RU2634577C1 - Способ получения противоспаечного пленочного материала на основе производных целлюлозы - Google Patents

Способ получения противоспаечного пленочного материала на основе производных целлюлозы Download PDF

Info

Publication number
RU2634577C1
RU2634577C1 RU2016130852A RU2016130852A RU2634577C1 RU 2634577 C1 RU2634577 C1 RU 2634577C1 RU 2016130852 A RU2016130852 A RU 2016130852A RU 2016130852 A RU2016130852 A RU 2016130852A RU 2634577 C1 RU2634577 C1 RU 2634577C1
Authority
RU
Russia
Prior art keywords
polymer
cellulose
heat treatment
film
temperature
Prior art date
Application number
RU2016130852A
Other languages
English (en)
Inventor
Валерий Анатольевич Жуковский
Вячеслав Евгеньевич Немилов
Ирина Ивановна Жуковская
Ольга Закировна Ахметшина
Надежда Андреевна Едомина
Никита Дмитриевич Кубин
Original Assignee
Общество с ограниченной ответственностью "Линтекс"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Линтекс" filed Critical Общество с ограниченной ответственностью "Линтекс"
Priority to RU2016130852A priority Critical patent/RU2634577C1/ru
Application granted granted Critical
Publication of RU2634577C1 publication Critical patent/RU2634577C1/ru

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L17/00Materials for surgical sutures or for ligaturing blood vessels ; Materials for prostheses or catheters
    • A61L17/06At least partially resorbable materials
    • A61L17/10At least partially resorbable materials containing macromolecular materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets

Abstract

Изобретение относится к технологии получения материалов для медицины на основе производных целлюлозы, в качестве которых используют гидроксиэтилцеллюлозу, и может быть использовано в качестве средства профилактики послеоперационных спаек в герниопластике на органах, имеющих серозное покрытие. Способ включает растворение гидроксиэтилцеллюлозы в воде в присутствии сшивающего агента - глутаровой кислоты в количестве 10-50% от массы полимера, сушку полученной пленки на воздухе при температуре 18-25°С и последующую термообработку при температуре 98-105°С в течение 180-360 мин. Способ позволяет обеспечить упрощение и повышение безопасности технологического процесса, понижение температуры термообработки, более длительное пребывание пленки в зоне постоперационного восстановления и повышение противоспаечного эффекта. 1 табл., 14 пр.

