RU2636030C2 - Питательная среда для ввода и регенерации меристем винограда в условия in vitro - Google Patents
Питательная среда для ввода и регенерации меристем винограда в условия in vitro Download PDFInfo
- Publication number
- RU2636030C2 RU2636030C2 RU2016104682A RU2016104682A RU2636030C2 RU 2636030 C2 RU2636030 C2 RU 2636030C2 RU 2016104682 A RU2016104682 A RU 2016104682A RU 2016104682 A RU2016104682 A RU 2016104682A RU 2636030 C2 RU2636030 C2 RU 2636030C2
- Authority
- RU
- Russia
- Prior art keywords
- sulfate
- nitrate
- sodium
- meristems
- calcium
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01H—NEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
- A01H4/00—Plant reproduction by tissue culture techniques ; Tissue culture techniques therefor
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Developmental Biology & Embryology (AREA)
- Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Cell Biology (AREA)
- Botany (AREA)
- Environmental Sciences (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
Abstract
Изобретение относится к сельскохозяйственной биотехнологии. Изобретение представляет собой питательную среду для ввода меристем винограда в условия in vitro, содержащую аммоний азотнокислый, калий азотнокислый, кальций азотнокислый, кальций хлористый, магний сернокислый, натрий фосфорнокислый, железо сернокислое, этилендиаминотетраацетат натрия, борную кислоту, марганец сернокислый, цинк сернокислый, калий йодистый, натрий молибденовокислый, медь сернокислую, кобальт хлористый, миоинозит, тиамин, пиридоксин, 6-бензиламинопурин, сахарозу, агар, воду при следующем соотношении компонентов, мг/л: аммоний азотнокислый 350-450; калий азотнокислый 1000-1200; кальций азотнокислый 400-500; кальций хлористый 50-70; магний сернокислый 300-350; натрий фосфорнокислый 150-200; железо сернокислое 27,8-30,0; этилендиаминотетраацетат натрия 37,3-40,0; борная кислота 6,0-6,4; марганец сернокислый 22,0-22,6; цинк сернокислый 8,0-9,2; калий йодистый 0,40-0,80; натрий молибденовокислый 0,2-0,3; медь сернокислая 0,02-0,03; кобальт хлористый 0,02-0,03; миоинозит 50-100; тиамин 0,2-0,5; пиридоксин 0,2-0,5; 6-бензиламинопурин 0,2-0,5; сахароза 20000-30000; агар 5000-6000; вода остальное до 1,0 л. Изобретение обеспечивает повышение приживаемости и регенерации меристем, способствует пропорциональному уменьшению расходования минеральных солей. 1 ил., 2 табл.
Description
Изобретение относится к сельскому хозяйству, в частности к биотехнологии, и может быть использовано в питомниководстве при получении оздоровленного посадочного материала винограда при помощи методов клонального микроразмножения.
Известны питательные среды различного минерального состава, предназначенные для культивирования ягодных и плодовых растений in vitro (Шипунова А.А. Подбор минеральной основы питательных сред для клонального микроразмножения жимолости в производственных условиях / А.А. Шипунова, В.А. Высоцкий / Плодоводство и ягодоводство России: Сб. нуч. работ / ВСТИСП. - М., 2001. Т. VII. С. 158-163). При этом наиболее часто для введения и оздоровления плодовых и ягодных культур при помощи метода апикальных меристем в культуре in vitro исследователи используют пропись, разработанную Мурасиге и Скуга (МС) [Murashige Т., Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures // Physiol. Plant. - 1962. - vol. 5., 95 - P. 473-497). Для эффективного применения минеральной основы (МС) оптимизируют состав среды, изменяя гормональный фон, а также вводя различные добавки в виде аминокислот, витаминов, полисахаридов (патент РФ №2063682), препаратов нового поколения (патент РФ №2265319). Значительно реже изменяют минеральный состав. При этом минеральный состав среды Мурасиге и Скуга (МС) для ввода меристем растений в культуру in vitro обладает рядом недостатков, так как разрабатывался для культивирования каллусов и каллусных клеток и учитывает, прежде всего, условия для их развития. Концентрация минеральных солей в данной среде 4,5 г/л, при этом для поглощения растворенных в ней элементов растению требуется преодолевать осмотическое давление порядка 2,5 атмосфер. В нашем случае это не растение, а предельно малый участок апикальной меристемы. Соотношение и концентрации макроэлементов в среде не учитывают потребности в них растений винограда, что в короткий отрезок времени при неравномерном их поглощении растением приводит к сдвигу рН и, как следствие, требует частых пересадок конгломератов растений на свежую питательную среду.
