RU2634557C2 - Литейный сплав на основе титана - Google Patents

Литейный сплав на основе титана Download PDF

Info

Publication number
RU2634557C2
RU2634557C2 RU2016109729A RU2016109729A RU2634557C2 RU 2634557 C2 RU2634557 C2 RU 2634557C2 RU 2016109729 A RU2016109729 A RU 2016109729A RU 2016109729 A RU2016109729 A RU 2016109729A RU 2634557 C2 RU2634557 C2 RU 2634557C2
Authority
RU
Russia
Prior art keywords
titanium
content
iron
alloy
oxygen
Prior art date
Application number
RU2016109729A
Other languages
English (en)
Other versions
RU2016109729A (ru
Inventor
Валерий Петрович Леонов
Анатолий Сергеевич Кудрявцев
Евгений Васильевич Чудаков
Людмила Александровна Иванова
Нэлли Федоровна Молчанова
Максим Владимирович Иксанов
Original Assignee
Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт конструкционных материалов "Прометей" имени И.В. Горынина Национального исследовательского центра "Курчатовский институт" (НИЦ "Курчатовский институт" - ЦНИИ КМ "Прометей")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт конструкционных материалов "Прометей" имени И.В. Горынина Национального исследовательского центра "Курчатовский институт" (НИЦ "Курчатовский институт" - ЦНИИ КМ "Прометей") filed Critical Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт конструкционных материалов "Прометей" имени И.В. Горынина Национального исследовательского центра "Курчатовский институт" (НИЦ "Курчатовский институт" - ЦНИИ КМ "Прометей")
Priority to RU2016109729A priority Critical patent/RU2634557C2/ru
Publication of RU2016109729A publication Critical patent/RU2016109729A/ru
Application granted granted Critical
Publication of RU2634557C2 publication Critical patent/RU2634557C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Arc Welding In General (AREA)
  • Ceramic Products (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

Изобретение относится к области цветной металлургии, в частности к свариваемым литейным сплавам на основе титана, и предназначено для изготовления фасонных отливок, используемых в ответственных сварно-литых конструкциях энергомашиностроения при температуре до 450°С. Литейный свариваемый сплав на основе титана содержит, мас.%: алюминий 5,0-6,0, молибден 1,0-2,0, ванадий 1,0-2,0, углерод 0,06-0,14, кислород 0,05-0,12, водород 0,002-0,008 железо 0,02-0,15, кремний 0,05-0,08. Сплав характеризуется высоким пределом ползучести при 450°С и высоким качеством сварных соединений. 2 табл., 1 пр.

