RU2634652C1 - Теплообменник воздух-воздух - Google Patents

Теплообменник воздух-воздух Download PDF

Info

Publication number
RU2634652C1
RU2634652C1 RU2016118571A RU2016118571A RU2634652C1 RU 2634652 C1 RU2634652 C1 RU 2634652C1 RU 2016118571 A RU2016118571 A RU 2016118571A RU 2016118571 A RU2016118571 A RU 2016118571A RU 2634652 C1 RU2634652 C1 RU 2634652C1
Authority
RU
Russia
Prior art keywords
air
heat exchanger
cylindrical
exchanger according
fan
Prior art date
Application number
RU2016118571A
Other languages
English (en)
Inventor
Кристоф РООС
Original Assignee
Роос Гмбх
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Роос Гмбх filed Critical Роос Гмбх
Application granted granted Critical
Publication of RU2634652C1 publication Critical patent/RU2634652C1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F12/00Use of energy recovery systems in air conditioning, ventilation or screening
    • F24F12/001Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air
    • F24F12/006Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air using an air-to-air heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0014Recuperative heat exchangers the heat being recuperated from waste air or from vapors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/103Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of more than two coaxial conduits or modules of more than two coaxial conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/006Tubular elements; Assemblies of tubular elements with variable shape, e.g. with modified tube ends, with different geometrical features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/12Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/005Other auxiliary members within casings, e.g. internal filling means or sealing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/04Arrangements for sealing elements into header boxes or end plates
    • F28F9/16Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling
    • F28F9/18Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling by welding
    • F28F9/182Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling by welding the heat-exchange conduits having ends with a particular shape, e.g. deformed; the heat-exchange conduits or end plates having supplementary joining means, e.g. abutments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F12/00Use of energy recovery systems in air conditioning, ventilation or screening
    • F24F12/001Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/1607Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with particular pattern of flow of the heat exchange media, e.g. change of flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/163Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2235/00Means for filling gaps between elements, e.g. between conduits within casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/08Fluid driving means, e.g. pumps, fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/10Particular pattern of flow of the heat exchange media
    • F28F2250/104Particular pattern of flow of the heat exchange media with parallel flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2255/00Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes
    • F28F2255/14Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes molded
    • F28F2255/143Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes molded injection molded
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/56Heat recovery units

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Изобретение относится к области теплотехники и может быть использовано в вентиляционных системах. В теплообменнике (10) воздух-воздух для вентиляционных систем, содержащем пучок (30) прямых, параллельно расположенных труб (32), расположенный в цилиндрическом корпусе (12), и вентилятор (14), расположенный на конце цилиндрического корпуса (12), причем этот вентилятор (14) включает в себя внутреннее кольцо (18) и наружное кольцо (20), транспортирующие потоки теплоносителя во встречном направлении, при этом пространства наружного кольца (20) и внутреннего кольца (18) отделены друг от друга цилиндрической стенкой (22), концевые части (34) труб (32) плотно прилегают друг к другу, на обращенной к вентилятору (14) стороне заключены в кольцевой конец (42) цилиндрической стенки (22), а на противоположной стороне - в конец (44) цилиндрического патрубка (46), и которые между своими концевыми частями (34) сходят на конус к средним участкам (36), между которыми внутри пучка (30) имеются промежутки (40), при этом внутренняя стенка (24) корпуса (12) в области средних участков (36) снабжена изолирующей вставкой (50) в форме втулки или оболочки, которая облицовывает и сужает внутренний диаметр корпуса (12). 9 з.п. ф-лы, 4 ил.