Description

Изобретение относится к области химической технологии высокомолекулярных соединений, в частности к технологии получения материалов для медицины на основе гидроксиэтилцеллюлозы (ГЭЦ), и может быть использовано в качестве средства профилактики образования послеоперационных спаек на органах, имеющих серозное покрытие. Спаечный процесс является серьезной проблемой общей хирургии, что обусловлено высокой вероятностью его развития 67-93% (Жуковский В.А. Полимерные эндопротезы для герниопластики: монография - СПб.: Эскулап, 2011. - 98 с.). В основе образования послеоперационных спаек лежит повреждение серозной поверхности оперируемых органов. В процессе восстановления основную роль играет фибрин, который откладывается на десерозированных поверхностях, при этом, если поврежденные участки находятся в соприкосновении, то они склеиваются и в дальнейшем в этих местах формируются соединительнотканные спайки. Наиболее перспективным считается применение во время оперативного вмешательства так называемых временных барьерных средств, которые могут быть в виде геля или пленки (Липатов В.А., Жуковский В.А., Мясников А.Д. Применение эфиров целлюлозы для профилактики послеоперационного спайкообразования // В сб. V Междунар. конф. «Современные подходы к разработке и клиническому применению эффективных перевязочных средств, шовных материалов и полимерных имплантатов». М., 2006. - С. 93-94). Барьер разобщает раневые поверхности и тем самым не дает образовываться сращениям. К тому моменту, когда поврежденная поверхность восстановится, искусственный барьер должен полностью рассосаться. В случае, когда после операции не остается инородного тела, вполне оправдано применение в качестве барьерного средства противоспаечного геля, однако, при продолжительном контакте поврежденных серозных поверхностей с твердыми имплантатами (сетчатый эндопротез, шовный материал) необходимо использовать пленки, обеспечивающие барьерное действие в течение более длительного (от 7 до 30 суток) и, желательно, заданного периода времени, за который имплантат будет инкапсулирован соединительной тканью. Таким образом, разработка и создание новых типов пленочных барьерных противоспаечных средств для хирургии является актуальной задачей в области полимерной химии и технологии медицинских материалов.
Известен способ получения пленочных мембран, обладающих наряду с антиадгезивными свойствами способностью к биодеструкции (рассасыванию) на основе интерполимерных комплексов из карбоксилсодержащих полисахаридов (CPS) и полиэфиров (РЕ). В качестве CPS, в основном, применяется карбоксиметилцеллюлоза или карбоксиэтилцеллюлоза, гиалуроновая кислота, альгинат, карбоксиметилхитозан, пектин, гепарин и хондроитинсульфат с молекулярной массой 600-5000 кДа. В качестве РЕ использовали полиэтиленоксид с молекулярной массой 100-5000 кДа и при массовом соотношении от 5 до 90%. Для обеспечения межмолекулярного взаимодействия процесс проводили в кислой среде (US №5906997, МПК А61К 31/715, оп. 25.05.1999). Полученные пленочные материалы жесткие, рассасываются в физиологических средах в течение двух суток, что вызывает значительные затруднения при их применении в качестве временных противоспаечных барьеров в хирургической практике. Технологический процесс сопряжен с применением летучей и токсичной соляной кислоты.
Наиболее близким заявляемому изобретению является способ получения пористых, пленочных материалов на основе карбоксиметилцеллюлозы (КМЦ), включающий растворение КМЦ в 2-7%-ном водном растворе соляной кислоты в присутствии сшивающего агента (танин, декстрин, аминокапроновая, аминоуксусная, салициловая кислоты), сушку с последующей термообработкой на воздухе при температуре 110-150°С в течение 30-360 мин (патент РФ №2509784, МПК C08J 5/18, B01D 71/02, оп. 20.03.2014). Полученные пленочные материалы характеризуются временем рассасывания в эксперименте на животных не более 7 суток. Выраженность спаечного процесса в баллах (определяемая по методике, разработанной Липатовым В.А. «Концепция профилактики послеоперационного спаечного процесса брюшной полости с применением барьерных средств»: дис. док. мед. наук., Курск, 2013 г.) при их применении снижается с 5,1 до 1,7 балла. В то же время недостатками данного способа являются опасность технологического процесса, связанная с применением соляной кислоты для перевода COONa-групп КМЦ в функционально активную Н-форму, без чего невозможен процесс химической сшивки карбоксильных групп с группами основного характера, присутствующими в любом из вышеназванных сшивающих агентов. Недостаточна продолжительность рассасывания барьерного средства.
Технической задачей, на решение которой направлено данное изобретение, является упрощение и повышение безопасности технологического процесса за счет исключения из него соляной кислоты, понижение температуры термообработки при одновременном снижении набухания получаемых пленочных материалов путем регулирования степени сшивки ГЭЦ (образования межмолекулярных эфирных связей), повышение противоспаечного эффекта за счет снижения набухания (соответственно, увеличения сроков рассасывания пленочного материала), что обеспечивает пролонгированное его пребывание (до 29 сут) в зоне постоперационного восстановления.
