RU2634733C2 - Способ и устройство для определения параметров матрицы рассеяния испытуемого устройства преобразования частоты - Google Patents

Способ и устройство для определения параметров матрицы рассеяния испытуемого устройства преобразования частоты Download PDF

Info

Publication number
RU2634733C2
RU2634733C2 RU2014130672A RU2014130672A RU2634733C2 RU 2634733 C2 RU2634733 C2 RU 2634733C2 RU 2014130672 A RU2014130672 A RU 2014130672A RU 2014130672 A RU2014130672 A RU 2014130672A RU 2634733 C2 RU2634733 C2 RU 2634733C2
Authority
RU
Russia
Prior art keywords
signal
frequency conversion
ports
phase
input
Prior art date
Application number
RU2014130672A
Other languages
English (en)
Other versions
RU2014130672A (ru
RU2634733C9 (ru
Inventor
Андреас ПАЕХ
Георг ОРТЛЕР
Штэффэн НАЙДХАРДТ
Original Assignee
Родэ Унд Шварц Гмбх Унд Ко. Кг
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Родэ Унд Шварц Гмбх Унд Ко. Кг filed Critical Родэ Унд Шварц Гмбх Унд Ко. Кг
Publication of RU2014130672A publication Critical patent/RU2014130672A/ru
Publication of RU2634733C2 publication Critical patent/RU2634733C2/ru
Application granted granted Critical
Publication of RU2634733C9 publication Critical patent/RU2634733C9/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/28Measuring attenuation, gain, phase shift or derived characteristics of electric four pole networks, i.e. two-port networks; Measuring transient response
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/28Measuring attenuation, gain, phase shift or derived characteristics of electric four pole networks, i.e. two-port networks; Measuring transient response
    • G01R27/32Measuring attenuation, gain, phase shift or derived characteristics of electric four pole networks, i.e. two-port networks; Measuring transient response in circuits having distributed constants, e.g. having very long conductors or involving high frequencies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2832Specific tests of electronic circuits not provided for elsewhere
    • G01R31/2836Fault-finding or characterising
    • G01R31/2839Fault-finding or characterising using signal generators, power supplies or circuit analysers
    • G01R31/2841Signal generators

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Measuring Frequencies, Analyzing Spectra (AREA)

Abstract

Изобретение относится к способу и устройству для определения параметров матрицы рассеяния испытуемого устройства преобразования частоты. Устройство для определения параметров матрицы рассеяния испытуемого устройства преобразования частоты с использованием схемного анализатора определяет системные ошибки, возникающие между отдельными портами (1, 2) испытуемого устройства (3) преобразования частоты и портами (4, 5) схемного анализатора (6), соединенными с портами (1, 2) испытуемого устройства (3) преобразования частоты, и измеряет входные и выходные сигналы, имеющие системную ошибку соответственно в отдельных портах (1, 2) испытуемого устройства (3) преобразования частоты. После этого входные и выходные сигналы со скорректированной системной ошибкой соответственно в отдельных портах (1, 2) испытуемого устройства (3) преобразования частоты определены посредством взвешивания входных и выходных сигналов с системной ошибкой соответственно в отдельных портах (1, 2) испытуемого устройства (3) преобразования частоты с соответствующими вычисленными системными ошибками, а параметры матрицы рассеяния испытуемого устройства (3) преобразования частоты определены по входным и выходным сигналам со скорректированной системной ошибкой соответственно в отдельных портах (1, 2) испытуемого устройства (3) преобразования частоты. Фаза подлежащего измерению сигнала, возбуждающая соответственно порт (1, 2) испытуемого устройства (3) преобразования частоты, инициализирована одинаковым образом при каждом измерении. Технический результат заключается в повышении точности измерений. 2 н. и 18 з.п. ф-лы, 5 ил.