Наиболее близким к предлагаемому решению является питательная среда Ml, разработанная для ввода растений винограда в культуру in vitro П.Я. Галодригой и др. (Голодрига П.Я. Методические рекомендации по клональному микроразмножению винограда / П.Я. Голодрига и др. / Ялта: Издательская группа ВНИИ ВиПП «Магарач», 1986 - 56 с.). Минеральной основой, которой является среда (МС), к составу которой добавлено 170 мг/л NaH2PO4, остальные макро- и микроэлементы по прописи, витамины: мезоинозит 75 мг, парааминобензойная кислота 5 мг/л, тиамин 10 мг/л, пиридоксин 5 мг/л, никотиновая кислота 4 мг/л, аминокислоты: глутамин 50 мг/л, глицин 10 мг/л, 6-бензиладенин 1 мг/л, аденин сернокислый 80 мг/л, сахароза 30 г/л.
Недостатком данной среды для ввода является высокое осмотическое давление раствора из-за большой концентрации макроэлементов - 4,7 г/л, что при введении меристем предельно малых размеров (для винограда 0,1÷0,2 мм) негативно сказывается на их регенерации. Кроме того, высокое содержание аммиачной формы азота, хлора, несбалансированное содержания макроэлементов часто провоцирует рост каллусной ткани, преждевременный некроз и старение эксплантов.
Задачей, на решение которой направлено изобретение, является создание питательной среды для ввода меристем винограда в условия in vitro, способствующей повышению приживаемости и надежности регенерации меристем у различных сортов винограда, уменьшению расходования минеральных солей, снижению себестоимости технологии на этапе ввода и оздоровления в культуре in vitro.
Задача решается с помощью оптимизации концентраций и соотношения макросолей. Питательная среда для ввода и регенерации меристем винограда в условия in vitro содержит аммоний азотнокислый, калий азотнокислый, кальций азотнокислый, кальций хлористый, магний сернокислый, натрий фосфорнокислый, железо сернокислое, этилендиаминотетраацетат натрия, борную кислоту, марганец сернокислый, цинк сернокислый, калий йодистый, натрий молибденовокислый, медь сернокислую, кобальт хлористый, миоинозит, тиамин, пиридоксин, 6-бензиламинопурин, сахарозу, агар, воду при следующем соотношении компонентов, мг/л: аммоний азотнокислый 350-450; калий азотнокислый 1000-1200; кальций азотнокислый 400-500; кальций хлористый 50-70; магний сернокислый 300-350; натрий фосфорнокислый 150-200; железо сернокислое 27,8-30,0; этилендиаминотетраацетат натрия 37,3-40,0; борная кислота 6,0-6,4; марганец сернокислый 22,0-22,6; цинк сернокислый 8,0-9,2; калий йодистый 0,40-0,80; натрий молибденовокислый 0,2-0,3; медь сернокислая 0,02-0,03; кобальт хлористый 0,02-0,03; миоинозит 50-100; тиамин 0,2-0,5; пиридоксин 0,2-0,5; 6-бензиламинопурин 0,2-0,5; сахароза 20000-30000; агар 5000-6000; вода остальное до 1,0 л.
Заявленное решение отличается от прототипа тем, что в 1,8-2 раза снижена концентрация солей в питательной среде, при этом изменено и сбалансировано соотношение этих солей с учетом потребностей виноградного растения. Так изменено соотношение азота и калия, содержание хлора уменьшено в 9 раз, изменено соотношение фосфора и магния до оптимальных величин. В качестве источника фосфора используется только NaH2PO4, что способствует повышению буферных свойств питательной среды, предотвращая снижение значений рН, которое происходит после стерилизации среды в автоклаве и культивирования пробирочных растений. Кроме того, в среде применяются два источника кальция CaCl2 и Ca(NO3)2⋅4H2O, что положительно влияет на приживаемость и регенерацию меристем предельно малых размеров, при этом сниженная концентрация CaCl2 является дополнительным источником Са и Cl для растений винограда, а также помогает предотвратить повышение значений рН выше оптимальных значений. Эти отличия позволяют сделать вывод о соответствии заявленного решения критерию "новизна".