Description

Изобретение относится к цветной металлургии, в частности к металлургии свариваемых, жаропрочных литейных сплавов на основе титана, и предназначено для изготовления фасонных отливок, используемых в ответственных сварно-литых конструкциях энергомашиностроения при температуре до 450°С.
Известны литейные жаропрочные (α+β) сплавы на основе титана марок ВТ8Л и ВТ9Л (Н.Ф. Аношкин, А.Ф. Белов, Б.И. Бондарев и др. Производство фасонных отливок из титановых сплавов, М., ВИЛС, 1988).
Сплавы этой группы имеют достаточно высокий предел прочности. Недостатком этих сплавов являются низкие показатели пластичности, ударной вязкости и склонность к растрескиванию сварных соединений из-за повышенного содержания молибдена, кислорода, железа, кремния.
Известен жаропрочный литейный псевдо α-сплав марки IMI 834, содержащий 5,8% Al, 4% Sn, 3,5% Zr, 0,7% Nb, 0,5% Mo, 0,33% Si. Недостатком этого сплава является склонность к растрескиванию сварных соединений из-за повышенного содержания кремния (А.А. Ильин, Б.А. Колачев, И.С. Полькин. Титановые сплавы. Состав, структура, свойства. ВИЛС-МАТИ, М., 2009).
Наиболее близким по технической сущности и составу ингредиентов является литейный сплав марки ВТ20Л, взятый в качестве прототипа, содержащий алюминий 5,5-6,8%, молибден 0,5-2,0%, ванадий 0,8-1,8%, цирконий 1,5-2,5% и примеси (не более): углерод 0,15%, кислород 0,15%, водород 0,015%), железо 0,30%, кремний 0,15%, (Н.Ф. Аношкин, А.Ф. Белов, Б.И. Бондарев и др. Производство фасонных отливок из титановых сплавов, М., ВИЛС. 1988). Сплав обладает достаточно хорошим комплексом механических свойств, но ограниченно используется в сварных соединениях из-за склонности к образованию в них трещин из-за повышенного содержания алюминия, углерода, водорода, железа, кислорода. Недостатками сплава при температуре 450°С являются более низкие значения ползучести по сравнению с требованиями для ответственных литосварных конструкций энергомашиностроения, склонность к образованию трещин в сварных соединениях
Техническим результатом предлагаемого изобретения является создание литейного свариваемого сплава на основе титана, обладающего более высоким пределом ползучести при температуре 450°С и хорошим качеством сварных соединений, чем известный сплав.
Технический результат достигается за счет того, что сплав на основе титана содержит алюминий, молибден, ванадий, углерод, кислород, водород, железо, кремний при следующем соотношении компонентов мас.%:
алюминий 5,0-6,0
молибден 1,0-2,0
ванадий 1,0-2,0
углерод 0,06-0,14
кислород 0,05-0,12
водород 0,002-0,008
железо 0,02-0,15
кремний 0,05-0,08,
при выполнении следующих соотношений: Fe+Si≤0,20%.
Выполнение условия Fe+Si≤0,20% рассматривается как комплексное легирование сплава, способствующее получению однородного структурного состояния, что приводит к повышению длительной прочности и сопротивления ползучести.
Содержание Fe+Si≥0,20% ведет к образованию сегрегации железа и кремния по границам зерен, что вызывает охрупчивание сплава, снижение пластических свойств и образованию трещин в сварных соединениях.
Алюминий в указанных пределах повышает прочность и жаропрочность, при содержании алюминия выше 6,0% происходит снижение пластичности основного металла и сварных соединений, предела ползучести за счет протекания процессов упорядочения в α-фазе. При содержании менее 5,0% снижается прочность и жаропрочность.
Молибден в указанных пределах повышает предел длительной прочности и ползучести. При содержании молибдена более 2,0% возможно образование трещин в сварных соединениях за счет образования малопластичной α'-фазы в зоне термического влияния и снижение предела ползучести. При содержании молибдена ниже 1,0% происходит снижение прочности и длительной прочности при температуре 450°С.
Ванадий при содержании 1,0-2,0% повышает статическую и длительную прочность за счет твердорастворного упрочнения. Ванадий за счет воздействия на параметры решетки α-титана уменьшает соотношение осей кристаллической решетки, что ведет к повышению способности α-фазы к пластической деформации и повышению качества сварных соединений. Ванадий при содержании менее 1,0% не обеспечивает повышение прочности. При содержании ванадия более 2,0% увеличивается количество β-фазы, что ведет к снижению сопротивления ползучести при 450°С.
При содержании углерода более 0,14% образуется карбид титана TiC, снижается пластичность и предел ползучести. Содержание углерода менее 0,05% снижает жаропрочность.
Содержание кислорода более 0,12% ведет к снижению пластичности и предела ползучести, образованию трещин в сварных соединениях. Содержание кислорода менее 0,05% ведет к снижению прочности.
При содержании водорода более 0,008% происходит снижение пластичности и образование трещин в сварных соединениях. Содержание водорода менее 0,002% невыполнимо технологически при проведении плавки в вакуумной дуговой гарниссажной печи.
Содержание железа более 0,15% ведет к снижению пластичности сплава и качества сварных соединений. Содержание железа менее 0,02% технологически невыполнимо из-за содержания железа в титановой губке.
При содержании кремния более 0,08% образуется хрупкая фаза Ti2Si3, которая снижает пластичность и качество сварных соединений.
В заявляемом изобретении легирующие и примесные элементы (кислород, кремний, железо) находятся в таком соотношении, чтобы обеспечить повышенное сопротивление ползучести при температуре 450°С.
Пример выполнения
Составы предлагаемого и известного сплавов выплавляли в вакуумной дуговой гарниссажной плавильно-заливочной печи
Из предлагаемого и известного сплавов отливали литые заготовки типа «плита» размером 20×300×400 мм для изготовления образцов. Заливку металла выполняли в формы из магнезита. Показатели механических свойств определяли при испытаниях на разрыв по ГОСТ 1497-84 и ударных образцах по ГОСТ 9454-78. Оценку качества сварного соединения проводили при определении работы разрушения образцов с исходной трещиной при ударном изгибе ату. За критерий оценки свариваемости принято равенство свойств сварного соединения по сравнению с основным материалом.
Испытания на длительную прочность в соответствии с ГОСТ 10145-81 проводили на образцах с диаметром рабочей части 5 мм, продолжительность испытания 100 часов, температура испытаний +450°С.
Испытания на ползучесть проводили в соответствии с ГОСТ 3248-81 на цилиндрических образцах диаметром 5 мм. За предел ползучести принимали напряжение, при котором остаточная деформации за промежуток 100 часов не превысила величины 0,2%.
Химический состав предлагаемого и известного сплавов приведен в таблице 1. Результаты испытаний приведены в таблице 2.
Figure 00000001
Figure 00000002