Description

Изобретение относится к способу и устройству для определения параметров матрицы рассеяния испытуемого устройства преобразования частоты.
Для описания электрических свойств частотно-преобразующего элемента, предпочтительно смесителя, определяют параметры матрицы рассеяния частотно-преобразующего элемента с помощью схемного анализатора. На основе сопоставлений ошибок в портах испытуемого устройства, или соответственно схемного анализатора, а также неидеального поведения схемного анализатора, системные ошибки при сравнении с соответствующими правильно измеренными значениями накладываются на зарегистрированные измеренные значения.
Эти системные ошибки должны быть определены заранее при калибровке, а затем использованы для компенсации системных ошибок измеренных значений, зарегистрированных для определения точно измеренных значений. Для этого могут быть использованы обычные одно- или двухпортовые модели ошибок, например известны методы семи, девяти или десяти параметров. Ниже, в качестве примера показано использование метода семи параметров, либо соответственно использование двух методов трех и четырех параметров.
В этом случае, системными ошибками, определяемыми для каждого подлежащего измерению порта i испытуемого устройства преобразования частоты, являются направленность Di, согласование источника Si, прямая трассировка Fi и корреляция отражений Ri, показанные на фиг. 1 для испытуемого устройства с 2-мя портами. Соотношение между измеренными значениями входной волны
Figure 00000001
или соответственно выходной волны
Figure 00000002
, и точным значением входной ai или соответствующей выходной волны bi определенных системных ошибок получено по формуле (1) с помощью матрицы Gi системных ошибок, включающей в себя отдельные измеренные системные ошибки по формуле (2)
Figure 00000003
Значения входных/выходных волн представляют собой частотно-зависимые сигналы и, для простоты, именуются ниже входными/выходными сигналами.
Матричные элементы матрицы
Figure 00000004
определенных системных ошибок, отличные, за исключением неизвестного комплексного коэффициента di, от точных системных ошибок соответствующего порта i, получают исключительно при измерении основной гармоники по формуле (3А), с помощью матрицы Gi точных системных ошибок посредством взвешивания с неизвестным комплексным коэффициентом di. При измерении высших гармоник и интермодуляционных помех при частоте k матрицу
Figure 00000005
определенных системных ошибок согласно формуле (3B) получают из матрицы
Figure 00000006
точных системных ошибок для высших гармоник и интермодуляционных помех при частоте k посредством взвешивания с неизвестным комплексным коэффициентом di
Figure 00000007
, где
Figure 00000008
Figure 00000009
, где
Figure 00000010
и
Figure 00000011
При исследовании устройств, не обладающих способностью преобразования частоты, параметры ошибок в двухпортовой модели ошибок, каждый из которых получен при двухпортовой калибровке, последовательно сопоставляют друг с другом, и зависят только от постоянной, которая соответственно одинакова для обоих портов. Неизвестный комплексный коэффициент di одинаков для каждого порта i испытуемого устройства. Так как каждый параметр матрицы рассеяния испытуемого устройства получен как отношение двух сигналов - входного и выходного - одного и того же порта или двух разных портов, этот неизвестный комплексный коэффициент di исключен из последнего и соответственно не представляет никакой проблемы.
При исследовании устройств преобразования частоты с различной частотой, а, следовательно, и разным фазовым соотношением между двумя подлежащими измерению портами, амплитудную составляющую |di| неизвестного комплексного коэффициента di определяют с помощью калибровки уровня в обоих портах и учета при компенсации системной ошибки. При этом амплитудная составляющая |di| неизвестного комплексного коэффициента di различна для каждого порта вследствие различия частот. Для определения фазовой составляющей
Figure 00000012
неизвестного комплексного коэффициента di используют опорная фаза или соответственно эталон (стандарт) фазы.
Использование при калибровке фазовой ошибки опорной фазы, соответственно эталона фазы, как например, в патенте США 6,292,000 В1, как правило, ограничивает диапазон частот и частотный интервал выполняемой калибровки фазы. Кроме того, качество определения фазовой составляющей
Figure 00000012
неизвестного комплексного коэффициента di зависит от стабильности и неопределенности опорной фазы, соответственно эталона фазы, и, следовательно, для достижения высокой точности в определении фазы
Figure 00000012
необходима сложная и соответственно дорогостоящая испытательная установка.
Таким образом, задача настоящего изобретения состоит в создании способа и устройства компенсации системной ошибки при электрической характеризации испытуемого устройства преобразования частоты, обеспечивающих высокую точность измерений при малых затратах.
Для решения поставленной задачи предложены способ определения параметров матрицы рассеяния испытуемого устройства преобразования частоты, основные признаки которого заявлены в пункте 1 формулы изобретения, и устройство для определения параметров матрицы рассеяния испытуемого устройства преобразования частоты, основные признаки которого заявлены в пункте 12 формулы изобретения. Предпочтительные технические решения раскрыты в каждом зависимом пункте формулы.
Согласно предложенному способу, соответственно определяют соответствующие системные ошибки каждого подлежащего измерению порта испытуемого устройства преобразования частоты, и соответственно измеряют каждый входной или соответственно выходной сигналы подлежащего измерению порта испытуемого устройства преобразования частоты, все еще содержащие системные ошибки. Посредством взвешивания каждого измеренного входного или соответственно выходного сигналов с системной ошибкой отдельных подлежащих измерению портов испытуемого устройства преобразования частоты с соответствующими определенными системными ошибками, и определяют соответствующие входной или соответственно выходной сигналы со скорректированной системной ошибкой, которые все еще содержат амплитуду и неопределенность фазы неизвестного коэффициента. По входному или соответственно выходному сигналам со скорректированной ошибкой отдельных подлежащих измерению портов испытуемого устройства преобразования частоты определяют его параметры матрицы рассеяния.
В частности для компенсации фазовой погрешности в определенных системных ошибках отдельных подлежащих измерению портов испытуемого устройства преобразования частоты, фазы сигнала, возбуждающего испытуемое устройство, согласно изобретению инициализированы одинаковым образом при каждом измерении. Это обеспечивает, как более подробно будет показано ниже, удаление фазовой погрешности из вычисленных таким образом параметров отражения испытуемого устройства преобразования частоты.
Кроме того, фазу локального сигнала осциллятора для испытуемого устройства преобразования частоты предпочтительно инициализируют фазокогерентным способом по отношению к фазе сигнала возбуждения при каждом измерении. Это обеспечивает наличие соответственно идентичной фазы во время инициализации на всех трех портах испытуемого устройства преобразования частоты.
И, наконец, фазы сигналов осциллятора для отдельных смесителей в отдельных трактах измерения сигналов предпочтительно инициализируют фазокогерентным способом по отношению к фазе сигнала возбуждения, так что во время инициализации также получают идентичную фазу в детекторах на выходе отдельных трактов измерения сигналов.
Амплитудная составляющая неизвестного комплексного коэффициента di в отдельных коэффициентах матрицы Gi определенных системных ошибок предпочтительно определяют посредством калибровки уровня.
Несмотря на то что эти меры обеспечивают возможность компенсации амплитудных составляющих и, одновременно, фазовых составляющих параметров отражения испытуемого устройства преобразования частоты, предпочтительно только амплитудные составляющие компенсируют в параметрах передачи испытуемого устройства. Параметры передачи испытуемого устройства преобразования частоты продолжают вносить фазовую погрешность. Однако, при рассмотрении фактической величины параметров передачи неопределенность фазы не учитывают.
Для выполнения фазокогерентной инициализации сигнала возбуждения и локальных сигналов осциллятора при каждом отдельном измерении, соответствующие генераторы сигналов, которые соответственно генерируют сигнал возбуждения или локальный сигнал осцилятора, предпочтительно настроены в соответствии с принципом прямого цифровогосинтеза (DDS) или как осцилляторы с числовым программным управлением. Для этого каждый генератор содержит по меньшей мере один буфер, значения фазы синусоидального сигнала которого эквидистантно разнесены во времени.
Кроме того, может быть использован генератор синхронизирующих импульсов, выполненный с возможностью формирования синхронизирующего сигнала, подаваемого на буферы генераторов сигналов, и служащий синхронизированным выходом отдельных значений фаз синусоидального сигнала на выходе соответствующего буфера.
Блок высвобождения предпочтительно выполнен с возможностью генерирования сигнала инициализации буферов генераторов сигналов, подаваемого на буферы для конечного выхода идентичного значения фазы на выходе соответствующего буфера при следующем синхронизирующем импульсе синхронизирующего сигнала, следующего после инициализации.
Если генератором сигналов служит цифровой генератор прямого синтеза, значения фаз, которые выводятся с синхронизирующим импульсоми синхронизирующего сигнала на выходе соответствующего буфера соответственно предпочтительно подают на аналого-цифровой преобразователь, расположенный после соответствующих буферов, и выполенный с возможностью генерирования аналогового сигнала, соответствующего дискретным значениям фаз во время отдельных синхронизирующих импульсов. Этот аналоговый сигнал, в свою очередь, может быть предпочтительно выдан в виде опорного сигнала каждого генератора сигналов, работающего по принципу прямого цифрового синтеза, на фазорегулятор, на выходе которого генерирован сигнал возбуждения, или соответственно локальный сигнал осциллятора.