Description

Изобретение касается теплообменника воздух-воздух для вентиляционных систем, согласно ограничительной части п.1 формулы изобретения.
Современные строительные нормы требуют от отапливаемых зданий параметров герметичности обшивки зданий, которые приводят к необходимости контролируемого проветривания. При этом проветривании спертый, т.е. насыщенный вредными веществами и влагой воздух транспортируется наружу и заменяется свежим, содержащим кислород наружным воздухом. Раньше это происходило путем регулярного проветривания через окна и наружные двери, что часто не могло осуществляться в достаточной степени, например, в периоды длительного отсутствия жильцов здания. Кроме того, при проветривании нагретый воздух помещения заменяется холодным наружным воздухом, что, в свою очередь, требует энергозатрат для нагрева свежего воздуха. Это невыгодно с точки зрения экологии и затрат.
Уже давно применяются разные виды систем проветривания, которые работают с регенерацией тепла. При этом часть энергосодержания нагретого отработавшего воздуха передается подведенному свежему воздуху. Это происходит, как правило, с помощью перекрестноточного теплообменника или ротационного теплообменника при высоких затратах на оборудование, которые приводят к относительной дороговизне этих устройств. Другим вариантом являются так называемые устройства для реверсивного проветривания, в которых вентилятор через определенные интервалы времени изменяет направление своего вращения и при этом изменяет направление нагнетания, и, таким образом, сначала некоторая доля спертого воздуха помещения выдувается наружу, в то время как затем вслед за этим при встречной тяге свежий воздух движется внутрь.
Противоточные теплообменники известны, например, из DE 10 2006 051003 A1, DE 10 2006 035531 A1, DE 10 2005 045734 A1, DE 10 2005 035712 A1 и DE 10 2004 046587 A1 и EP 2077428 A2. Немецкая заявка на патент DE 10 2008 058817 A1, которая представляет ближайший уровень техники, раскрывает теплообменник воздух-воздух, который работает по принципу противотока и у которого первый воздушный поток движется в закрытых трубах, в то время как второй воздушный поток, который направлен встречно первому воздушному потоку, расположен в промежутке между трубами и цилиндрическим наружным корпусом. Для нагнетания встречно направленных воздушных потоков служит вентилятор, который расположен на конце цилиндрического корпуса и включает в себя внутреннее кольцо и наружное кольцо, нагнетающее во встречном направлении и концентрически расположенное вокруг внутреннего кольца. Пространства наружного кольца и внутреннего кольца отделены друг от друга цилиндрической стенкой. В одном из вариантов осуществления трубы, начиная от вентилятора, сначала конически расходятся, затем проходят параллельно и в самом конце снова конически сходятся. Таким образом трубы обдуваются вторым воздушным потоком в промежутке между трубами, так что может осуществляться эффективный теплообмен.
Конструкция этого теплообменника, однако, является относительно трудоемкой, так что ее изготовление требует больших затрат. Кроме того, по возможности делаются попытки еще большего повышения эффективности теплообменника.
Поэтому задачей настоящего изобретения является конструктивно усовершенствовать описанный выше теплообменник из DE 10 2008 058817 A1, в частности, упростить его конструкцию, так чтобы его изготовление стало более экономичным. Одновременно усовершенствованный теплообменник должен иметь такой же или даже более высокий коэффициент полезного действия, как и теплообменник, известный из уровня техники.
Эти задачи в соответствии с изобретением решаются с помощью теплообменника воздух-воздух с признаками п.1 формулы изобретения.
Предлагаемый изобретением теплообменник включает в себя пучок прямых, параллельно расположенных труб, концевые части которых на стороне, которая обращена к вентилятору, заключены в кольцевой конец цилиндрической стенки, которая отделяет друг от друга пространства наружного кольца и внутреннего кольца, в то время как концевые части труб на противоположной стороне заключены в конец соответствующего цилиндрического патрубка. При этом концевые части плотно, то есть без промежутка, прилегают друг к другу, так что между соседними концевыми частями не может протекать воздушный поток. Между концевыми частями трубы сужаются к средним участкам, между которыми имеются промежутки внутри пучка. При этом воздух противотока, то есть так называемого второго воздушного потока, может проникать в пучок и свободно обтекать средние участки труб. Внутренняя стенка корпуса в области этих средних участков облицована изолирующей вставкой в форме втулки или оболочки, которая, например, может легко вставляться или вдвигаться в корпус. Изолирующая вставка уменьшает внутренний диаметр корпуса и при этом сужает поперечное сечение потока. Второй воздушный поток, который направляется в наружном кольце, вследствие этого сужения направляется внутрь, так что он неизбежно должен обтекать трубы и за изолирующей вставкой снова радиально выходить из пучка труб наружу. Изолирующая вставка служит в первую очередь для теплоизоляции и, кроме того, может иметь функцию звукоизоляции.