Заявленное решение обладает изобретательским уровнем, так как не является очевидным для специалистов питомниководов и биотехнологов, а является продуктом творческой деятельности автора изобретения.
Заявленное техническое решение соответствует и другому требуемому критерию изобретения - промышленному применению, что подтверждено экспериментальными данными, полученными при реализации способа.
На Фиг. 1 представлены сравнительные характеристики разработанной питательной среды и прототипа по соотношению макроэлементов относительно азота (А) и концентрации макроэлементов по действующему веществу (Б).
Предлагаемое снижение концентрации макросолей и оптимизация их соотношения пропорционально уменьшают высокое осмотическое давление в питательной среде и способствуют более сбалансированному поступлению питательных элементов в ткани меристем, что положительно сказывается на их развитии после высадки в условия in vitro.
Пример осуществления способа.
В питательную среду вносят следующие компоненты (концентрации в мг), макроэлементы: NH4NO3 - 350-450; KNO3 - 1000-1200; NaH2PO4 - 150-200; MgSO4⋅7H2O - 320-340, Ca(NO3)2⋅4H2O - 400-500; CaCl2 50-80; мезоэлементы: FeSO4⋅7H2O - 27,8-30,0; Na2 ЭДТА⋅2H2O - 37,3-40,0; микроэлементы: H3BO3 - 6,0-6,4; MnSO4⋅4H2O - 22,0-22,6; ZnSO4⋅7H2O - 8,0-9,2; KJ - 0,40-0,80; Na2MoO4 - 0,2-0,3; CuSO4⋅5H2O - 0,02-0,03; CoCl2⋅6H2O - 0,02-0,03; витамины: миоинозит - 50-100; тиамин и пиридоксин, по 0,2-0,5 мг/л; 6-бензиламинопурин 0,2-0,5; сахароза - 20000-30000; агар - 5500-6500; остальное бидистиллированная вода до 1000,0.
В начале объем раствора доводят до 0,5 л, устанавливают pH 5,6-5,7 и добавляют 0,5 л воды с агаром, предварительно нагретой до кипения, для полного расплавления и растворения агара. Питательную среду разливают по сосудам и автоклавируют при давлении 0,7-1,0 атм (температура 119-121°C) в течение 20-25 мин. После остывания среды осуществляют высадку эксплантов.
Испытание разработанной прописи макроэлементов показало эффективность ее применения на большинстве сортов. При этом наибольший эффект получен на сортах Илья и Магия. Таким образом, установлено, что оптимизация концентраций и соотношения в питательной среде: NH4 и NO3, общего N и K, K и Ca, P и Mg, и уменьшение содержания Cl, а также добавление оптимальной концентрации Na - способствует повышению адаптивности растений винограда к условиям культивирования in vitro до 40% (в зависимости от сорта).
Из приведенных данных в Табл. 1 видно, что кратное уменьшение стандартной прописи Мурасиге и Скуга для большинства сортов недостаточно. При снижении общей концентрации макросолей среды до 1/2 такие макроэлементы, как фосфор и магний, оказываются в питательной среде в недостаточном количестве для полноценного развития меристем. При этом все еще достаточно высокая концентрация аммиачной формы азота в нитрате аммония (NH4HO3) способствует развитию некрозов и каллусной ткани.
Испытание разработанной прописи макроэлементов на фоне прототипа (Табл. 2) показало эффективность ее применения на различных сортах винограда. В вариантах с предложенной средой была лучше приживаемость меристем, стабильно увеличивалось число хорошо развитых меристем, а также снижалось число отбракованных эксплантов из-за некроза или отсутствия развития. При этом наибольший эффект получен на сортах Илья и Магия, которые при использовании прототипа регенерировали слабо, проявляя сортовую специфичность к культивированию in vitro.
Таким образом, предложена новая рецептура макроэлементов для питательной среды на этапе ввода растений винограда в культуру in vitro с учетом потребностей виноградного растения. Оптимизированы концентрации и соотношения в питательной среде: NH4 и NO3, общего N и K, K и Ca, P и Mg, уменьшено содержание Cl в 9 раз, все это способствует повышению адаптивности растений винограда к условиям культивирования in vitro в среднем по сортам на 20-25%.