Вследствие нелинейной передаточной характеристики испытуемого устройства преобразования частоты, в частности смесителя, при основной гармонике соответственно входного и выходного сигналов на отдельных портах испытуемого устройства преобразования частоты, высшие гармоники и интермодуляционные помехи входного и выходного сигналов соответственно в этих портах возникают при других частотах. В другом варианте реализации изобретения, параметры матрицы рассеяния испытуемого устройства преобразования частоты дополнительно определяют при частотах, при которых возникают высшие гармоники и интермодуляционные помехи входного и выходного сигналов соответственно в отдельных портах испытуемого устройства. В случае дополнительных частот определение параметров матрицы рассеяния выполняют аналогичным образом по входному и выходному сигналам со скорректированной системной ошибкой соответствующих портов испытуемого устройства преобразования частоты.
Ниже приведено более подробное объяснение вариантов реализации предложенного способа и устройства для определения параметров матрицы рассеяния испытуемого устройства преобразования частоты в качестве примера со ссылкой на прилагаемые чертежи.
На фиг. 1 показаны две однопортовые модели ошибок испытуемого двухпортового устройства;
на фиг. 2 показана принципиальная схема варианта реализации устройства для определения параметров матрицы рассеяния испытуемого устройства преобразования частоты согласно изобретению;
на фиг. 3 показана часть принципиальной схемы варианта реализации устройства для определения параметров матрицы рассеяния испытуемого устройства преобразования частоты согласно изобретению;
на фиг. 4 показана блок-схема варианта реализации способа определения параметров матрицы рассеяния испытуемого устройства преобразования частоты согласно изобретению;
на фиг. 5 показаны примеры спектральных составляющих, возникающих соответственно в отдельных портах смесителя.
Ниже приведено математическое обоснование, необходимое для понимания изобретения, представленное на основе математических зависимостей.
Взвешивание входного и выходного сигналов
Figure 00000013
и
Figure 00000014
, зарегистрированных для каждой основной гармоники в подлежащих измерению портах испытуемого устройства преобразования частоты, с соответствующими элементами матрицы
Figure 00000015
системной ошибки, определяемыми для указанной основной гармоники подлежащего измерению порта испытуемого устройства, обеспечивает, согласно формуле (4А) для основной гармоники, возможность получения в каждом из указанных подлежащих измерению портов испытуемого устройства входного и выходного сигналов со скорректированной системной ошибкой
Figure 00000016
и
Figure 00000017
, отличающихся, согласно формуле (4А) от каждого точного входного и выходного сигнала ai и bi в каждом из подлежащих измерению портах i испытуемого устройства только на величину все еще неизвестного комплексного коэффициента di
Figure 00000018
При высших гармониках и интермодуляционных помехах с частотой k, входной и выходной сигналы
Figure 00000019
и
Figure 00000020
со скорректированной системной ошибкой получают по формуле (4В) в каждом из подлежащих измерению портов испытуемого устройства преобразования частоты посредством взвешивания входного и выходного сигналов
Figure 00000021
и
Figure 00000022
, измеренных при высших гармониках и интермодуляционных помехах с частотой k в каждом из подлежащих измерению портов испытуемого устройства, с матрицей
Figure 00000023
системной ошибки, определенной соответственно при высших гармониках и интермодуляционных помехах с частотой k
Figure 00000024
Посредством калибровки уровня амплитудная составляющая |di| неизвестного комплексного коэффициента di, может быть определена и учтена в формуле (4). Соответственно в случае измерения только основной гармоники, начиная с формулы (4), получают математическую зависимость, зависящую теперь только от фазы
Figure 00000025
неизвестного комплексного коэффициента di, между входным и выходным сигналами со скорректированной системной ошибкой
Figure 00000026
и
Figure 00000027
, соответственно в соответствующем подлежащем измерению порту i испытуемого устройства преобразования частоты, и точными входным и выходным сигналами каждого подлежащего измерению порта i соответствующего испытуемого устройства преобразования частоты, и учитывающая оптимизированную по уровню матрицу
Figure 00000028
системной ошибки по формуле (5А).
При измерении высших гармоник и интермодуляционных помех с частотой k, с учетом оптимизированной по уровню матрицы
Figure 00000029
системных ошибок, получают эквивалентное соотношение по формуле (5В)
Figure 00000030
при
Figure 00000031
и
Figure 00000032
Figure 00000033
при
Figure 00000034
и
Figure 00000035
Определяемые параметры S матрицы рассеяния испытуемого устройства преобразования частоты, предпочтительно смесителя, могут быть получены по формуле (6А). Амплитуда |a Lo| локального сигнала aLo осциллятора регулируют с возможностью получения ее масштабированного значения |a Lo|=1
Figure 00000036
Параметры S матрицы рассеяния смесителя в режиме зеркального отражения получают по формуле (6В)
Figure 00000037
В дальнейшем будут рассмотрены смесители по формуле (6А). Однако изобретение также относится и к смесителям, работающим в режиме зеркального отражения. В частности, приведенное ниже описание ограничено основными гармониками. Распространение на высшие гармоники будет рассмотрено ниже.
Параметры S матрицы рассеяния испытуемого устройства преобразования частоты могут быть определены соответственно по формуле (7) по входному и выходному сигналам в одном из двух отдельных подлежащих измерению портах испытуемого устройства преобразования частоты соответственно возбуждения указанного устройства по матричным элементам матрицы А, содержащей соответственно входные сигналы, и матрицы В, содержащей соответственно выходные сигналы. Каждым матричным элементом aij или bij является соответственно входной или выходной сигнал каждого порта i в случае возбуждения в порту j испытуемого устройства преобразования частоты
Figure 00000038
На первом этапе, измеренные параметры или соответственно параметры со скорректированной системной ошибкой матрицы рассеяния испытуемого устройства преобразования частоты получают соответственно с помощью генератора невоспроизводимых фазных сигналов.
Если фаза генератора сигналов не инициализирована с одинаковой фазой при каждом измерении и если фазовое искажение в каждом отдельном тракте измерения сигнала между соответствующим устройством сопряжения и соответствующим регистратором неизвестно, то на основании формулы (8А) или (8В) с учетом формулы (4) получают с каждом случае соотношение между входным и выходным сигналами
Figure 00000039
и
Figure 00000040
со скорректированной системной ошибкой соответствующего подлежащего измерению порта i испытуемого устройства преобразования частоты и точными входным и выходным сигналами a ij и bij соответствующего подлежащего измерению порта i указанного устройства при возбуждении испытуемого устройства в соответствующем порту j. При этом точный входной и выходной сигналы a ij и bij умножают на фазу
Figure 00000041
неизвестного комплексного коэффициента di, а также на фазу
Figure 00000042
, задающую форму неизвестной начальной фазы сигнала a j возбуждения в порту j испытуемого устройства преобразования частоты, а также неизвестного фазового искажения в тракте сигнала от источника возбуждения к испытуемому устройству, и далее в тракте передачи измерительного сигнала от испытуемого устройства к детектору - тракту измерения сигнала
Figure 00000043
Figure 00000044
При использовании генератора невоспроизводимых фазных сигналов измеренные или соответственно параметры
Figure 00000045
матрицы рассеяния со скорректированной ошибкой испытуемого устройства преобразования частоты получают с помощью матричных элементов матрицы
Figure 00000046
, содержащей входные сигналы со скорректированной системной ошибкой, и матричных элементов матрицы
Figure 00000047
, содержащей выходные сигналы со скорректированной системной ошибкой, по формуле (9)
Figure 00000048
Согласно формуле (9) точные параметры S матрицы рассеяния и параметры
Figure 00000049
матрицы рассеяния в случае использования генератора невоспроизводимых фазных сигналов и наличии в отдельных подлежащих измерению портах испытуемого устройства преобразования частоты входного и выходного сигналов со скорректированной системной ошибкой имеют различные значения.
При приближенных значениях b12=a12=0, приближенно выраженный параметр
Figure 00000050
отражения порта 1 испытуемого устройства преобразования частоты может быть получен из формулы (10)
Figure 00000051
Аналогично, при b12=a12=0, приближенно выраженный параметр
Figure 00000052
передачи между портами 1 и 2 испытуемого устройства преобразования частоты может быть получен из формулы (11)
Figure 00000053
Аппроксимация параметра
Figure 00000054
отражения в порте 1 испытуемого устройства преобразования частоты по формуле (10) не зависит от неопределенности фазы, в то время как аппроксимация параметра
Figure 00000055
передачи сигнала между портами 1 и 2 указанного устройства по формуле (11) обеспечивает возможность создания некомпенсированной неопределенности фазы с практически компенсированной погрешностью амплитуды.
На втором этапе, параметры матрицы рассеяния испытуемого устройства преобразования частоты теперь получают соответственно при использовании генератора воспроизводимых фазных сигналов согласно изобретению.
При использовании генератора воспроизводимых фазных сигналов согласно изобретению, фазы сигнала возбуждения испытуемого устройства преобразования частоты, локального сигнала осциллятора испытуемого устройства, и сигналов осциллятора для смесителей, используемых в отдельных трактах измерения сигнала, инициализируют при каждом измерении до идентичного значения фазы. Таким образом, отдельные входной и выходной сигналы со скорректированной системной ошибкой создают неопределенности
Figure 00000056
фазы, зависящей от фазового искажения в рассмотренных выше отдельных трактах сигнала. Матрица
Figure 00000057
, матричные элементы которой содержат входные сигналы
Figure 00000058