Направление первого воздушного потока внутри труб упрощается благодаря возможности применения прямых и параллельных труб. Они должны быть только снабжены выполненными в соответствующей форме концевыми частями, которые плотно соединяются и могут заключаться в цилиндрическую стенку, соответственно, противоположный патрубок. Уплотнение соседних концевых частей друг относительно друга может осуществляться путем склеивания, сваривания или тому подобного. Сами трубы могут, например, изготавливаться из обычных имеющихся в продаже цельнотянутых труб, концы которых только расширяются и формуются так, чтобы они могли соединяться вышеописанным образом без промежутков. Однако можно также объединять концевые части на данном одном конце пучка труб в один единственный цельный конструктивный элемент, так чтобы соседние концевые части были отделены друг от друга перегородками и в поперечном сечении образовывали сотовую структуру.
В одном из предпочтительных вариантов осуществления настоящего изобретения по меньшей мере часть концевых частей имеет многоугольное поперечное сечение. Тогда стороны многоугольников образуют контактные поверхности, соответственно, разделительные поверхности концевых частей.
Предпочтительно это многоугольное поперечное сечение концевых частей представляет собой шестиугольник.
Также предпочтительно по меньшей мере упомянутые концевые части соответственно на одном конце пучка выполнены цельно из отлитой под давлением детали и образуют внутри этой отлитой под давлением детали сотовую структуру.
В этой отлитой под давлением детали на концевых частях могут быть предпочтительно отформованы присоединительные элементы для помещения участков труб, которые образуют средние участки. Отлитая под давлением деталь может также включать в себя кольцевой концевой участок цилиндрической стенки, соответственно, патрубка, в котором заключены концевые части.
Также предпочтительно средние участки труб на своей внутренней стороне и/или на своей наружной стороне имеют структурированную поверхность. Она создает турбулентности, которые улучшают теплопередачу между воздушными потоками. Такие структуры могут, например, образовываться желобками или выступами на поверхностях труб.
По другому варианту осуществления изобретения концевые части плотно соединены друг с другом, с кольцевым концом цилиндрической стенки и/или с концом противоположного цилиндрического патрубка путем склеивания или сварки.
Также предпочтительно изолирующая вставка имеет концевые поверхности, имеющие скошенное поперечное сечение, через которые внутренний диаметр изолирующей вставки переходит в больший внутренний диаметр соседних участков внутренней стенки корпуса. Таким образом, от вентилятора второй воздушный поток течет через наружное кольцо сначала к одной из этих скошенных концевых поверхностей на торцевой стороне изолирующей вставки и вдавливается по ней внутрь в пучок труб. Изолирующая вставка проходит по участку длины пучка, который достаточен, чтобы служить для эффективного теплообмена между воздушными потоками. На конце изолирующей вставки поперечное сечение потока снова расширяется посредством скошенной концевой поверхности, которая снова направляет второй воздушный поток наружу вокруг цилиндрического патрубка, в котором заключены противоположные вентилятору концевые части труб.
Также предпочтительно внутренняя стенка корпуса имеет структурированную поверхность. Она создает турбулентности, которые приводят к еще лучшей теплопередаче между воздушными потоками.
По другому предпочтительному варианту осуществления изолирующая вставка состоит из вспененного полимера.
Ниже предпочтительные варианты осуществления настоящего изобретения поясняются подробнее с помощью чертежей.
Фиг.1 и 2 представляют собой схематичные продольные сечения одного из вариантов осуществления предлагаемого изобретением теплообменника воздух-воздух, а
фиг.3 и 4 представляют собой виды сверху концов заключенного пучка труб внутри теплообменника с фиг.1 и 2.
Изображенный на фиг.1 и 2 теплообменник 10 представляет собой теплообменник воздух-воздух, имеющий цилиндрический корпус 12, который открыт на своих концах. На одном конце корпуса 12 (на фигурах слева) в корпус 12 вставлен вентилятор 14. Ось вращения вентилятора 14 соответствует оси вращения корпуса 12. Термин «цилиндрический» в отношении корпуса 12 не должен обозначать исключительно точную цилиндрическую форму, а возможны также отклонения от нее, например, многоугольное поперечное сечение.
