также из-за наличия фенола в сточных водах производства.
Современное состояние развития этого направления представлено в работе [4] Guo Hui, Zhuang Yu Wei, Cao Jian, Guo Bao/Bulletin of the Korean Chemical Society vol. 34. nb.9 (2013) p. 2594-259, в которой описана конденсация метилвинилкетона с фенолом использованием кислотного катализатора конденсации: 1-метил-3-метилимидозониум гидросульфата [BMIM]HSO4. Выход продукта конденсации не превышает 51%.
В работе [Jun-ichi Tateiwa, Hiroki Horiuchi at all. J. Org, Chem. 1994, 59, N20, 5901-5904] изучены побочные соединения (эфиры, продукты орто- замещения ароматического кольца), которые образуются из фенола в процессе синтеза кетона малины. Сам кетон малины предложено получать селективно взаимодействием фенола с 4-гидроксибутан-2-оном в присутствии катализатора Zr+4 или Fe+3 - монтмориллонита (montmorillonite). Выход продукта, очищенного методом колоночной хроматографии, составил 35%. Недостатком метода явилась невысокая степень превращения, которую не удалось улучшить увеличением времени контакта с катализатором, что связано, по-видимому, с образованием реакционной воды, уменьшающей активность катализатора.
Из-за этих недостатков способа исследователи вынужденно переходили к разработке других методов получения кетона малины без использования фенола. Известен способ получения кетона малины взаимодействием фенола с 4-гидроксибутан-2-оном в присутствии большого избытка серной кислоты ФРГ 2145308 (1971) РЖХим 23Р379П. Главный недостаток метода - необходимость тщательной очистки кетона малины от фенола, что приводит к большим потерям продукта.
Известен способ получения кетона малины в две стадии. Конденсация 4-гидроксибензальдегида (2) с ацетоном в присутствии NaOH (мольное соотношение 1:2:2-5 при комнатной температуре в течение суток) приводит к получению 4-(4-гидроксифенил)-2-бутен-3-она (3) с выходом 70-80% [Г.И. Молдаванская, А.И. Платова, О.И. Пахомова, Г.В. Шимайская, Л.А. Хейфиц. Масло-жировая промышленность 1981. №11. С. 27-28]. Как показано авторами этой работы, восстановление ненасыщенного кетона (3) водородом с образованием кетона малины (1) наиболее селективно протекает в присутствии формиатного никеля или никеля на кизельгуре.
Figure 00000002
Образование побочного спирта 4 (с восстановлением кетогруппы до спиртовой) в присутствии этих катализаторов заметно не протекает. Выход технического кетона малины по двум стадиям, исходя из гидроксибензальдегида, составляет 40%. Использование других катализаторов гидрирования соединения (3) приводит наряду с кетоном малины (1) к образованию заметных количеств соединения (4).
Получение и использование никелевого катализатора для восстановления ненасыщенного кетона (3) демонстрируется в работе [Bandarenko, М.; Kovalenko, V.: Zeitschrift fur Naturforschung. Section В. Journal of Chemical Sciences; vol. 69; nb. 8; (2014); p.885-888]. Выход чистого кетона малины на этой стадии восстановления составляет 75%. Одним из недостатков способа получения кетона малины, исходя из 4-гидроксибензальдегида, является его малая масштабность получения как побочного продукта при производстве кумарина.
Известен способ получения соединения 1 путем окисления 4-(4'-гидроксифенил)-2-бутанола (4) [Kosjek, Birgit; Stampfer, Wolfgang; Van Deursen, Ruud; Faber, Kurt; Kroutil, Wolfgang; Tetrahedron, vol. 59. N48 (2003). p. 9517-9521]. К этому способу получения кетона малины приходится практически прибегать в случае, когда используют методы восстановления 4-(4'-гидроксифенил)-1-бутен-2-она (3) с образованием побочного спирта 4. При наличии в России высокоселективных никелевых катализаторов восстановления соединения 3, открытых в работе [Г.И. Молдаванская, А.И. Платова, О.И. Пахомова, Г.В. Шимайская, Л.А. Хейфиц. Масло-жировая промышленность 1981. №11. С. 27-28], этот метод получения 1 не является актуальным.