со скорректированной системной ошибкой соответствующих подлежащих измерению портов i испытуемого устройства преобразования частоты в случае возбуждения на один из двух подлежащих измерению портов j указанного устройства, получают по формуле (12), а матрица
Figure 00000059
, матричные элементы которой содержат выходные сигналы
Figure 00000060
со скорректированной системной ошибкой соответствующих подлежащих измерению портов i испытуемого устройства преобразования частоты, в случае возбуждения на один из двух подлежащих измерению портов j указанного устройства получают по формуле (13)
Figure 00000061
где
Figure 00000062
Figure 00000063
Матрица
Figure 00000064
рассеяния может быть сформирована с помощью матрицы D, содержащей неопределенности
Figure 00000065
и
Figure 00000066
фаз, а также при использовании генератора воспроизводимых фазных сигналов согласно изобретению и при использовании входного и выходного сигналов
Figure 00000067
и
Figure 00000068
со скорректированной системной ошибкой соответственно в отдельных подлежащих измерению портах испытуемого устройства преобразования частоты
Figure 00000069
При использовании генератора воспроизводимых фазных сигналов согласно изобретению и входного и выходного сигналов
Figure 00000070
и
Figure 00000071
со скорректированной системной ошибкой соответственно в отдельных подлежащих измерению портах испытуемого устройства преобразования частоты, измеренные и откорректированные параметры
Figure 00000072
и
Figure 00000073
отражения матрицы
Figure 00000074
рассеяния соответствуют точным параметрам S11 и S22 отражения соответствующего испытуемого устройства.
Исходя из формулы (14) и на основании формулы (7), параметр
Figure 00000075
передачи вычисляют соответственно по формуле (15), а параметр
Figure 00000076
передачи по формуле (16)
Figure 00000077
В противоположность этому, исходя из формулы (14) и на основании формулы (7), параметры
Figure 00000078
и
Figure 00000079
передачи по формулам (17) и (18) создают дополнительные неопределенности фазы при использовании генератора воспроизводимых фазных сигналов согласно изобретению и с использованием входного и выходного сигналов
Figure 00000080
и
Figure 00000081
со скорректированной системной ошибкой соответственно в отдельных подлежащих измерению портах испытуемого устройства преобразования частоты
Figure 00000082
Эти неопределенности фазы содержат неизвестные фазовые искажения
Figure 00000083
и
Figure 00000084
в четырех трактах 26, 26', 26ʺ и 26'ʺ измерения сигнала и неизвестные фазы
Figure 00000085
и
Figure 00000086
неизвестных комплексных коэффициентов d1 и d2 в системных ошибках, связанных соответственно с портами 1 и 2, и также неизвестные фазы
Figure 00000087
и
Figure 00000088
сигнала aLo осциллятора. Поскольку при измерении параметров S11 и S21 передачи в большинстве случаев практически могут быть использованы только амплитудные значения, то без этих неопределенностей фазы можно обойтись.
На основе своей нелинейной передаточной характеристики испытуемое устройство преобразования частоты, в частности смеситель, может выдавать высшие гармоники или соответственно интермодуляционные помехи. Они могут накладываться на основные гармоники в портах испытуемого устройства и передаваться к портам схемного анализатора. После сопоставления ошибок в порте схемного анализатора, высшие гармоники, соответственно интермодуляционные помехи, отражают к портам испытуемого устройства, где их дополнительно смешивают с учетом частотного положения, а затем вновь переданы к портам схемного анализатора с возможностью неоднократного наложения при одинаковой частоте с основными гармониками входного и выходного сигналов соответствующего порта.
На фиг. 5 наряду с высокочастотным сигналом возбуждения RF, показаны сигнал генератора при частоте LO смесителя и выходной сигнал смесителя при промежуточной частоте IF, например интермодуляционная помеха, сформированная, главным образом, в смесителе при частоте RF=2*LO. Эта интермодуляционная помеха может быть передана на высокочастотный порт RF схемного анализатора и отражена там при частоте RF=2*LO, а затем вновь смешана в смесителе с образованием высокой частоты RF-LO. Сигнал, сформированный таким образом на основе интермодуляционной помехи, накладывается на сигнал возбуждения, образованный в высокочастотном порте RF схемного анализатора при высокой частоте RF, вызывая искажение измеренного результата. Для выявления этого искажения, необходимо выполнить дополнительное измерение в смесителе при первоначальной частоте RF=2*LO интермодуляционной помехи.
Для этого, как и для основных гармоник соответственно входного и выходного сигналов отдельных портов испытуемого устройства, соответственно входной и выходной сигналы отдельных портов испытуемого устройства также зарегистрированы при дополнительных частотах. На примере возбуждения порта j испытуемого устройства при трех различных частотах k, матрица
Figure 00000089
получают по формуле (19) на основе входных сигналов
Figure 00000090
в каждом случае в порту i испытуемого устройства при трех частотах I. Аналогично, матрица В может быть получена по формуле (20) на основе выходных сигналов
Figure 00000091
с тремя различными частотами k, соответственно измеренных в каждом порте i испытуемого устройства, при возбуждении соответственно с тремя различными частотами I порта j испытуемого устройства
Figure 00000092
После коррекции системной ошибки матричных элементов двух матриц
Figure 00000093
и
Figure 00000094
, матрицу
Figure 00000095
получают по формуле (21) соответственно на основе входных сигналов со скорректированной системной ошибкой
Figure 00000096
в каждом случае в порту i испытуемого устройства с тремя различными частотами k при возбуждении испытуемого устройства в порту j, соответственно с тремя частотами I, а матрица в может быть получена по формуле (22) на основе выходных измеренных сигналов
Figure 00000097
в каждом случае в порту i испытуемого устройства с тремя различными частотами k при возбуждении испытуемого устройства в порту j соответственно с тремя частотами I
Figure 00000098
Со ссылкой на формулы (14)-(18), используемые при анализе методом сеток с одной частотой, матрицу
Figure 00000099
рассеяния в случае этого анализа, например, с тремя частотами, получают по формуле (23) на основе матричных элементов матриц
Figure 00000100
и
Figure 00000101
. Подчеркнутые матричные элементы матрицы
Figure 00000102
рассеяния представляют собой параметры матрицы рассеяния испытуемого устройства при выполнении измерений при одной частоте
Figure 00000103
При работе смесителя в режиме зеркального отражения и при измерении входного и выходного сигналов при зеркальной частоте, коэффициенты в матрицах
Figure 00000104
и
Figure 00000105
должны быть комплексно сопряженными числами.
При этом условии, матрицу
Figure 00000106
рассеяния с ее отдельными коэффициентами
Figure 00000107
получают по формуле (24) на основе матриц
Figure 00000108
и
Figure 00000109
и их коэффициентов
Figure 00000110
или
Figure 00000111
соответственно
Figure 00000112
С учетом данного математического обоснования, подробное описание способа определения параметров матрицы рассеяния испытуемого устройства преобразования частоты согласно изобретению будет приведено со ссылкой на блок-схему, изображенную на фиг. 4, а описание устройства для определения параметров матрицы рассеяния испытуемого устройства преобразования частоты будет приведено со ссылкой на принципиальные схемы, показанные на фиг. 2 и 3.
При выполнении первого шага S10, системные ошибки, возникающие соответственно в подлежащем измерению порте 1 и 2 испытуемого устройства 3 преобразования частоты, определяют посредством традиционного способа калибровки системной ошибки. При этом могут быть использованы известные способы калибровки с 7-ю, 9-ю и/или 10-ю параметрами.
При выполнении следующего шага S20, амплитудную составляющую |di| неизвестного комплексного коэффициента di, содержащаяся, согласно формуле (5А) или (5В), в каждом коэффициенте оптимизированной по уровню матрицы
Figure 00000113
системной ошибки, вычисляют с помощью измерения калибровки уровня. Для формирования коэффициентов оптимизированной по уровню матрицы
Figure 00000114
системных ошибок, системные ошибки, определенные при выполнении предыдущего шага S10 и используемые для формирования коэффициентов матрицы
Figure 00000115
системных ошибок, делят на определенную амплитудную составляющую |di| неизвестного комплексного коэффициента di.
Таким образом, матрица
Figure 00000116
с зарегистрированными системными ошибками, содержащая этот неизвестный комплексный коэффициент di, по формуле (5А) или (5В) преобразуют в матрицу
Figure 00000117
, содержащую соответственно, в отличие от матрицы G с точными системными ошибками, только неизвестную фазу
Figure 00000118
этого неизвестного комплексного коэффициента di.
При выполнении следующего шаг S30, фаза сигнала возбуждения инициализирована при одинаковом значении фазы при каждом измерении. Для этого блок высвобождения 7 генерирует сигнал инициализации, поступающий на буфер 8, значения фазы которого эквидистантны по времени синусоидального сигнала в первом генераторе 9 сигналов, формирующем сигнал возбуждения. При последующем синхронизирующем импульсе синхронизирующего сигнала, сгенерированного генератором 10 синхронизирующих импульсов, буфер 8 оповещается сигналом инициализации для записи на выходе выбранного и ранее установленного значения фазы, хранящегося в буфере 8.
Записанное в буфер 8 значение фазы, а также все последующие значения фазы синусоидального сигнала, записанные на выходе буфера 8 с синхронизирующим импульсом синхронизирующего сигнала, преобразуют в соответствующий аналоговый сигнал, в расположенном после буфера 8 цифроаналоговом преобразователе 11, управляемом синхронизирующим сигналом генератора 10 синхронизирующих импульсов. Аналоговый сигнал подают на вход фазового детектора 12, соединенного с фазорегулятором, для сравнения с сигналом возбуждения с уменьшенной частотой.