Привод вентилятора 14 осуществляется от двигателя 16, который установлен на его центральной оси. Пространство вокруг двигателя 16 образует внутреннее кольцо 18, вокруг которого, в свою очередь, расположено наружное кольцо 20, охватывающее внутреннее кольцо 18. Внутреннее кольцо 18 и наружное кольцо 20 отделены друг от друга цилиндрической стенкой 22. Снаружи наружное кольцо 20 ограничено внутренней стенкой 24 корпуса 12.
Во внутреннем кольце 18 и наружном кольце 20 транспортируются воздушные потоки во встречном направлении. Воздушный поток во внутреннем кольце 18 ниже будет называться первым воздушным потоком, посредством которого воздух транспортируется из корпуса 12 на конце теплообменника 10, на котором расположен вентилятор 14. В отличие от этого, в наружном кольце 20 транспортируется второй воздушный поток, посредством которого воздух на снабженном вентилятором конце транспортируется внутрь теплообменника 10.
Для транспортировки этих встречно направленных воздушных потоков нагнетательное колесо вентилятора 14 проходит радиально наружу до наружного кольца 20 и внутрь него. Лопасти 26 внутреннего кольца 18 установлены встречно лопастям 28 наружного кольца 20, так что при вращении вентилятора 14 воздух может нагнетаться/транспортироваться в данные кольца 18, 20 во встречных направлениях, и создаются первый и второй воздушные потоки, как описано выше.
Расположение вентилятора 14, внутреннего кольца 18 и наружного кольца 20 и разделяющей цилиндрической стенки 22 по существу уже известно из DE 10 2008 058817 A1.
Внутри теплообменника 10 встречно направленные воздушные потоки обмениваются теплом друг с другом, однако движутся в отдельных структурах, так что эти два воздушных потока не могут смешиваться. Эти структуры включают в себя центральный пучок 30 труб, который включает в себя некоторое количество прямых, параллельно расположенных труб 32. Концевые части 34 этих труб 32 имеют поперечное сечение, которое отличается от поперечного сечения средних участков 36 труб 32 между концевыми частями 34. А именно, в то время как средние участки 36 в настоящем случае имеют круглое поперечное сечение, концевые части 34 расширены с получением многоугольного поперечного сечения. На виде в плане на фиг.3 и 4 видно, что это многоугольное поперечное сечение представляет собой правильный шестиугольник. Благодаря этой форме концевые части 34 могут компоноваться с получением правильной структуры в виде пчелиных сот, как легко можно видеть на фиг.3 и 4. Тогда между концевыми частями 34 больше не остается промежутков, так как концевые части 34 плотно соединены, и между ними больше не может протекать воздух.
Концевые части 34 могут быть, например, цельно соединены в одну единственную отлитую под давлением деталь из полимера, которая в поперечном сечении имеет структуру в виде пчелиных сот. Эта отлитая под давлением деталь может также включать в себя и другие компоненты присоединительных элементов, такие как, например, присоединительные элементы для помещения участков труб, которые образуют средние участки 36. На эти присоединительные элементы или внутри них могут быть наклеены или вклеены или насажены, соответственно, вставлены концы средних участков.
Как, в частности, видно на фиг.1, средние участки 36 труб 32 внутри пучка 30 не прилегают плотно друг к другу. Более того, между этими средними участками 36 имеются промежутки 40, через которые может протекать воздух.
Со стороны вентилятора 14 концевые части 34 труб 32 плотно заключены в кольцевой конец 42 цилиндрической стенки 22, которая отделяет друг от друга внутреннее кольцо 18 и наружное кольцо 20. Выражение «плотно» должно здесь также означать, что воздух не может проходить по пучку 30 труб сбоку, а что, более того, обеспечено заключение пучка 30 в кольцевой конец 42 стенки 22 гидравлически плотным образом. Таким же образом встречно направленные концевые части 34 на стороне теплообменника 10, которая находится напротив вентилятора 14 (то есть на правой стороне на фиг.1), заключены в конец 44 цилиндрического патрубка 46, диаметр которого примерно соответствует цилиндрической стенке 22. Это заключение пучка 30 труб также осуществляется гидравлически плотным образом, т.е. цилиндрический патрубок 46 охватывает пучок 30 труб таким образом, что воздух не может проходить по пучку 30. Разумеется, что и на этом конце концевые части 34 заключены, прилегая друг к другу гидравлически плотным образом. Кольцевой конец 42 цилиндрической стенки 22 и/или конец 44 цилиндрического патрубка 46 тоже могут выполняться в виде отлитой под давлением детали, которая включает в себя сотовую структуру для образования концевых частей 34, как описано выше.