Отмечены высокие потери кетона малины в процессе очистки его от технического образца до высокочистого (приобретения им малинового запаха и вкуса [Г.В. Шимайская, Л.А. Хейфиц. Г.И. Молдаванская, О.И. Пахомова. Масло-жировая промышленность 1978, №3. С. 34].
Известны патенты, цель которых направлена на получение высокочистьгх образцов соединения 1. Цель достигается получением из технического кетона малины 1 его метилового [Nomura Nozawa Sci. Rep. Tohoku Univ., Ser. 1.Phys. Chem. Astron. vol. 7. p. 84.9], трет-бутилового [BASF Aktiengesellschaft. Patent; US 4908481(1990)/ A-1] или кремнийсодержащего эфиров [Carlson E.E., Trader D. Patent US 2014/ 107328 (2014) А-1]. После очистки эфиров проводят их гидролиз с получением кетона малины высокой степени чистоты. Недостатком этих способов получения чистого кетона малины является введение в технологический процесс получения 1 дополнительных химических стадий. Наша цель: получение технических образцов кетона малины, не содержащих трудно отделяемых от него примесей с портящим его запахом. К ним относятся продукты орто- и мета- замещения фенола и их эфиры. Отсутствие этих примесей и самого фенола обеспечивает эффективность очистки кетона малины его кристаллизацией.
Цель достигается применением в качестве исходного соединения синтеза кетона малины доступного и дешевого 2,6-ди-трет-бутилфенола, обеспечивающего любой масштаб производства соединений, полученных на его основе. Наличие в этом соединении в орто- положениях трет-бутильных групп блокирует образование эфиров и побочных продуктов: орто - и мета- замещения ароматического кольца.
Процесс получения кетона малины осуществляется по схеме:
Figure 00000003
На первой стадии 2,6- ди-трет-бутилфенол (5) нагревают с 4- N,N-диэтиламино-бутан-2-оном в присутствии катализаторов: калиевых или натриевых фенолятов соединений 5 или 6. Процесс получения соединения 6 протекает при нагревании без образования побочных продуктов и сопровождается высвобождением диэтиламина из зоны реакции, что очень важно для сохранения ее реакционной способности. Из реакционной массы перегонкой выделяют последовательно соединение 5, а затем целевой продукт 6, который очищают от следов исходного соединения кристаллизацией. Кубовый остаток, содержащий калиевую соль соединения 6, используют при его повторных наработках в качестве катализатора. В этом случае исключается процесс предварительного синтеза катализатора, а получение соединения 6 реализуется без образования сточных вод.
Де- трет-бутилирование соединения 6 проводят в токе инертного газа толуолом в нитрометане под действием сухого хлорида алюминия при температуре 30-50°С в течение 0,5 - 3-х часов. Методом ГЖХ контролируют отсутствие в реакционной массе фенолов, содержащих трет-бутильные группы. По окончании времени протекания процесса из реакционной массы отгоняют под вакуумом нитрометан, органический слой отделяют и нейтрализуют, промывая теплой водой.
Из органического слоя (кетон малины в растворе толуола и трет-бутилтолуола) продукт выпадает с содержанием 95-98% основного вещества. При необходимости получения чистого вещества 1 проводят повторную кристаллизацию. Выход кетона малины на этой стадии составляет 80%. Параллельно мы применили и рекомендованный ранее метод очистки, который заключается в перегонке технического кетона малины с последующей двойной кристаллизацией. В этом случае получен кетон малины высокой степени чистоты с выходом 50%. Как видим, перегонка и двойная кристаллизация существенно уменьшают выход продукта.
Получение кетона малины на основе очищенного от исходного 2.6-ди-трет-бутилфенола образца соединения 6 существенно облегчает очистку соединения 1 от образующихся трет-бутилфенолов из примеси соединения 5 в продукте 6 в ходе их де- трет-бутилирования.