Уменьшение частоты высокочастотного сигнала возбуждения может быть выполнено после разъединения в соединителе 16 внутри частотного разделителя 13, также управляемого синхронизирующим сигналом генератора 10 синхронизирующих импульсов. Как правило, разность фаз фазового детектора 12 подают на фильтр 14 низких частот для ослабления составляющих сигнала повышенной частоты в схеме фазовой синхронизации и на управляемый напряжением осциллятор 15 для формирования высокочастотного сигнала возбуждения, зависящего от разности фаз, отфильтрованной фильтром низких частот.
Фазу локального сигнала осциллятора для испытуемого устройства 3 преобразования частоты инициализируют в начале каждого измерения фазокогерентным способом по отношению к фазе сигнала возбуждения, предпочтительно с тем же значением фазы. Для этого, как и в случае инициализации фазы сигнала возбуждения в первом генераторе 9 сигналов, буфер 8' второго генератора 9' сигналов, отвечающего за генерирование локального сигнала осциллятора, получает сигнал инициализации от блока высвобождения 7 и синхронизирующий сигнал от генератора 10 синхронизирующих импульсов. Как показано на фиг. 2, конструкция второго генератора 9' сигналов идентична конструкции первого генератора 9 сигналов и также включает в себя цифроаналоговый преобразователь 11', фазовый детектор 12', фильтр низких частот 14', управляемый напряжением осциллятор 15', соединитель 16' и частотный разделитель 13'.
Фазы отдельных сигналов осциллятора для смесителей, содержащихся в каждом отдельном тракте измерения сигнала, также инициализированы фазокогерентным способом в начале каждого измерения по отношению к фазе сигнала возбуждения, предпочтительно с тем же значением фазы. Все четыре тракта 26, 26', 26ʺ и 26ʺ' измерения сигнала для измерения соответственно входного сигнала
Figure 00000119
,
Figure 00000120
и
Figure 00000121
и выходного сигнала
Figure 00000122
и
Figure 00000123
в двух подлежащих измерению портах 1 и 2 испытуемого устройства 3 преобразования частоты выполнены, как показано на фиг. 3, с одинаковой конструкцией, включающую в себя соединитель 17, 17', 17ʺ и 17ʺ', аналоговый первый смеситель 18, 18', 18ʺ и 18ʺ', цифроаналоговый преобразователь 19, 19', 19ʺ и 19ʺ', второй цифровой смеситель 20, 20', 20ʺ и 20ʺ', цифровой фильтр 21, 21', 21ʺ и 21ʺ' низких частот и детектор 22, 22', 22ʺ и 22ʺ''.
Локальный сигнал осциллятора для первого аналогового смесителя 18, 18', 18ʺ и 18ʺ' генерируют соответственно в присоединенном к нему генераторе 23, 23', 23ʺ и 23ʺ' сигналов, который обеспечивает идентичную структурную установку для первого генератора 9 сигналов, выполненного с возможностью формирования сигнала возбуждения, или соответственно для второго генератора сигналов 9', выполненного с возможностью формирования локального сигнала осциллятора испытуемого устройства 3 преобразования частоты, и принимает для этого сигнал инициализации от блока высвобождения 7 и синхронизирующий сигнал от генератора 10 синхронизирующих импульсов.
Локальный сигнал осциллятора для второго цифрового смесителя 20, 20', 20ʺ и 20ʺ' формируют в присоединенном к нему осцилляторе 24, 24', 24ʺ и 24ʺ' с числовым программным управлением, который содержит по меньшей мере один буфер, значения фазы синусоидального сигнала которого эквидистантны по времени, и также подают с сигналом инициализации блока высвобождения 7 и синхронизирующим сигналом генератора 10 синхронизирующих импульсов. Кроме того, управление аналого-цифровыми преобразователями 19, 19', 19ʺ и 19'ʺ в отдельных трактах измерения сигнала осуществляют синхронизирующим сигналом генератора 10 синхронизирующих импульсов.
При выполнении следующего шага S40, сигнал возбуждения, сформированный в первом генераторе 7 сигналов, подают при соответствующем положении переключателя 25, через соответствующий порт 4 или 5 схемного анализатора, на один из двух подлежащих измерению портов 1 или 2 испытуемого устройства 3 преобразования частоты, причем соответственно каждый входной сигнал
Figure 00000124
и
Figure 00000125
с системной ошибкой в двух подлежащих измерению портах 1 и 2 испытуемого устройства 3 преобразования частоты и каждый выходной сигнал
Figure 00000126
и
Figure 00000127
с системной ошибкой в соответствующих трактах 26, 26', 26ʺ и 26ʺʺ измерения сигнала измеряют с одной частотой для каждого подлежащего измерению порта указанного устройства 3.
При проведении анализа методом сеток с несколькими частотами для каждого подлежащего измерению порта испытуемого устройства 3 преобразования частоты, входной
Figure 00000128
и выходной
Figure 00000129
сигналы с системной ошибкой с частотой k соответственно в измеряемом порту i указанного устройства 3 регистрируют при возбуждении с частотой i испытуемого устройства 3 преобразования частоты 3 в порту j. Для приводимых в качестве примера измерений с тремя частотами для каждого подлежащего измерению порта испытуемого устройства 3 преобразования частоты, входные
Figure 00000130
и выходные
Figure 00000131
сигналы с системной ошибкой получают в виде матричных элементов матриц
Figure 00000132
и
Figure 00000133
, выраженных формулой (19) или (20) соответственно.
При выполнении следующего шага S50, в случае анализа методом сеток с одной частотой для каждого подлежащего измерению порта испытуемого устройства 3 преобразования частоты, соответственно входные сигналы
Figure 00000134
и
Figure 00000135
и выходные сигналы
Figure 00000136
и
Figure 00000137
с системной ошибкой, измеренные в двух подлежащих измерению портах 1 и 2 указанного устройства 3, взвешивают по формуле (5А) с системными ошибками, измеренными в каждом из двух портов 1 и 2 указанного устройства 3 при выполнении шага S10, и в каждом случае с амплитудной составляющей |di| неизвестного комплексного коэффициента di, при последующем шаге S20, для получения входных сигналов
Figure 00000138
и
Figure 00000139
с откорректированной системной ошибкой и выходных сигналов
Figure 00000140
и
Figure 00000141
в двух портах 1 и 2 указанного устройства 3.
Аналогично, при проведении анализа методом сеток с несколькими частотами для каждого подлежащего измерению порта испытуемого устройства 3 преобразования частоты, соответственно входные
Figure 00000142
и выходные
Figure 00000143
сигналы с системной ошибкой каждого соответствующего подлежащего измерению порта i указанного устройства 3 с соответствующей частотой k, взвешивают по формуле (5В) с системными ошибками, зарегистрированными в каждом из двух портов 1 и 2 указанного устройства 3 при выполнении шага S10, и с каждой амплитудной составляющей |di| неизвестного комплексного коэффициента di, при последующем шаге S20, для получения входных
Figure 00000144
и выходных
Figure 00000145
сигналов с откорректированной системной ошибкой соответственно на соответствующих подлежащих измерению портах i испытуемого устройства 3 с соответствующей частотой k в случае возбуждения указанного устройства 3 в соответствующий порту j с соответствующей частотой I. Для приводимых в качестве примера измерений с тремя частотами для каждого подлежащего измерению порта испытуемого устройства 3 преобразования частоты, входные
Figure 00000146
и выходные
Figure 00000147
сигналы со скорректированной системной ошибкой получают в виде матричных элементов матриц
Figure 00000148
и
Figure 00000149
, выраженных формулой (21) или (22) соответственно.
При выполнении следующего шага S60, в случае анализа методом сеток с одной частотой для каждого порта, параметры S11 и S22 отражения в двух подлежащих измерению портах 1 и 2 испытуемого устройства 3 преобразования частоты определяют по формулам (15) и (16) соответственно с помощью входных сигналов
Figure 00000150
и
Figure 00000151
и выходных сигналов
Figure 00000152
и
Figure 00000153
с откорректированной системной ошибкой двух портов испытуемого устройства 3 преобразования частоты.
При проведении анализа методом сеток с несколькими частотами для каждого порта испытуемого устройства 3 преобразования частоты, отдельные параметры
Figure 00000154
отражения аналогичным образом определяют по формуле (24), при частоте k в порту i испытуемого устройства 3 преобразования частоты при возбуждении указанного устройства 3 в соответствующем порту j с соответствующей частотой l, соответственно с помощью входных
Figure 00000155
и выходных
Figure 00000156
сигналов с откорректированной системной ошибкой в отдельных подлежащих измерению портах j испытуемого устройства 3 преобразования частоты при соответствующей частоте k в случае возбуждения указанного устройства 3 в соответствующих портах j с соответствующими частотами I.
И, наконец, выполняемый в качестве опции, шаг S70: при проведении анализа методом сеток с одной частотой для каждого порта испытуемого устройства преобразования частоты, определяют параметры
Figure 00000157
передачи с откорректированной системной ошибкой между измеряемым портом 1 и измеряемым портом 2, и параметры
Figure 00000158
передачи между измеряемым портом 2 и измеряемым портом 1 посредством формирования модуля по формуле (17) и (18) соответственно с помощью входных сигналов
Figure 00000159
и
Figure 00000160
выходных сигналов
Figure 00000161
и
Figure 00000162
со скорректированной системной ошибкой в двух портах 1 и 2 испытуемого устройства 3 преобразования частоты.
При анализе методом сеток с несколькими частотами для каждого порта испытуемого устройства 3 преобразования частоты, параметры
Figure 00000163
передачи, определяемые с отдельными частотами k в отдельных портах j указанного устройства 3 при возбуждении в отдельные портах j испытуемого устройства 3 преобразования частоты с отдельными частотами l, определяют аналогичным способом по формуле (24) соответственно с помощью входных
Figure 00000164
и выходных
Figure 00000165
сигналов со скорректированной системной ошибкой в отдельных подлежащих измерению портах i испытуемого устройства 3 преобразования частоты с соответствующей частотой k при возбуждении в соответствующих портах j испытуемого устройства 3 преобразования частоты с соответствующими частотами I.
Для приводимого в качестве примера измерения с тремя частотами каждого подлежащего измерению порта испытуемого устройства 3 преобразования частоты, по формуле (23) определяют матрицу
Figure 00000166
рассеяния, содержащую параметры
Figure 00000167
отражения и параметры
Figure 00000168
передачи.
Изобретение не ограничено проиллюстрированным вариантом реализации. В частности настоящее изобретение охватывает все сочетания признаков, раскрытых в формуле изобретения, в описании и чертежах.