Цилиндрический патрубок 46 открыт в направлении обращенной от вентилятора 14 стороны теплообменника 10. Как обозначено на фиг.1 стрелками A, при работе вентилятора 14 воздух в первом воздушном потоке всасывается через это отверстие, проникает через концевые части 34 в пучок 30 труб, направляется в трубы 32 и через обращенные к вентилятору концевые части 34 входит в пространство внутреннего кольца 18, где он протекает через вентилятор 14 и в самом конце может выходить из корпуса 12. При этом первый воздушный поток транспортируется внутри теплообменника 12 через пучок 30 труб.
В отличие от этого, встречно направленный второй воздушный поток транспортируется/нагнетается через корпус 12 так, что он входит в пучок 30 труб и обходит вокруг средних участков 36 отдельных труб 32, так что может происходить теплообмен. В частности, второй воздушный поток слева (стрелки B) через наружные лопасти 28 вентилятора 14 втягивается в наружное кольцо 20, направляется через сужение 48 внутренней стенки 24 корпуса 12 внутрь между трубами 32 пучка 30 труб и в конце пучка 30 труб снова направляется наружу вокруг цилиндрического патрубка 46, так что в самом конце второй воздушный поток может выходить радиально наружу.
Сужение 48 образуется цилиндрической изолирующей втулкой 50, которая облицовывает внутреннюю стенку 24 корпуса 12 в области средних участков 36 и уменьшает внутренний диаметр корпуса 12. Сужение 48 может также образовываться с помощью одной или нескольких выпуклых изолирующих оболочек, которые прилегают к внутренней стенке корпуса 12. Торцевые стороны этой изолирующей втулки 50 образуются концевыми поверхностями 52, 54, имеющими скошенное поперечное сечение, через которые внутренний диаметр изолирующей втулки 50 переходит в больший внутренний диаметр соседних участков внутренней стенки корпуса 12. Концевые поверхности 52, 54 направляют второй воздушный поток радиально внутрь, соответственно, наружу. При этом от наружного кольца 20 второй воздушный поток сначала попадает на первую концевую поверхность 52 изолирующей втулки 50, по которой второй воздушный поток направляется между трубами 32 пучка 30. Целесообразным образом внутреннее поперечное сечение изолирующей втулки 50 только несущественно больше, чем поперечное сечение пучка 30 труб, так что пучок 30 интегрирован в изолирующую втулку 50. При этом внутри изолирующей втулки 50 второй воздушный поток течет между трубами 32. В конце пучка 30 второй воздушный поток по оконечной концевой поверхности 54 снова направляется наружу вокруг цилиндрического патрубка 46.
Изолирующая втулка 50 дает дополнительное преимущество уменьшения потерь энергии наружу. Кроме теплоизоляции, изолирующая оболочка 40 дополнительно может обеспечивать звукоизоляцию. Эти преимущества соответственно относятся к изолирующей оболочке. Изолирующая втулка 50 состоит, например, из вспененного полимера, такого как, например, полистирол или полипропилен. Пригодны и другие полимеры, такие как, например, ПВХ (поливинилхлорид).
Внутренняя стенка 24 корпуса 12 может иметь структурированную поверхность, то есть, например, быть снабжена желобками (гофрами) или тому подобным, так чтобы второй воздушный поток завихрялся. Это приводит к дополнительному улучшению теплоотдачи. Кроме того, средние участки 36 труб 34 могут иметь структурированную поверхность на своей внутренней стороне и/или на своей наружной стороне. Эти структуры могут, например, образовываться желобками или выступами на данных поверхностях. Структуры могут также служить для изменения направления воздушного потока.
Трубы 32 могут также представлять собой обычные цельнотянутые трубы, имеющие цилиндрическое поперечное сечение, которые на своих концах расширяются с получением многоугольного поперечного сечения, так что образуются концевые части 34. Затем эти части должны только собираться и свариваться или склеиваться друг с другом для образования пучка труб.
Для обеспечения хорошего замыкания с кольцевым заключением посредством конца 42 цилиндрической стенки 22 и конца 44 патрубка 46 поперечные сечения концевых частей 34, находящихся в пучке 30 снаружи, могут отличаться от поперечных сечений внутри пучка 30. Это отчетливо видно на фиг.2 и 4. Здесь имеются концевые части, находящиеся снаружи, такие как, например, та, которая наглядно обозначена ссылочным обозначением 56, которые отличаются от шестиугольного поперечного сечения остальных концевых частей 34 в середине пучка 30. Закругленная наружная поверхность 58 этой концевой части 56 служит в этом случае контактной поверхностью с цилиндрической стенкой 22, соответственно, патрубком 46. При этом наружными контурами находящихся снаружи концевых частей 34 может воспроизводиться круглый периметр пучка 30 на его концах, который может точно интегрироваться в цилиндрическую стенку 22 и патрубок 46.

