RU2634661C1 - Шаровая опора - Google Patents

Шаровая опора Download PDF

Info

Publication number
RU2634661C1
RU2634661C1 RU2016141958A RU2016141958A RU2634661C1 RU 2634661 C1 RU2634661 C1 RU 2634661C1 RU 2016141958 A RU2016141958 A RU 2016141958A RU 2016141958 A RU2016141958 A RU 2016141958A RU 2634661 C1 RU2634661 C1 RU 2634661C1
Authority
RU
Russia
Prior art keywords
spherical
ball
bearings
ball bearing
materials
Prior art date
Application number
RU2016141958A
Other languages
English (en)
Inventor
Юрий Иванович Виноградов
Александр Иванович Маслов
Ирина Алексеевна Теплякова
Сергей Владимирович Шалыга
Александр Владимирович Шишурин
Original Assignee
Акционерное общество "Военно-промышленная корпорация "Научно-производственное объединение машиностроения"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Военно-промышленная корпорация "Научно-производственное объединение машиностроения" filed Critical Акционерное общество "Военно-промышленная корпорация "Научно-производственное объединение машиностроения"
Priority to RU2016141958A priority Critical patent/RU2634661C1/ru
Application granted granted Critical
Publication of RU2634661C1 publication Critical patent/RU2634661C1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C11/00Pivots; Pivotal connections
    • F16C11/04Pivotal connections
    • F16C11/06Ball-joints; Other joints having more than one degree of angular freedom, i.e. universal joints

Landscapes

  • Sliding-Contact Bearings (AREA)

Abstract

Изобретение относится к области авиа- и ракетостроительного машиностроения и может быть использовано в создании опорных узлов трения, где в качестве опор скольжения используются сферические шарнирные подшипники. Шаровая опора содержит корпус, выполненный из двух частей в виде крышек, неразъемно соединенных между собой, с заключенным в корпус шаровым пальцем со сферической головкой. Пространство между шаровым пальцем и корпусом заполнено вкладышем и наполнителем с металлическими гранулами. Материал шарового пальца выполнен из литейного никелевого сплава ЭИ-578, а на его сферической поверхности электроискровым методом нанесено композиционное соединение (HfO2+HfB2). Технический результат: повышение износостойкости шаровой опоры со сферическим подшипником скольжения при рабочих температурах 1400 К за счет приобретенного свойства несхватывания при трении, а также образования на рабочих поверхностях прочных слоев новых антифрикционных материалов, увеличение ресурса работы всей опоры трения в целом. 2 ил.