Поставленная техническая задача решается за счет того, что в способе получения противоспаечного пленочного материала, включающем растворение полимера в воде в присутствии сшивающего агента, сушку и термообработку на воздухе, в качестве полимера используют ГЭЦ, в качестве сшивающего агента - глутаровую кислоту (ГК) в количестве 10-50% от массы полимера, сушку осуществляют при 18-25°С, а термообработку проводят при 98-105°С в течение 180-360 мин. Существенными отличиями заявляемого технического решения является использование в качестве производного целлюлозы неионогенной водорастворимой ГЭЦ, а в качестве сшивающего агента - водорастворимой дикарбоновой ГК в определенном режиме. В указанных выше условиях гидроксильные группы полимера вступают в реакцию с карбоксильными группами ГК, образуя межмолекулярные сшивки в количестве, регулируемом содержанием сшивающего агента, температурой и продолжительностью последующих стадий процесса, в основном стадии термообработки. Кроме того, исключение соляной кислоты из технологического процесса упрощает его и повышает безопасность. Именно сочетание предлагаемых реагентов в определенном режиме является основополагающим в решении поставленной технической задачи.
Изобретение иллюстрируется следующими примерами.
Пример 1
20 г ГЭЦ и 6 г (30% от массы полимера) ГК растворяли при температуре 18°С в 1000 мл воды и сушили в кювете при температуре 20°С. Высушенную пленку термообрабатывали при 100°С в течение 320 мин. Полученная пленка имела набухание 220%. Далее образец подвергали экспериментальным испытаниям на животных для определения величины противоспаечного эффекта и времени пребывания пленки в постоперационной ране до полного рассасывания.
Пример 14
Была проведена серия экспериментов на мелких животных, направленная на определение эффективности полученных пленочных имплантов. Она заключалась в моделировании спаечного процесса в брюшной полости у животных, которые были разделены на две группы по 20 штук в каждой. Использовали половозрелых лабораторных крыс самцов линии Вистар массой 170-190 г. Под наркозом производили срединную лапаротомию, в рану выводили слепую кишку и десерозировали купол слепой кишки марлевой салфеткой. Животным контрольной группы ничего не вводили в брюшную полость, животным опытной группы на десерозированный участок помещали пленку на основе ГЭЦ, содержащую в качестве сшивающего агента ГК в количестве 30% от массы полимера, термообработанную при температуре 100°С в течение 320 мин и обладающую набуханием 220% (по примеру 1). Слепую кишку погружали обратно в брюшную полость и рану послойно ушивали. Время пребывания твердого барьера (пленки) в брюшной полости до полного рассасывания составило 20-29 суток. Спаечный процесс оценивали в баллах, результаты эксперимента обрабатывали статистически. В контрольной группе спайкообразование отмечалось у всех животных и составило 18,2 балла, а в опытной группе 1,05 балла. В первой группе в области купола слепой кишки происходило тотальное запаивание органа, в опытной группе на закрытой пленкой десерозированной поверхности спаек не наблюдали, при этом следов пленки в брюшной полости не обнаружено. Гистологические исследования внутренних органов животных обеих групп паталогических изменений не выявили. Морфологическая структура спаек в первой группе соответствует нормальным срокам созревания сращений, во второй группе брюшинный покров в области слепой кишки практически не отличался от здоровой брюшины.
Остальные примеры представлены в таблице.
Из приведенных данных видно, что во всем диапазоне параметров (примеры 1-13) свойства полученных пленок регулируются в широких пределах: набухание 110-370% и выраженность спаечного процесса 1,05-1,27 балла (для сравнения данный показатель в прототипе в зависимости от типа применяемого сшивающего агента варьируется от 1,77 до 3,78 балла). Интервал температур 98-105°С обоснован протеканием двух параллельных процессов - образование сшивок между макромолекулами и термодеструкция полимера. При температуре ниже 98°С равновесный процесс образования сшивок идет с очень низкой скоростью из-за медленного удаления образовавшейся воды. Повышение температуры выше 105°С приводит к преобладанию процессов деструкции и образованию токсичных продуктов распада.
Figure 00000001
Временные параметры термообработки выбраны с учетом получения пленок с широким диапазоном набухания (примеры 11-13) и сведению к минимуму процессов термодеструкции.
Выбор сшивающего агента ГК обусловлен возможностью применения его в хирургии, например в абдоминальной. Нижний предел его концентрации определяется эффективностью сшивки (пример 2), а верхний (пример 4) - стабильностью растворов в процессе получения пленок и эффективностью образования сшивок.