Claims (13)

1. Теплообменник (10) воздух-воздух для вентиляционных систем, имеющий два движущихся в противотоке воздушных потока, расположенных в цилиндрическом корпусе (12), внутри которого первый воздушный поток проходит внутри теплообменника (10) в закрытых трубах, в то время как второй воздушный поток расположен в промежутке между трубами и цилиндрическим корпусом (12), и имеющий транспортирующий эти встречно направленные воздушные потоки вентилятор (14), который расположен на конце цилиндрического корпуса (12),
причем этот вентилятор (14) включает в себя внутреннее кольцо (18) и наружное кольцо (20), транспортирующее во встречном направлении и концентрически расположенное вокруг внутреннего кольца (18), и пространства наружного кольца (20) и внутреннего кольца (18) отделены друг от друга цилиндрической стенкой (22),
отличающийся пучком (30) прямых, параллельно расположенных труб (32), концевые части (34) которых, плотно прилегая друг к другу, на обращенной к вентилятору (14) стороне заключены в кольцевой конец (42) цилиндрической стенки (22), а на противоположной стороне - в конец (44) цилиндрического патрубка (46), и которые между своими концевыми частями (34) сужаются к средним участкам (36), между которыми внутри пучка (30) имеются промежутки (40),
а также изолирующей вставкой (50) в форме втулки или оболочки, которая облицовывает внутреннюю стенку (24) корпуса (12) в области средних участков (36) и сужает внутренний диаметр корпуса (12).
2. Теплообменник воздух-воздух по п.1, отличающийся тем, что по меньшей мере часть концевых частей (34) имеет многоугольное поперечное сечение.
3. Теплообменник воздух-воздух по п.2, отличающийся тем, что многоугольное поперечное сечение представляет собой шестиугольник.
4. Теплообменник воздух-воздух по одному из предыдущих пунктов, отличающийся тем, что по меньшей мере упомянутые концевые части (34) соответственно на одном конце пучка (30) выполнены цельно из отлитой под давлением детали и образуют внутри этой отлитой под давлением детали сотовую структуру.
5. Теплообменник воздух-воздух по п.4, отличающийся тем, что на концевых частях (34) отформованы присоединительные элементы для помещения участков труб, которые образуют средние участки (36).
6. Теплообменник воздух-воздух по одному из пп.1-3, отличающийся тем, что средние участки (36) труб (32) на своей внутренней стороне и/или на своей наружной стороне имеют структурированную поверхность.
7. Теплообменник воздух-воздух по одному из пп.1-3, отличающийся тем, что концевые части (34) плотно соединены друг с другом, с кольцевым концом (42) цилиндрической стенки (22) и/или с концом (44) противоположного цилиндрического патрубка (46) путем склеивания или сварки.
8. Теплообменник воздух-воздух по одному из пп.1-3, отличающийся тем, что изолирующая вставка (50) имеет концевые поверхности (52, 54), имеющие скошенное поперечное сечение, через которые внутренний диаметр изолирующей вставки (50) переходит в больший внутренний диаметр соседних участков внутренней стенки корпуса (12).
9. Теплообменник воздух-воздух по одному из пп.1-3, отличающийся тем, что внутренняя стенка (24) корпуса (12) имеет структурированную поверхность.
10. Теплообменник воздух-воздух по одному из пп.1-3, отличающийся тем, что изолирующая вставка (50) состоит из вспененного полимера.
RU2016118571A 2013-10-14 2014-10-01 Теплообменник воздух-воздух RU2634652C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102013111290.0 2013-10-14
DE102013111290.0A DE102013111290B3 (de) 2013-10-14 2013-10-14 Luft-Luft-Wärmetauscher
PCT/EP2014/071038 WO2015055435A1 (de) 2013-10-14 2014-10-01 Luft-luft-wärmetausche