Description

Изобретение относится к области авиа- и ракетостроительного машиностроения и может быть использовано в создании опорных узлов трения, где в качестве опор скольжения используются сферические шарнирные подшипники (СШП).
Специфика применения шарнирных подшипников в экстремальных условиях обуславливает выбор материалов, способных выдерживать воздействие высоких нагрузок в широком диапазоне температур в различных газовых средах и в вакууме. Наряду с общими требованиями, предъявляемыми к подшипниковым материалам, материалы для высокотемпературных подшипников должны обладать целым рядом специальных свойств:
1) высокой жаростойкостью и коррозионной стойкостью;
2) стабильностью механических характеристик при различных температурах (σb; HB, E; M и др.);
3) высокой теплопроводностью, а также близким значением линейного расширения с материалами корпусных деталей и осей;
4) минимальное значение твердости при рабочих температурах должно быть не менее 40…45 НКС, а предел текучести должен быть значительно выше величины действующих контактных напряжений;
5) высокой износостойкостью и низким значением коэффициентом трения.
Как правило, совместить все эти качества в одном материале не удается и поэтому оказывается необходимым применение защитных покрытий (ТСП).
Традиционно применяемая подшипниковая сталь (типа ШХ-15) работоспособна только до температуры 523 К, а при более высоких температурах отличается резким падением ее твердости и прочности. Конструкционные стали, подвергаемые упрочнению и закалке, также не могут сочетать весь комплекс указанных свойств вследствие разупрочнения под воздействием высоких температур. К материалам, в некоторой степени отвечающим перечисленным требованиям, можно отнести инструментальные жаростойкие стали типа Х18Н9, Х17Н2А, 9X18 и др. Эти материалы сохраняют прочностные характеристики, например твердость поверхности (НКС 55…62) при температурах 723…773 К. Наиболее теплостойким материалом, применяемым для сферических подшипников, сохраняющих свои прочностные характеристики (НКС 60…62) при температурах до 773 К, являются стали типа Х4 В9Ф (ЭИ-347). Они обладают хорошей сопротивляемостью контактному выкрашиванию, но при повышении температуры до 823 К фрикционные свойства резко падают, наблюдается схватывание сопряженных поверхностей, а также взаимный перенос материала. При температурах выше 823 К жаропрочные стали не обеспечивают длительную работу подшипников без схватывания и повышенного износа контактирующих поверхностей, и поэтому в этих случаях желательно и необходимо применять ТСП, специально разработанные для каждого конкретного случая условий эксплуатации.
Существует несколько классификаций ТСП, которые подразделяются на следующие группы: структурные смазки, масла, химически активные смазки, экспериментальные смазки, огнеупорные материалы, керамические композиционные материалы, стекло.
Вне зависимости от принятой классификации считается, что наиболее радикальным является использование этих материалов в виде тонких покрытий, прочно закрепленных на поверхности металла. Основными требованиями к подобным покрытиям для обеспечения антифрикционных свойств являются:
1) возможно меньшая толщина для предотвращения изменения геометрии и зазоров подшипников при пластической деформации слоя твердой смазки;
2) низкое сопротивление сдвигу;
3) высокая адгезия материала покрытия к подложке;
4) высокое сопротивление износу, а также вид продуктов износа;
5) химическая стойкость материалов покрытия;
6) высокая температурная стойкость.
Известны сферические шаровые опоры с подшипниками скольжения (а.с. СССР №2016277, F16C 11/06, 1992 г.; патент РФ №2049376, F16C 11/06, 1994 г.; патент РФ №2338936, F16C 11/06, 2007 г.; патент РФ №2432506, F16C 11/06, 2010 г.; патент РФ №2579382, F16C 11/06, 2016 г.).
Наиболее близким по набору существенных признаков является техническое решение по патенту РФ №2588362, F16C 11/06, 2016 г., которое было принято авторами за ближайший аналог.
Шаровая опора содержит корпус, состоящий из двух крышек 1 и 2 (фиг. 1), неразъемно соединенных между собой, металлический шаровой палец 3, заключенный в корпус, выполнен их материала ВЖЛ, а на его поверхности сформировано многослойное композиционное покрытие со сдвиговым сопротивлением меньшим сдвигового сопротивления шаровой опоры, при этом первый слой подложки методом гальванического покрытия выполнен из тантала, второй слой из серебра нанесен электролитическим способом, а третий выполнен из ТСП ВАП (микродисперсный молибден с лаком ФЛ), вкладыш полимерный 4, наполнитель 5 с металлическими гранулами 6. Вкладыш 4 выполнен из твердосмазочного материала (фторопласт-4, ЦПА-6/15 и др.). Наполнитель 5 выполнен из полимера модифицированного металлическими гранулами 6.
Недостатком данной сферической шаровой опоры является то, что при повышении рабочих температур эксплуатации до 1400 К снижается адгезия материала покрытия к подложке, возрастает сдвиговое сопротивление, снижается износостойкость, тем самым уменьшается работоспособность опорных узлов трения в целом.
При компоновке многослойных покрытий возникают новые фрикционные свойства, не проявляющиеся у отдельных слоев, выявляются положительные свойства многослойных композиционных покрытий. Оптимальный подбор контртела для многослойного покрытия позволяет увеличить его долговечность, тем самым повысить ресурс опорных узлов трения.
Технической задачей является повышение износостойкости шаровой опоры со сферическим подшипником скольжения при рабочих температурах 1400 К за счет приобретенного свойства несхватывания при трении, а также образования на рабочих поверхностях прочных слоев новых антифрикционных материалов.
Указанная задача решается за счет того, что в шаровой опоре, содержащей корпус, выполненный из двух частей, в виде крышек, неразъемно соединенных между собой, с заключенным в корпус шаровым пальцем со сферической головкой, при этом пространство между шаровым пальцем и корпусом заполнено вкладышем и наполнителем с металлическими гранулами. Шаровой палец 3 (фиг. 2) выполнен из никелевого сплава ЭИ-578 а на его сферической поверхности электроискровым методом нанесено композиционное соединение 7 (HfO2+HfВ2) (фиг. 2).
Литейные никелевые сплавы типа ЭИ-578 имеют сложную многофазную структуру. Высокое содержание молибдена, хрома приводит к образованию большого количества первичных интерметаллидных фаз. Интерметаллиды, образующие жесткий каркас, отличаются высокой твердостью и высокой температурой плавления. Именно они обеспечивают высокую сопротивляемость изнашиванию при высоких температурах.
Процессы, происходящие при легировании материала основы металлами, приводят к образованию твердых растворов и механических смесей, а также возникновению новых химических соединений, что определяет прочную и надежную связь материала покрытия с материалом основы. Борсодержащие элементы тугоплавких металлов при этом образуют стекловидные фазы, которые имеют более высокие температурный коэффициент линейного расширения и стабильны до 1400 К.
Таким образом, формируя многослойное композиционное твердосмазочное покрытие и выбирая соответствующий материал пальца опоры, существенно повышается износостойкость подшипника скольжения при высоких до 1400 К, тем самым увеличивается ресурс работы всей опоры трения в целом.