Claims (1)

  1. Способ получения противоспаечного пленочного материала на основе производных целлюлозы, включающий растворение полимера в воде в присутствии сшивающего агента, сушку и термообработку на воздухе, отличающийся тем, что в качестве полимера используют гидроксиэтилцеллюлозу, в качестве сшивающего агента - глутаровую кислоту в количестве 10-50% от массы полимера, сушку осуществляют при 18-25°C, а термообработку проводят при 98-105°C в течение 180-360 мин.
RU2016130852A 2016-07-26 2016-07-26 Способ получения противоспаечного пленочного материала на основе производных целлюлозы RU2634577C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016130852A RU2634577C1 (ru) 2016-07-26 2016-07-26 Способ получения противоспаечного пленочного материала на основе производных целлюлозы

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016130852A RU2634577C1 (ru) 2016-07-26 2016-07-26 Способ получения противоспаечного пленочного материала на основе производных целлюлозы

Publications (1)

Publication Number Publication Date
RU2634577C1 true RU2634577C1 (ru) 2017-10-31

Family

ID=60263534

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016130852A RU2634577C1 (ru) 2016-07-26 2016-07-26 Способ получения противоспаечного пленочного материала на основе производных целлюлозы

Country Status (1)

Country Link
RU (1) RU2634577C1 (ru)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5906997A (en) * 1997-06-17 1999-05-25 Fzio Med, Inc. Bioresorbable compositions of carboxypolysaccharide polyether intermacromolecular complexes and methods for their use in reducing surgical adhesions
RU2224549C1 (ru) * 2003-01-08 2004-02-27 Мустафин Айрат Харисович Способ получения комбинированного биоматериала с противоспаечным эффектом
RU2509784C2 (ru) * 2012-04-10 2014-03-20 Общество с ограниченной ответственностью "Линтекс" Способ получения пористых, пленочных материалов на основе карбоксиметилцеллюлозы

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5906997A (en) * 1997-06-17 1999-05-25 Fzio Med, Inc. Bioresorbable compositions of carboxypolysaccharide polyether intermacromolecular complexes and methods for their use in reducing surgical adhesions
RU2224549C1 (ru) * 2003-01-08 2004-02-27 Мустафин Айрат Харисович Способ получения комбинированного биоматериала с противоспаечным эффектом
RU2509784C2 (ru) * 2012-04-10 2014-03-20 Общество с ограниченной ответственностью "Линтекс" Способ получения пористых, пленочных материалов на основе карбоксиметилцеллюлозы

Similar Documents

Publication Publication Date Title
US11857701B2 (en) Anti-adhesive barrier membrane using alginate and hyaluronic acid for biomedical applications
US11229724B2 (en) Biocompatible and bioabsorbable derivatized chitosan compositions
JP4275204B2 (ja) 酸化セルロ−ス多層フィルムを形成する方法及び手術癒着を防止するための方法
AU2007269406B2 (en) Flexible bioresorbable hemostatic packing and stent
KR101649792B1 (ko) 비압박 지혈용 고분자 폼 제조용 조성물, 이를 이용한 비압박 지혈용 고분자 폼의 제조방법 및 비압박 지혈 팩킹용 고분자 폼
KR20020062301A (ko) 수난용성화된 가용성 셀룰로오스 유도체의 용도 및 그제조방법
CN115569232B (zh) 双层水凝胶敷料及其制备方法和应用
WO2016085923A1 (en) Process for preparing tissue regeneration matrix
RU2509784C2 (ru) Способ получения пористых, пленочных материалов на основе карбоксиметилцеллюлозы
RU2629841C1 (ru) Способ получения противоспаечного пленочного материала на основе карбоксиметилцеллюлозы
RU2634577C1 (ru) Способ получения противоспаечного пленочного материала на основе производных целлюлозы
RU2629842C1 (ru) Способ получения противоспаечного пленочного материала на основе карбоксиметилцеллюлозы
AU2015397501A1 (en) Method for manufacturing collagen film using ultraviolet light, collagen film manufactured by using same, and biomaterial prepared using collagen film
CN103550833A (zh) 一种药物控释膜材料及制备方法
RU2352584C1 (ru) Способ получения геля на основе карбоксиметилцеллюлозы
Lee et al. Prevention of surgical adhesions with barriers of carboxymethylcellulose and poly (ethylene glycol) hydrogels synthesized by irradiation
RU2627666C1 (ru) Способ получения хирургического барьерного материала на основе полисахаридов
WO2021201150A1 (ja) 生体吸収性医療材料
JP2003019194A (ja) ヒアルロン酸とカルボキシメチルセルロースからなる共架橋ゲル組成物
WO2017205740A1 (en) Process for preparing tissue regeneration matrix
JP2019519619A (ja) 医療用繊維構造物及び医療用積層体
CN114832148A (zh) 一种具有抗菌消炎功能的止血材料及制备方法与用途
WO2018082092A1 (en) Biological tissue-reinforcing material