Publications (1)

Publication Number Publication Date
RU2634652C1 true RU2634652C1 (ru) 2017-11-02

Family

ID=51264152

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016118571A RU2634652C1 (ru) 2013-10-14 2014-10-01 Теплообменник воздух-воздух

Country Status (9)

Country Link
US (1) US9976767B2 (ru)
EP (1) EP3058305B1 (ru)
JP (1) JP6211696B2 (ru)
CN (1) CN105637316B (ru)
DE (1) DE102013111290B3 (ru)
DK (1) DK3058305T3 (ru)
PL (1) PL3058305T3 (ru)
RU (1) RU2634652C1 (ru)
WO (1) WO2015055435A1 (ru)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HUE049624T2 (hu) * 2014-12-18 2020-09-28 Zehnder Group Int Ag Hõcserélõ
RU2579788C1 (ru) * 2014-12-30 2016-04-10 Открытое акционерное общество "АКМЭ - инжиниринг" Устройство дистанционирования трубок теплообменного аппарата (варианты)
US10921017B2 (en) * 2015-07-09 2021-02-16 Trane International Inc. Systems, aparatuses, and methods of air circulations using compact economizers
DE102015111828A1 (de) 2015-07-21 2017-01-26 Aereco GmbH Lüftungsvorrichtung zur Lüftung von Gebäuderäumen
DE202016103459U1 (de) 2016-06-29 2017-10-05 Aereco GmbH Lüftungsvorrichtung zur Lüftung von Gebäuderäumen
EP3121527B1 (de) 2015-07-21 2020-03-18 Aereco GmbH Lüftungsvorrichtung zur lüftung von gebäuderäumen
DE102017218254A1 (de) * 2017-10-12 2019-04-18 Mahle International Gmbh Abgaswärmeübertrager
CN108050677A (zh) * 2017-11-24 2018-05-18 苏州赛易特环保科技有限公司 一种蜂窝状的换热装置
CN108469197A (zh) * 2018-03-16 2018-08-31 青岛海尔空调器有限总公司 用于双向进出风管的热交换芯
CN109297326B (zh) * 2018-12-13 2023-12-05 广州威茨热能技术有限公司 一种烟气空气热交换器以及运用该交换器的二次预热烧嘴
DE102019105961B4 (de) * 2019-03-08 2022-09-15 ROOS GmbH Luft-Luft-Wärmetauscher
RU2727106C1 (ru) * 2020-01-29 2020-07-20 Иван Владимирович Мезенцев Теплоаккумулирующий теплообменник для реверсивных режимов работы в системах вентиляции
RU2739211C1 (ru) * 2020-02-19 2020-12-21 Федеральное государственное бюджетное учреждение науки Институт теплофизики им. С.С. Кутателадзе Сибирского отделение Российской академии наук (ИТ СО РАН) Модульный теплоаккумулирующий теплообменник для реверсивной системы вентиляции
DE102020121397B3 (de) * 2020-08-14 2021-06-02 Emanuel Lange Anordnung zur raumlüftung
DE202022100213U1 (de) 2022-01-14 2022-01-28 Rüdiger Schloo Luft-Luft-Wärmetauscher in Kombination mit einem Fensterflügel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3376028A (en) * 1965-04-27 1968-04-02 Central Electr Generat Board Tubular recuperative heat exchangers with socket members joining tube sections end to end
RU2386096C2 (ru) * 2008-04-11 2010-04-10 Общество с ограниченной ответственностью "ЭнергоТехника" Сотовый теплообменник с закруткой потока
DE102008058817A1 (de) * 2008-11-25 2010-05-27 Horst Hinterneder Luft-Luft-Wärmetauscher