Использование предложенной питательной среды для ввода и регенерации меристем винограда в условия in vitro обеспечивает по сравнению с существующей следующие преимущества:
1. Повышается приживаемость и качество меристем при вводе в культуру in vitro.
2. Снижается проявление сортовой специфичности к культуре in vitro, предложенная среда дает стабильные результаты на большинстве сортов.
3. Снижается количество отбракованных меристем из-за некроза и отсутствия развития.
4. Снижается себестоимость технологии за счет уменьшения концентраций применяемых минеральных солей в питательной среде в 1,8-2 раза.
Claims (2)
- Питательная среда для ввода меристем винограда в условия in vitro, содержащая аммоний азотнокислый, калий азотнокислый, кальций азотнокислый, кальций хлористый, магний сернокислый, натрий фосфорнокислый, железо сернокислое, этилендиаминотетраацетат натрия, борную кислоту, марганец сернокислый, цинк сернокислый, калий йодистый, натрий молибденовокислый, медь сернокислую, кобальт хлористый, миоинозит, тиамин, пиридоксин, 6-бензиламинопурин, сахарозу, агар, воду при следующем соотношении компонентов, мг/л:
-
Аммоний азотнокислый 350-450 Калий азотнокислый 1000-1200 Кальций азотнокислый 400-500 Кальций хлористый 50-70 Магний сернокислый 300-350 Натрий фосфорнокислый 150-200 Железо сернокислое 27,8-30,0 Этилендиаминотетраацетат натрия 37,3-40,0 Борная кислота 6,0-6,4 Марганец сернокислый 22,0-22,6 Цинк сернокислый 8,0-9,2 Калий йодистый 0,40-0,80 Натрий молибденовокислый 0,2-0,3 Медь сернокислая 0,02-0,03 Кобальт хлористый 0,02-0,03 Миоинозит 50-100 Тиамин 0,2-0,5 Пиридоксин 0,2-0,5 6-Бензиламинопурин 0,2-0,5 Сахароза 20000-30000 Агар 5000-6000 Вода остальное до 1,0 л
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016104682A RU2636030C2 (ru) | 2016-02-11 | 2016-02-11 | Питательная среда для ввода и регенерации меристем винограда в условия in vitro |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016104682A RU2636030C2 (ru) | 2016-02-11 | 2016-02-11 | Питательная среда для ввода и регенерации меристем винограда в условия in vitro |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2016104682A RU2016104682A (ru) | 2017-08-16 |
RU2636030C2 true RU2636030C2 (ru) | 2017-11-17 |
Family
ID=59633076
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2016104682A RU2636030C2 (ru) | 2016-02-11 | 2016-02-11 | Питательная среда для ввода и регенерации меристем винограда в условия in vitro |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2636030C2 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2793791C1 (ru) * | 2022-06-06 | 2023-04-06 | Федеральное государственное бюджетное научное учреждение "Северо-Кавказский федеральный научный центр садоводства, виноградарства, виноделия" | Питательная среда для повышения синтеза стильбенов в каллусной культуре винограда |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2265319C2 (ru) * | 2003-09-11 | 2005-12-10 | ГНУ Всероссийский НИИ виноградарства и виноделия им. Я.И. Потапенко (ВНИИВиВ) | Способ регенерации меристем |
-
2016
- 2016-02-11 RU RU2016104682A patent/RU2636030C2/ru not_active IP Right Cessation
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2265319C2 (ru) * | 2003-09-11 | 2005-12-10 | ГНУ Всероссийский НИИ виноградарства и виноделия им. Я.И. Потапенко (ВНИИВиВ) | Способ регенерации меристем |
Non-Patent Citations (5)
Title |
---|
БУГАЕНКО Л.А. и др. Морфогенез винограда в культуре in vitro. Ученые записки Таврического национального университета им. В.И. Вернадского, серия "Биология, химия", том 24 (63), 2011, N 2, с.73-82, найдено в Интернет 12.05.2017, адрес сайта http: sn-biol chem.cfuv.ru. * |