Claims (1)

  1. Шаровая опора, содержащая корпус, выполненный из двух частей в виде крышек, неразъемно соединенных между собой, с заключенным в корпус шаровым пальцем со сферической головкой, при этом пространство между шаровым пальцем и корпусом заполнено вкладышем и наполнителем с металлическими гранулами, отличающийся тем, что материал шарового пальца выполнен из литейного никелевого сплава, а на его сферической поверхности электроискровым методом нанесено композиционное соединение (HfO2+HfB2).
RU2016141958A 2016-10-26 2016-10-26 Шаровая опора RU2634661C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016141958A RU2634661C1 (ru) 2016-10-26 2016-10-26 Шаровая опора

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016141958A RU2634661C1 (ru) 2016-10-26 2016-10-26 Шаровая опора

Publications (1)

Publication Number Publication Date
RU2634661C1 true RU2634661C1 (ru) 2017-11-02

Family

ID=60263682

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016141958A RU2634661C1 (ru) 2016-10-26 2016-10-26 Шаровая опора

Country Status (1)

Country Link
RU (1) RU2634661C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB929886A (en) * 1960-04-06 1963-06-26 Eng Productions Clevedon Ltd Improvements in or relating to the manufacture of low-friction bearing materials andbearing elements
RU2130558C1 (ru) * 1998-12-07 1999-05-20 Гун Игорь Геннадьевич Шаровой шарнир
RU2352829C1 (ru) * 2007-11-14 2009-04-20 Государственное образовательное учреждение высшего профессионального образования "Пензенский государственный университет" (ПГУ) Шаровая опора
RU2574300C1 (ru) * 2014-10-09 2016-02-10 Акционерное общество "Военно-промышленная корпорация "Научно-производственное объединение машиностроения" (АО "ВПК "НПО машиностроения") Шаровая опора

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB929886A (en) * 1960-04-06 1963-06-26 Eng Productions Clevedon Ltd Improvements in or relating to the manufacture of low-friction bearing materials andbearing elements
RU2130558C1 (ru) * 1998-12-07 1999-05-20 Гун Игорь Геннадьевич Шаровой шарнир
RU2352829C1 (ru) * 2007-11-14 2009-04-20 Государственное образовательное учреждение высшего профессионального образования "Пензенский государственный университет" (ПГУ) Шаровая опора
RU2574300C1 (ru) * 2014-10-09 2016-02-10 Акционерное общество "Военно-промышленная корпорация "Научно-производственное объединение машиностроения" (АО "ВПК "НПО машиностроения") Шаровая опора
RU2588362C1 (ru) * 2015-06-05 2016-06-27 Акционерное общество "Военно-промышленная корпорация "Научно-производственное объединение машиностроения" Шаровая опора

Similar Documents

Publication Publication Date Title
Babu et al. Review of journal bearing materials and current trends
EP1837534A2 (en) Titanium spherical plain bearing with liner and treated surface
US20070297704A1 (en) Bearings
KR20110042117A (ko) 복합층을 가지는 슬라이딩 요소
EP2048391A2 (en) Sliding bearing
JP2005291495A (ja) 金属系球面軸受
KR920016735A (ko) 고속엔진용 다층 슬라이딩 재료및 이들의 제조방법
CN104593712A (zh) 复合金属合金材料
KR101487120B1 (ko) 미끄럼 이동 부재 및 베어링
JP3274261B2 (ja) 銅系摺動材料
WO1992021890A1 (en) Corrosion-resistant zinc-nickel plated bearing races
RU2579382C1 (ru) Шаровая опора
RU2634661C1 (ru) Шаровая опора
EP2662582B1 (en) Manufacturing process of a multi-layer sliding bearing and multi-layer sliding bearing
RU99558U1 (ru) Подшипник скольжения
KR20110097744A (ko) 강재를 이용한 교량 받침용 베어링플레이트 및 이를 이용한 교량받침
EP3315806A1 (en) Bearing material, bearing and method
JP5981013B1 (ja) 内燃機関用ピストンリング
EP3933174A1 (en) Wear resistant, self-lubricating static seal
KR20180070483A (ko) 무조인트 연속 저널 베어링
RU2630346C1 (ru) Шаровая опора
US20200408243A1 (en) Contact Layer on the Surface of a Metal Element in Relative Movement Against Another Metal Element and an Articulation Joint Provided with Such a Contact Layer
CN104968837A (zh) 含有金属承载层的金属的滑动轴承复合材料
JP6200343B2 (ja) 摺動部材
Yang et al. Sliding friction and wear behaviors of plasma sprayed aluminum–bronze coating in artificial seawater