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2389175A (en) * 1942-10-07 1945-11-20 Clifford Mfg Co Method of making heat exchange apparatus
US2488333A (en) * 1946-10-04 1949-11-15 Fred W Schlachter Air-conditioning apparatus and system
DE937168C (de) * 1952-09-20 1955-12-29 Huels Chemische Werke Ag Waermeaustauscher mit entlastetem Roehrenbuendel
US3134432A (en) * 1962-06-20 1964-05-26 United Aircraft Corp Heat exchanger
JPS5632766Y2 (ru) * 1974-05-09 1981-08-04
US4330036A (en) * 1980-08-21 1982-05-18 Kobe Steel, Ltd. Construction of a heat transfer wall and heat transfer pipe and method of producing heat transfer pipe
JPS6062591A (ja) * 1983-09-14 1985-04-10 Ngk Insulators Ltd 熱交換器
US4616696A (en) * 1984-08-10 1986-10-14 Canadian Patents And Development Limited Exhaust air heat exchanger
JPH0760072B2 (ja) * 1985-06-26 1995-06-28 西田鉄工株式会社 対向流型熱交換器
JPH053917Y2 (ru) * 1987-06-09 1993-01-29
US5297819A (en) * 1992-10-16 1994-03-29 Harder David R Quick connect/disconnect pipe coupling
DE4326189A1 (de) * 1993-08-04 1995-02-16 Steuler Industriewerke Gmbh Wabenförmiger Hohlkörper aus Kunststoff, vorzugsweise Polyolefinen
DE19835473A1 (de) * 1998-08-06 2000-02-10 Rainer Rudolf Belüftungsvorrichtung für ein Gebäude
US6896041B2 (en) 2001-08-14 2005-05-24 H2Gen Innovations, Inc. Heat exchange reactor having integral housing assembly
CA2443496C (en) * 2003-09-30 2011-10-11 Dana Canada Corporation Tube bundle heat exchanger comprising tubes with expanded sections
US20050135978A1 (en) * 2003-10-14 2005-06-23 Mourad Hamedi Method and apparatus for optimizing throughput in a trickle bed reactor
CN1563834A (zh) * 2004-04-08 2005-01-12 鞠飞 用于新风机的热交换器
DE102004046587B4 (de) 2004-09-23 2007-02-22 Josef Bachmaier Wärmetauscher
DE102005045734B4 (de) 2004-09-23 2010-04-29 Josef Bachmaier Wärmetauscher mit an diesem angeordneter Fördereinrichtung
DE102005035712A1 (de) 2005-07-27 2007-02-01 Bachmaier, Josef Kompaktlüftungsgerät mit Wärmerückgewinnung
DE102006051903A1 (de) 2005-09-23 2008-05-08 Josef Bachmaier Kompaktlüfter, bestehend aus Wärmetauscher mit integrierten oder angedockten Ventilatoren
GB2452927B (en) 2007-09-18 2012-09-19 Vent Axia Group Ltd A heat recovery ventilation device
GB2460426B (en) * 2008-05-29 2010-09-15 Richard Rickie Improvements in or relating to insulating panels
DE102008034819A1 (de) 2008-07-23 2010-01-28 Smk Systeme Metall Kunststoff Gmbh & Co. Kg. Abgaskühler
JP5758811B2 (ja) * 2009-12-11 2015-08-05 日本碍子株式会社 熱交換器
EP2551607B1 (en) * 2011-07-28 2018-10-17 LG Electronics Inc. Ventilation apparatus
CN104165450A (zh) * 2014-06-09 2014-11-26 北京绿创声学工程设计研究院有限公司 一种动力回收型管式消声器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3376028A (en) * 1965-04-27 1968-04-02 Central Electr Generat Board Tubular recuperative heat exchangers with socket members joining tube sections end to end
RU2386096C2 (ru) * 2008-04-11 2010-04-10 Общество с ограниченной ответственностью "ЭнергоТехника" Сотовый теплообменник с закруткой потока
DE102008058817A1 (de) * 2008-11-25 2010-05-27 Horst Hinterneder Luft-Luft-Wärmetauscher

Also Published As

Publication number Publication date
US20160231016A1 (en) 2016-08-11
EP3058305A1 (de) 2016-08-24
WO2015055435A1 (de) 2015-04-23
PL3058305T3 (pl) 2018-08-31
EP3058305B1 (de) 2018-04-11
US9976767B2 (en) 2018-05-22
JP6211696B2 (ja) 2017-10-11
JP2016538516A (ja) 2016-12-08
CN105637316A (zh) 2016-06-01
DK3058305T3 (en) 2018-06-25
CN105637316B (zh) 2018-07-20
DE102013111290B3 (de) 2014-08-21

Similar Documents

Publication Publication Date Title
RU2634652C1 (ru) Теплообменник воздух-воздух
US10197296B2 (en) Air purifier and blower device thereof
ES2895730T3 (es) Sistema de generador de energía eólica y dispositivo de transporte de fluidos
US10018296B2 (en) Connector
EP3168544B1 (de) Belüftungsvorrichtung
CA2966053A1 (en) Mixed flow fan
US5735342A (en) Heat exchanger
CN106662342A (zh) 改进的全热交换器
RU2004122402A (ru) Подверженный во время работы воздействию высоких тепловых нагрузок элемент конструкции способ его изготовления
RU2015126783A (ru) Электрическая машина с комбинированным воздушно-водяным охлаждением
JPS62111198A (ja) 軸流ブロワ
FI3271676T3 (en) Exchange element for passenger cabin and passenger cabin equipped with such an exchange element
CN103423203B (zh) 离心风机和道路清扫车
CN203491817U (zh) 液冷式电机
CN104251233B (zh) 贯流风机及具有其的风扇、取暖器
CN202599204U (zh) 壳管式换热器
CN102589051A (zh) 空调器室内机
US2944801A (en) Rotary interchanger with direct interfacial fluid contact
JP5865970B2 (ja) ガスタービン発電プラントにおける改良されたインテーク配列
KR200432432Y1 (ko) 덕트
CN110785621A (zh) 用于带轴流风扇的分布式空间通风设施的蓄热元件、蓄热装置和分布式空间通风设施
CN206250887U (zh) 外转子电机散热结构及外转子电机
CN104578518A (zh) 液冷式电机
CN103575089B (zh) 烘干滚筒
CN103790742A (zh) 一种高效的空气滤清器