ГОЛОДРИГА П.Я. и др. Методические рекомендации по клональному микроразмножению винограда, Ялта, 1986, с.19-20. * |
ГОЛОДРИГА П.Я. и др. Методические рекомендации по клональному микроразмножению винограда, Ялта, 1986, с.19-20. БУГАЕНКО Л.А. и др. Морфогенез винограда в культуре in vitro. Ученые записки Таврического национального университета им. В.И. Вернадского, серия "Биология, химия", том 24 (63), 2011, N 2, с.73-82, найдено в Интернет 12.05.2017, адрес сайта http: sn-biol chem.cfuv.ru. МЕДВЕДЕВА Н.И. Особенности микроклонального размножения интродуцентов и клонов винограда, Научный журнал КубГАУ, N 40 (6), 2008, с.1-18. Найдено в Интернет 12.05.2017, адрес сайта http: ej. Kubagro.ru. * |
МЕДВЕДЕВА Н.И. Особенности микроклонального размножения интродуцентов и клонов винограда, Научный журнал КубГАУ, N 40 (6), 2008, с.1-18. * |
Найдено в Интернет 12.05.2017, адрес сайта http: ej. Kubagro.ru. * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2793791C1 (ru) * | 2022-06-06 | 2023-04-06 | Федеральное государственное бюджетное научное учреждение "Северо-Кавказский федеральный научный центр садоводства, виноградарства, виноделия" | Питательная среда для повышения синтеза стильбенов в каллусной культуре винограда |
Also Published As
Publication number | Publication date |
---|---|
RU2016104682A (ru) | 2017-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Pullman et al. | Pine somatic embryogenesis: analyses of seed tissue and medium to improve protocol development | |
CN105104209B (zh) | 霍山石斛组织培养一步成苗的方法及使用的营养液的配方 | |
Davis et al. | Clonal multiplication of carnation by micropropagation | |
Ibrahim et al. | Nutrient factors affecting in vitro cultivation of Stevia rebaudiana | |
Dhital et al. | Microtuberization of potato (Solanum tuberosum L.) as influenced by supplementary nutrients, plant growth regulators, and in vitro culture conditions | |
RU2636030C2 (ru) | Питательная среда для ввода и регенерации меристем винограда в условия in vitro | |
CN108812329A (zh) | 一种无nh4no3植物组织培养用培养基 | |
CN108401900B (zh) | 一种马铃薯茎段的繁殖培养基及应用方法 | |
Islam et al. | Factors affecting bulblet growth of'Lilium sp. in vitro'and'in vivo' | |
CN105393916A (zh) | 一种疣粒野生稻离体幼胚培养基 | |
Nadirah et al. | POME: An alternative nutrient source for bio-organic plant tissue culture media | |
RU2676127C2 (ru) | Питательная среда для укоренения побегов винограда в культуре in vitro | |
CN108353789B (zh) | 一种葡萄果实愈伤组织的诱导方法及其培养基 | |
US10829421B2 (en) | Production of improved fortifier from beer yeast water | |
CN109757375B (zh) | 一种降香黄檀的组培苗继代增殖培养基 | |
CN1586153A (zh) | 一种快速繁殖穗花狐尾藻的方法 | |
CN106520662A (zh) | 一种用于肉苁蓉细胞的合成培养基 | |
RU2440414C1 (ru) | Питательная среда для микроразмножения лимонника китайского (schisandra chinensis (turcz.) baill.) в условиях in vitro | |
Raeva-Bogoslovskaya et al. | Some aspects of clonal micropropagation of Amelanchier Medik. genus representatives | |
RU2583304C1 (ru) | Способ отбора in vitro кислотоустойчивых форм клевера лугового | |
Kashyap et al. | Effect of vermicompost extracts on the in vitro micropropagation of Bacopa monnieri. | |
RU2751114C1 (ru) | Оптимизированная питательная среда для укоренения побегов винограда в культуре in vitro, сорт "Августин" | |
Al-Zubaydi et al. | Effect of sodium chloride and proline on embryo formation and germination through in vitro micropropagation of date palm (Phoenix dactylifera L.) cv. Barhee [II] | |
RU2486237C1 (ru) | Питательная среда для размножения яблони и груши in vitro | |
RU2746067C1 (ru) | Оптимизированная питательная среда для укоренения побегов винограда в культуре in vitro, сорт "Надежда АЗОС" |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20190212 |