Claims (29)

1. Способ определения параметров матрицы рассеяния испытуемого устройства преобразования частоты с использованием схемного анализатора, согласно которому:
- определяют системные ошибки (
Figure 00000169
,
Figure 00000170
,
Figure 00000171
,
Figure 00000172
) в отдельных портах (1, 2) испытуемого устройства (3) преобразования частоты,
- измеряют входные и выходные сигналы (
Figure 00000173
,
Figure 00000174
,
Figure 00000175
,
Figure 00000176
,
Figure 00000177
,
Figure 00000178
,
Figure 00000179
,
Figure 00000180
) с системными ошибками соответственно в отдельных портах (1, 2) испытуемого устройства (3) преобразования частоты,
- определяют входные и выходные сигналы (
Figure 00000181
,
Figure 00000182
,
Figure 00000183
,
Figure 00000184
,
Figure 00000185
,
Figure 00000186
,
Figure 00000187
,
Figure 00000188
) со скорректированной системной ошибкой соответственно в отдельных портах (1, 2) испытуемого устройства (3) преобразования частоты посредством взвешивания входных и выходных сигналов (
Figure 00000173
,
Figure 00000174
,
Figure 00000175
,
Figure 00000176
,
Figure 00000177
,
Figure 00000178
,
Figure 00000179
,
Figure 00000180
) с системной ошибкой соответственно в отдельных портах (1, 2) испытуемого устройства (3) преобразования частоты с соответствующими определенными системными ошибками (
Figure 00000169
,
Figure 00000170
,
Figure 00000171
,
Figure 00000172
),
- определяют параметры (
Figure 00000189
) матрицы рассеяния испытуемого устройства (3) преобразования частоты по входным и выходным сигналам (
Figure 00000181
,
Figure 00000182
,
Figure 00000183
,
Figure 00000184
,
Figure 00000185
,
Figure 00000186
,
Figure 00000187
,
Figure 00000188
) со скорректированной системной ошибкой соответственно в отдельных портах (1, 2) испытуемого устройства (3) преобразования частоты,
причем фаза сигнала, который возбуждает каждый подлежащий измерению порт (1, 2) испытуемого устройства (3) преобразования частоты, инициализирована одинаковым образом при каждом измерении.
2. Способ по п. 1, отличающийся тем, что фаза локального сигнала осциллятора инициализирована для испытуемого устройства (3) преобразования частоты при каждом измерении когерентным по фазе способом по отношению к фазе сигнала возбуждения.
3. Способ по п. 1 или 2, отличающийся тем, что фазы сигналов осциллятора инициализированы когерентным по фазе способом по меньшей мере в одном смесителе (18, 18', 18ʺ, 18''', 20, 20', 20ʺ, 20''') в отдельных трактах (26, 26', 26ʺ, 26''') измерения сигнала по отношению к фазе сигнала возбуждения.
4. Способ по пп. 1 и 2, отличающийся тем, что каждый коэффициент вычисленной матрицы (
Figure 00000190
) системных ошибок, вычисленный по системным ошибкам (
Figure 00000169
,
Figure 00000170
,
Figure 00000171
,
Figure 00000172
), измеренным для каждого порта (i) испытуемого устройства (3) преобразования частоты, зависит от неизвестного комплексного коэффициента (di).
5. Способ по п. 4, отличающийся тем, что оптимизированная по уровню матрица системных ошибок (
Figure 00000191
) вычислена посредством деления коэффициентов вычисленной матрицы (
Figure 00000192
) системных ошибок на амплитудную составляющую (
Figure 00000193
) неизвестного комплексного коэффициента (di), найденную при дополнительном калибровочном измерении.
6. Способ по п. 5, отличающийся тем, что входной и выходной сигналы (
Figure 00000194
,
Figure 00000195
,
Figure 00000196
,
Figure 00000197
,
Figure 00000198
,
Figure 00000199
,
Figure 00000200
,
Figure 00000201
) со скорректированной системной ошибкой соответственно в отдельных портах (1, 2) испытуемого устройства (3) преобразования частоты определены посредством взвешивания входных и выходных сигналов (
Figure 00000173
,
Figure 00000174
,
Figure 00000175
,
Figure 00000176
,
Figure 00000177
,
Figure 00000178
,
Figure 00000179
,
Figure 00000180
) с системной ошибкой соответственно в отдельных портах (1, 2) испытуемого устройства (3) с соответствующими коэффициентами оптимизированной по уровню матрицы (
Figure 00000191
) системных ошибок.
7. Способ по п. 6, отличающийся тем, что амплитудные значения (
Figure 00000202
, (
Figure 00000203
) двух параметров (
Figure 00000204
,
Figure 00000205
) передачи сигнала параметров (
Figure 00000206
) матрицы рассеяния испытуемого устройства (3) преобразования частоты определены по входным и выходным сигналам (
Figure 00000194
,
Figure 00000195
,
Figure 00000196
,
Figure 00000197
,
Figure 00000198
,
Figure 00000199
,
Figure 00000200
,
Figure 00000201
) со скорректированной системной ошибкой соответственно в двух портах (1, 2) испытуемого устройства (3) преобразования частоты.
8. Способ по п. 6, отличающийся тем, что оба параметра (
Figure 00000207
,
Figure 00000208
) отражения параметров (S) матрицы рассеяния испытуемого устройства (3) преобразования частоты соответственно определены по входным и выходным сигналам (
Figure 00000194
,
Figure 00000195
,
Figure 00000196
,
Figure 00000197
,
Figure 00000198
,
Figure 00000199
,
Figure 00000200
,
Figure 00000201
) со скорректированной системной ошибкой соответственно в двух портах (1, 2) испытуемого устройства (3) преобразования частоты.
9. Способ по п. 6 или 7, отличающийся тем, что входными и выходными измеренными сигналами (
Figure 00000173
,
Figure 00000174
,
Figure 00000175
,
Figure 00000176
,
Figure 00000177
,
Figure 00000178
,
Figure 00000179
,
Figure 00000180
) соответственно в двух портах (1, 2) испытуемого устройства (3) преобразования частоты является соответственно входной или соответственно выходной сигнал (
Figure 00000209
,
Figure 00000210
) измерительного порта (i) с заданной частотой (k), а входными и выходными сигналами (
Figure 00000194
,
Figure 00000195
,
Figure 00000196
,
Figure 00000197
,
Figure 00000198
,
Figure 00000199
,
Figure 00000200
,
Figure 00000201
) со скорректированной системной ошибкой соответственно в двух портах (1, 2) испытуемого устройства (3) преобразования частоты является соответственно входной или соответственно выходной сигнал
Figure 00000211
со скорректированной системной ошибкой измерительного порта (i) с частотой (k), при возбуждении испытуемого устройства (3) в порту возбуждения (j) при заданной частоте (l).
10. Способ по п. 9, отличающийся тем, что амплитудное значение (
Figure 00000212
) параметра (
Figure 00000213
) передачи сигнала параметров (
Figure 00000214
) матрицы рассеяния испытуемого устройства (3) преобразования частоты, при измерении с частотой (k) в измерительном порте (i) и при возбуждении с частотой (l) порта (j) возбуждения определено по отдельным входным и выходным сигналам (
Figure 00000215
,
Figure 00000216
) со скорректированной системной ошибкой, соответственно со всеми частотами (m) во всех измерительных портах (o) испытуемого устройства (3) преобразования частоты при возбуждении со всеми частотами (n) на всех портах возбуждения (p).
11. Способ по п. 10, отличающийся тем, что параметр (
Figure 00000217
) отражения параметров (S) матрицы рассеяния испытуемого устройства (3) преобразования частоты определен при измерении с частотой (k) в измерительном порте (i), и при возбуждении с частотой (l) порта (i) возбуждения соответственно по отдельным входным и выходным сигналам (
Figure 00000218
,
Figure 00000219
) со скорректированной системной ошибкой соответственно со всеми частотами (m) во всех измерительных портах (o) испытуемого устройства (3) преобразования частоты при возбуждении со всеми частотами (n) на всех портах возбуждения (p).
12. Устройство для определения параметров матрицы рассеяния испытуемого устройства преобразования частоты с использованием схемного анализатора с испытуемым устройством (3) преобразования частоты, содержащее:
схемный анализатор (6) для восприятия сигнала возбуждения на одном из двух подлежащих измерению портов (1, 2) испытуемого устройства (3) преобразования частоты и измерения входных и выходных сигналов (
Figure 00000173
,
Figure 00000174
,
Figure 00000175
,
Figure 00000176
,
Figure 00000177
,
Figure 00000178
,
Figure 00000179
,
Figure 00000180
) соответственно на одном из указанных подлежащих измерению портов (1, 2);
первый генератор (9) сигналов, расположенный в схемном анализаторе (6) для генерирования сигнала возбуждения; и
второй генератор (9') сигналов для генерирования локального сигнала осциллятора для испытуемого устройства (3) преобразования частоты,
причем фаза сигнала возбуждения инициализирована одинаковым образом соответственно при каждом отдельном измерении.
13. Устройство по п. 12, отличающееся тем, что первый и второй генераторы (9, 9') сигналов выполнены с возможностью генерирования сигнала по принципу прямого цифрового синтеза соответственно с помощью буфера (8, 8'), выполненного с возможностью хранения разных значений фаз синусоидального сигнала, эквидистантно разнесенного во времени.
14. Устройство по п. 13, отличающееся тем, что выполнен генератор (10) синхронизирующих импульсов для генерирования синхронизирующего импульса, подаваемого в буфер (8, 8') первого и второго генераторов (9, 9') сигналов для синхронизированного по тактам вывода значений буферной фазы на выходе из буфера (8, 8').
15. Устройство по п. 14, отличающееся тем, что дополнительно выполнен блок высвобождения (7) для генерирования сигнала инициализации буфера (8, 8') первого и второго генератора (9, 9') сигналов, который подан на буфер (8, 8') первого и второго генератора (9, 9') сигналов для конечного вывода заданного значения фазы при следующем синхронизирующем импульсе после инициализации.
16. Устройство по любому из пп. 12-15, отличающееся тем, что фазы последующих сигналов осциллятора по меньшей мере для одного смесителя (18, 18', 18ʺ, 18''', 20, 20', 20ʺ, 20''') соответственно в одном из трактов (26, 26', 26ʺ, 26''') измерения сигналов схемного анализатора (6) инициализированы когерентным по фазе способом по отношению к фазе сигнала возбуждения.
17. Устройство по пп. 12-15, отличающееся тем, что реализованный аналоговым или цифровым способом генератор (23, 23', 23ʺ, 23''', 24, 24', 24ʺ, 24''') сигналов для генерирования каждого сигнала осциллятора для каждого смесителя (18, 18', 18ʺ, 18''', 20, 20', 20ʺ, 20''') выполнен в каждом тракте (26, 26', 26ʺ, 26''') измерения сигнала.
18. Устройство по п. 17, отличающееся тем, что в каждом тракте (26, 26', 26ʺ, 26''') измерения сигнала каждого реализованного аналоговым и/или цифровым способом генератора (23, 23', 23ʺ, 23''', 24, 24', 24ʺ, 24''') сигналов, выполненного с возможностью генерирования сигнала осциллятора для смесителя (18, 18', 18ʺ, 18''', 20, 20', 20ʺ, 20'''), предусмотрен буфер для хранения значений фазы синусоидального сигнала, эквидистантно разнесенного по времени.
19. Устройство по п. 17, отличающееся тем, что каждый реализованный аналоговым и/или цифровым способом генератор (23, 23', 23ʺ, 23''', 24, 24', 24ʺ, 24''') сигналов, выполненный с возможностью генерирования сигналов осциллятора для смесителя (18, 18', 18ʺ, 18''', 20, 20', 20ʺ, 20'''), соединен в тракте (26, 26', 26ʺ, 26''') измерения сигнала с генератором (10) синхронизирующих импульсов для синхронизированного вывода значений фазы синусоидального сигнала, хранящихся в соответствующем буфере, и с блоком высвобождения (7) для инициализации соответствующего буфера со следующим после инициализации синхронизирующим импульсом.
20. Устройство по пп. 13-15, отличающееся тем, что соответственно цифроаналоговый преобразователь (11, 11') для цифроаналогового преобразования конечных дискретных выходных значений фазы, расположенных в соответствующем буфере (8, 8'), в соответствующий аналоговый сигнал подключен после буфера (8, 8') первого и второго генераторов (9, 9') сигналов, и соответственно схема фазовой синхронизации для конечного генерирования выходного сигнала возбуждения относительно локального сигнала осциллятора, зависящего от входного конечного аналогового сигнала, служащего опорным сигналом, подключена после соответствующего цифроаналогового преобразователя (11, 11').
RU2014130672A 2012-10-10 2013-10-10 Способ и устройство для определения параметров матрицы рассеяния испытуемого устройства преобразования частоты RU2634733C9 (ru)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE102012218431.7 2012-10-10
DE102012218431 2012-10-10
DE102013200033.2 2013-01-03
DE102013200033.2A DE102013200033B4 (de) 2012-10-10 2013-01-03 Verfahren und System zur Bestimmung von Streuparametern eines frequenzumsetzenden Messobjekts
PCT/EP2013/071132 WO2014057020A1 (de) 2012-10-10 2013-10-10 Verfahren und system zur bestimmung von streuparametern eines frequenzumsetzenden messobjekts