Способ отличается простой технологией, доступностью сырья и упрощенной методикой очистки продукта от примесей и демонстрируется следующими примерами.
Пример 1
4-(N,N-диэтиламин)бутан-2-он. В стальной вращающийся автоклав помещают 253 мл (3.44 мол) ацетона, 100 г (3.33 мол) параформа, 400 г (3.65 мол) солянокислого диэтиламина, 20 мл 36%-ной соляной кислоты и 100 мл воды, закрывают автоклав и при его вращении содержимое нагревают 1.5 часа при температуре 100°С. Из реакционной массы под вакуумом отгоняют ацетон и 90 г воды, остаток охлаждают до комнатной температуры и осторожно в течение 15 минут переливают в 2-литровую емкость, содержащую 160 г NaOH в виде мелких шариков. В емкость добавляют 0.5 кг NaCl и отделяют органический слой. Неорганический остаток отжимают. Всего получают 365 г 95%-ного 4-(N,N,-диэтиламин-2- бутанона (2.5 мол). Продукт хранят в холодильнике при температуре не выше 4°С.
Пример 2.
4-(2',6'-ди-трет-бутил-
Figure 00000004
гидроксифенил)-бутан-2-он (6). В перегонную колбу с дефлегматором длиной 10 см, капельной воронкой, широким капилляром, доходящим до дна колбы, приемным устройством с холодильником с выходом на вакуумную систему, помещают 70 г (0.34 мол) 2.6-ди-трет-бутилфенола 5, 7 г растертого КОН и 100 мл диметилформамида (ДМФА). Содержимое доводят до кипения и отгоняют 8 г фракции, содержащей преимущественно воду, образующееся в ходе синтеза фенолята 5. Затем при слабом кипении реакционной массы в реактор под вакуумом 70 мм рт.ст. в течение 2.5 часа прикапывают в токе азота 70 г 4-(N,N-диэтиламин)бутан-2-она с одновременной отгонкой в приемник диэтиламина. После чего реакционную массу выдерживают еще 0.5 часа. В нейтральной пробе реакционной массы по данным ГЖХ кроме растворителя содержится 80% продукта и 20% 2.6-ди-трет-бутилфенола.
Из реактора под вакуумом 5-7 мм рт.ст. отгоняют последовательно 50 г ДМФА, 15.5 г (0.075 мол) 2.6-ди-трет-бутилфенола и в интервале 170-180°С/5 мм рт.ст. собирают фракцию 50.5 г (0.19 мол) 4-(2',6'-ди-трет-бутил-
Figure 00000004
гидроксифенил)-бутан-2-она. Кристаллизацией ее из спирта получают чистый образец 6 с т. пл. 45-46°С. Точка плавления и спектральные характеристики соответствуют литературным данным образца, полученного нами ранее взаимодействием 2.6-ди-трет-бутилфенола с метилвинилкетоном [Т.Ф. Титова, А.П. Крысин, М.М. Шакиров, В.И. Маматюк. ЖОрХ. Т. 20 №2 (1984) С. 331-338].
При повторной наработке соединения 6 вместо калиевой соли 2.6-ди-трет-бутилфенола, приготовляемой в качестве катализатора, используют полученный ранее кубовый остаток перегонки реакционной массы, состоящей в основном из калиевой соли 4-(2',6'-ди-трет-бутил-
Figure 00000004
-гидроксифенил)-бутан-2-она. Этот подход исключает стадию приготовления катализатора, исходя из соединения 5, и увеличивает выход продукта 1. Процесс получения продукта 6 реализуется без образования сточных вод.
Последовательность получения кетона малины демонстрируется на следующем примере.
Пример 3.
4-(4'гидроксифенил)-бутан-2-он, 1. В трехгорлую колбу вместимостью 0.5 л с мешалкой, обратным холодильником капельной воронкой и вводом инертного газа загружают 20 г. AlCl3 и 40 мл нитрометана и при перемешивании получают прозрачный раствор. Из капельной воронки к нему в течение 0.5 часа прикапывают раствор 50 г 4-(2',6'-ди-трет-бутил-
Figure 00000004
гидроксифенил)-бутан-2-она (0.17 мол) в 100 мл толуола, следя за тем, чтобы температура реакционной массы не превышала 50°С. Реакционную массу выдерживают 2 часа при температуре 30-50°С и выливают на 0.5 кг льда. Органический слой отделяют и из него перегонкой выделяют 35 г нитрометана. Из кубового остатка (кетон малины в толуоле и трет-бутилтолуоле) выпадает светлый кристаллический осадок 23.5 г (0.145 мол) 95%-ного 4-(
Figure 00000004
-гидроксифенил)-бутан-2-она, который кристаллизуют из толуола, получая 20 г (0.21 мол) кетона малины с запахом малины с т.пл. 83-85°С.