Publications (3)

Publication Number Publication Date
RU2014130672A RU2014130672A (ru) 2016-02-20
RU2634733C2 true RU2634733C2 (ru) 2017-11-03
RU2634733C9 RU2634733C9 (ru) 2018-01-09

Family

ID=50337134

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014130672A RU2634733C9 (ru) 2012-10-10 2013-10-10 Способ и устройство для определения параметров матрицы рассеяния испытуемого устройства преобразования частоты

Country Status (4)

Country Link
US (1) US10605839B2 (ru)
DE (1) DE102013200033B4 (ru)
RU (1) RU2634733C9 (ru)
WO (1) WO2014057020A1 (ru)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013200033B4 (de) * 2012-10-10 2023-06-15 Rohde & Schwarz GmbH & Co. Kommanditgesellschaft Verfahren und System zur Bestimmung von Streuparametern eines frequenzumsetzenden Messobjekts
JP6611441B2 (ja) * 2014-02-28 2019-11-27 地方独立行政法人東京都立産業技術研究センター 周波数変換ユニット、計測システム及び計測方法
CN104849687B (zh) * 2015-04-23 2017-11-21 中国电子科技集团公司第四十一研究所 一种基于散射参数级联的微波自动测试系统校准方法
WO2018109782A1 (en) * 2016-12-13 2018-06-21 Indian Institute Of Technology Bombay Network analyzer for measuring s-parameters of rf device
US11041894B2 (en) * 2017-08-18 2021-06-22 Rohde & Schwarz Gmbh & Co. Kg Vector network analyzer with digital interface
US10684317B2 (en) * 2017-09-04 2020-06-16 Rohde & Schwarz Gmbh & Co. Kg Vector network analyzer and measuring method for frequency-converting measurements
US10996264B2 (en) * 2018-12-03 2021-05-04 Rohde & Schwarz Gmbh & Co. Kg Measurement method and device with compensation for a shifting frequency
US10914782B2 (en) * 2019-04-29 2021-02-09 Rohde & Schwarz Gmbh & Co. Kg Test system and test method for testing a device under test
US10659177B1 (en) 2019-07-16 2020-05-19 Rohde & Schwarz Gmbh & Co. Kg Method of determining a relative phase change of a local oscillator signal and method of determining a relative phase change of a radio frequency signal
US10897316B1 (en) * 2019-09-24 2021-01-19 Rohde & Schwarz Gmbh & Co. Kg Test system and method for determining a response of a transmission channel
CN113176492B (zh) * 2021-03-10 2023-12-12 深圳市豪恩汽车电子装备股份有限公司 Poc电路的散射参数测量方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6529844B1 (en) * 1998-09-02 2003-03-04 Anritsu Company Vector network measurement system
DE102006035827A1 (de) * 2006-03-15 2007-09-20 Rohde & Schwarz Gmbh & Co. Kg Verfahren und Vorrichtung zur vektoriellen Messung der Streuparameter von frequenzumsetzenden Schaltungen
WO2010099855A1 (de) * 2009-03-05 2010-09-10 Rohde & Schwarz Gmbh & Co. Kg Synthesizer mit einstellbarer, stabiler und reproduzierbarer phase und frequenz
WO2013143681A1 (de) * 2012-03-27 2013-10-03 Rosenberger Hochfrequenztechnik Gmbh & Co. Kg Vektorieller netzwerkanalysator

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991010331A1 (en) * 1990-01-02 1991-07-11 Motorola, Inc. Time division multiplexed selective call signalling system
US5337014A (en) * 1991-06-21 1994-08-09 Harris Corporation Phase noise measurements utilizing a frequency down conversion/multiplier, direct spectrum measurement technique
US5631553A (en) * 1993-05-31 1997-05-20 Universite Du Quebec A Trois-Rivieres High precision RF vector analysis system based on synchronous sampling
US5748506A (en) * 1996-05-28 1998-05-05 Motorola, Inc. Calibration technique for a network analyzer
US5793213A (en) * 1996-08-01 1998-08-11 Motorola, Inc. Method and apparatus for calibrating a network analyzer
US6292000B1 (en) 1998-09-02 2001-09-18 Anritsu Company Process for harmonic measurement with enhanced phase accuracy
US6175239B1 (en) * 1998-12-29 2001-01-16 Intel Corporation Process and apparatus for determining transmission line characteristic impedance
US6417674B1 (en) * 2000-03-06 2002-07-09 Agilent Technologies, Inc. Two port self-calibration for an N-port network analyzer
US7068049B2 (en) * 2003-08-05 2006-06-27 Agilent Technologies, Inc. Method and apparatus for measuring a device under test using an improved through-reflect-line measurement calibration
US6965241B1 (en) * 2003-10-07 2005-11-15 Agilent Technologies, Inc. Automated electronic calibration apparatus
US7095261B2 (en) * 2004-05-05 2006-08-22 Micron Technology, Inc. Clock capture in clock synchronization circuitry
US7321641B2 (en) * 2004-06-03 2008-01-22 The Aerospace Corporation Baseband time-domain communications system
WO2006037241A1 (de) * 2004-10-08 2006-04-13 Elektrobit Ag Verfahren und vorrichtung zur unterdrückung eines sendesignals in einem empfänger eines rfid schreib-/lesegeräts
US7231311B2 (en) * 2005-04-19 2007-06-12 Jan Verspecht Method for characterizing high-frequency mixers
DE102006017018A1 (de) 2006-01-10 2007-07-12 Rohde & Schwarz Gmbh & Co. Kg Secum-Trahenz-Verfahren, insbesondere für einen Netzwerkanalysator
JP2007285890A (ja) * 2006-04-17 2007-11-01 Agilent Technol Inc ネットワークアナライザの再校正方法、および、ネットワークアナライザ
US7868607B2 (en) 2007-04-20 2011-01-11 Agilent Technologies, Inc. Test method for frequency converters with embedded local oscillators
US8155904B2 (en) * 2007-10-05 2012-04-10 Dvorak Steven L Vector signal measuring system, featuring wide bandwidth, large dynamic range, and high accuracy
US7671605B2 (en) * 2008-01-17 2010-03-02 Agilent Technologies, Inc. Large signal scattering functions from orthogonal phase measurements
US8983796B2 (en) * 2009-01-15 2015-03-17 Rohde & Schwarz Gmbh & Co., Kg Method and network analyzer for measuring group runtime in a measuring object
JP5325048B2 (ja) * 2009-08-25 2013-10-23 株式会社ミツトヨ 誤差伝播による出力データの精度評価方法
US20120109566A1 (en) * 2010-11-02 2012-05-03 Ate Systems, Inc. Method and apparatus for calibrating a test system for measuring a device under test
US8248297B1 (en) * 2011-04-11 2012-08-21 Advanced Testing Technologies, Inc. Phase noise measurement system and method
DE102013200033B4 (de) * 2012-10-10 2023-06-15 Rohde & Schwarz GmbH & Co. Kommanditgesellschaft Verfahren und System zur Bestimmung von Streuparametern eines frequenzumsetzenden Messobjekts

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6529844B1 (en) * 1998-09-02 2003-03-04 Anritsu Company Vector network measurement system
DE102006035827A1 (de) * 2006-03-15 2007-09-20 Rohde & Schwarz Gmbh & Co. Kg Verfahren und Vorrichtung zur vektoriellen Messung der Streuparameter von frequenzumsetzenden Schaltungen
WO2010099855A1 (de) * 2009-03-05 2010-09-10 Rohde & Schwarz Gmbh & Co. Kg Synthesizer mit einstellbarer, stabiler und reproduzierbarer phase und frequenz
WO2013143681A1 (de) * 2012-03-27 2013-10-03 Rosenberger Hochfrequenztechnik Gmbh & Co. Kg Vektorieller netzwerkanalysator

Also Published As

Publication number Publication date
US20150177300A1 (en) 2015-06-25
DE102013200033B4 (de) 2023-06-15
RU2014130672A (ru) 2016-02-20
US10605839B2 (en) 2020-03-31
DE102013200033A1 (de) 2014-04-10
RU2634733C9 (ru) 2018-01-09
WO2014057020A1 (de) 2014-04-17

Similar Documents

Publication Publication Date Title
RU2634733C2 (ru) Способ и устройство для определения параметров матрицы рассеяния испытуемого устройства преобразования частоты
US10006952B1 (en) System and method for reducing the effects of spurs on measurements using averaging with specific null selection
US9791484B2 (en) Measurement and system for performing a calibration
US20090216468A1 (en) Dual Mode Vector Network Analyzer
JP2008516213A5 (ru)
CN112881959B (zh) 一种用于磁共振成像的梯度涡流补偿方法及系统
Augustyn et al. Application of ellipse fitting algorithm in incoherent sampling measurements of complex ratio of AC voltages
US7739063B2 (en) Nonlinear measurement system error correction
CN109813962B (zh) 基于希尔伯特变换的变频系统群延迟测量方法及系统
US20210270877A1 (en) Method and system for making time domain measurements of periodic radio frequency (rf) signal using measurement instrument operating in frequency domain
US10436757B2 (en) Electrical signal processing device
US11193965B2 (en) System for vector network analysis of a device under test as well as method for vector network analysis of a device under test
Paulter Jr Method for measuring the phase spectrum of the output of a frequency source used in the calibration of an electroshock weapon characterization system
US10422846B2 (en) Method for calibrating a radio frequency test instrument and radio frequency test instrument
JP6756491B2 (ja) 正規化された位相スペクトルを生成する方法及び装置
RU2318189C1 (ru) Способ определения погрешности аппаратуры навигации
US10120008B2 (en) Method and apparatus for estimating the noise introduced by a device
US9292035B2 (en) Packet based DDS minimizing mathematical and DAC noise
JP3921035B2 (ja) 位相雑音伝達特性解析装置
Yemelyanov Development of principles and instrumentation for generation of test and control signals of the incoherent scatter radar
Glinchenko et al. A system for the spectrally-weighted measurement of signal parameters
CN108918966A (zh) 基于频谱仪的底噪对消方法
Lapuh et al. Digital oscilloscope calibration using asynchronously sampled signal estimation
CN116009011B (zh) 一种雷达探测方法及相关装置
US20030185577A1 (en) Measuring optical waveforms

Legal Events

Date Code Title Description
TH4A Reissue of patent specification