Claims (1)

  1. Способ получения кетона малины, отличающийся тем, что 4-(3',5'-ди-трет-бутил-4'-гидроксифенил)-бутан-2-он и толуол нагревают с раствором AlCl3 в нитрометане при температуре 30-50°C и после разложения реакционной массы водой продукт выделяют кристаллизацией органического слоя.
RU2016148283A 2016-12-08 2016-12-08 Способ получения кетона малины RU2637312C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016148283A RU2637312C1 (ru) 2016-12-08 2016-12-08 Способ получения кетона малины

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016148283A RU2637312C1 (ru) 2016-12-08 2016-12-08 Способ получения кетона малины

Publications (1)

Publication Number Publication Date
RU2637312C1 true RU2637312C1 (ru) 2017-12-04

Family

ID=60581441

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016148283A RU2637312C1 (ru) 2016-12-08 2016-12-08 Способ получения кетона малины

Country Status (1)

Country Link
RU (1) RU2637312C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113666814A (zh) * 2021-09-14 2021-11-19 江西开源香料有限公司 一种高纯度覆盆子酮的合成方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4908481A (en) * 1980-04-22 1990-03-13 Basf Aktiengesellschaft Preparation of 1-(4-hydroxy-phenyl)-butan-3-one and novel intermediates
CN104193607A (zh) * 2014-09-10 2014-12-10 曹仪山 一种覆盆子酮的合成方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4908481A (en) * 1980-04-22 1990-03-13 Basf Aktiengesellschaft Preparation of 1-(4-hydroxy-phenyl)-butan-3-one and novel intermediates
CN104193607A (zh) * 2014-09-10 2014-12-10 曹仪山 一种覆盆子酮的合成方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
M.Bandarenko et al, Synthesis of Raspberry and Ginger Ketones by Nickel Boride-catalyzed Hydrogenation of 4-Arylbut-3-en-2-ones. Zeitschrift fur Naturforschung. Section B. Journal of Chemical Sciences, 2014, 69(8), 885-888. *
M.Bandarenko et al, Synthesis of Raspberry and Ginger Ketones by Nickel Boride-catalyzed Hydrogenation of 4-Arylbut-3-en-2-ones. Zeitschrift fur Naturforschung. Section B. Journal of Chemical Sciences, 2014, 69(8), 885-888. Колтунов К.Ю. и др. Ионное гидрирование α , β -кетонов циклогексаном в присутствии галогенидов алюминия. ЖОрХ, 2001, том 37, N 11, 1610-1617. *
Колтунов К.Ю. и др. Ионное гидрирование α , β -кетонов циклогексаном в присутствии галогенидов алюминия. ЖОрХ, 2001, том 37, N 11, 1610-1617. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113666814A (zh) * 2021-09-14 2021-11-19 江西开源香料有限公司 一种高纯度覆盆子酮的合成方法
CN113666814B (zh) * 2021-09-14 2024-04-23 江西开源香料有限公司 一种高纯度覆盆子酮的合成方法

Similar Documents

Publication Publication Date Title
AU745789B2 (en) A method for producing para-menthane-3,8-diol
Baran Method for the cleavage of osmate esters
JP4587549B2 (ja) 1−ハロゲノ−3−1−メントキシプロパン−2−オール
JP3766591B2 (ja) シクロヘキセノン長鎖アルコール及びこれを含有する医薬
AU3433502A (en) Method for producing 3-1-menthoxypropane-1,2-diol
RU2727202C2 (ru) Улучшенный синтез гонокиола
RU2637312C1 (ru) Способ получения кетона малины
ES2754351T3 (es) Proceso
EP0214426B1 (en) Intermediates in the synthesis of carboxylic acids
Kumar et al. Antimicrobial activity of the major isolates of mentha oil and derivatives of menthol
US4517382A (en) 1-Formyl-tri- and tetramethyl-cyclohex-1-en-3-one oximes
KR101038184B1 (ko) 화장 활성물질의 제조 방법
EP2373606B1 (en) Processes for epimerizing cyclohexenyl ketones with subsequent aldol condensation to produce fragrance compounds
RU2478606C1 (ru) Способ получения 1-(2-метил-4-феноксифенил)-бутан-1,3-диона
JP5220403B2 (ja) カテコール基が導入されたジオキサビシクロ[3.3.0]オクタン誘導体の製造方法
Uchil et al. Selective reductions of substituted α-(1, 2, 4-triazol-l-yl) chalcones with NaBH 4 and Al-isopropoxide: Synthesis of substituted (±) α-(4-chlorophenyl)-β-(phenylmethylene)-1H-1, 2, 4-triazole-l-ethanols having potential bacteriostatic and agro-based fungicidal activity
JP5080776B2 (ja) エステル化合物
JP2010065014A (ja) 抗アクネ菌化合物及びその製造方法
Conant et al. GAMMA-CHLOROPROPYL-PHENYLKETONE
KR20050114238A (ko) 2-(l-멘톡시)에탄올류의 제조 방법
SU884562A3 (ru) Способ получени вторичных амидов дихлоруксусной кислоты
JPS6033371B2 (ja) トランス−p−メンタン−2,3−ジオ−ルの製造方法
US8093432B2 (en) Processes for epimerizing cyclohexenyl ketones with subsequent aldol condensation to produce fragrance compounds
KR100468237B1 (ko) 멘톨의 제조방법
Hochstetler et al. Hydrochlorination of thujopsene

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20181209