Claims (3)

  1. Литейный свариваемый сплав на основе титана, содержащий алюминий, молибден ванадий, углерод, кислород, водород, железо и кремний, отличающийся тем, что компоненты находятся при следующем соотношении, мас.%:
  2. алюминий 5,0-6,0 молибден 1,0-2,0 ванадий 1,0-2,0 углерод 0,06-0,14 кислород 0,05-0,12 водород 0,002-0,008 железо 0,02-0,15 кремний 0,05-0,08,
  3. при выполнении следующего соотношения: Fe+Si≤0,20%.
RU2016109729A 2016-03-17 2016-03-17 Литейный сплав на основе титана RU2634557C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016109729A RU2634557C2 (ru) 2016-03-17 2016-03-17 Литейный сплав на основе титана

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016109729A RU2634557C2 (ru) 2016-03-17 2016-03-17 Литейный сплав на основе титана

Publications (2)

Publication Number Publication Date
RU2016109729A RU2016109729A (ru) 2017-09-21
RU2634557C2 true RU2634557C2 (ru) 2017-10-31

Family

ID=59930986

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016109729A RU2634557C2 (ru) 2016-03-17 2016-03-17 Литейный сплав на основе титана

Country Status (1)

Country Link
RU (1) RU2634557C2 (ru)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2893864A (en) * 1958-02-04 1959-07-07 Harris Geoffrey Thomas Titanium base alloys
GB838519A (en) * 1956-07-23 1960-06-22 Crucible Steel Co America Stable beta containing alloys of titanium
RU1131234C (ru) * 1983-06-09 1994-10-30 ВНИИ авиационных материалов Сплав на основе титана
JPH08120373A (ja) * 1994-08-22 1996-05-14 Sumitomo Metal Ind Ltd 高クリープ強度チタン合金とその製造方法
JP2004010963A (ja) * 2002-06-06 2004-01-15 Daido Steel Co Ltd 高強度Ti合金およびその製造方法
DE102006031469A1 (de) * 2006-07-05 2008-01-10 Wickeder Westfalenstahl Gmbh Verfahren zum Herstellen eines Bauteils aus einem Titan-Flachprodukt für Hochtemperaturanwendungen

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB838519A (en) * 1956-07-23 1960-06-22 Crucible Steel Co America Stable beta containing alloys of titanium
US2893864A (en) * 1958-02-04 1959-07-07 Harris Geoffrey Thomas Titanium base alloys
RU1131234C (ru) * 1983-06-09 1994-10-30 ВНИИ авиационных материалов Сплав на основе титана
JPH08120373A (ja) * 1994-08-22 1996-05-14 Sumitomo Metal Ind Ltd 高クリープ強度チタン合金とその製造方法
JP2004010963A (ja) * 2002-06-06 2004-01-15 Daido Steel Co Ltd 高強度Ti合金およびその製造方法
DE102006031469A1 (de) * 2006-07-05 2008-01-10 Wickeder Westfalenstahl Gmbh Verfahren zum Herstellen eines Bauteils aus einem Titan-Flachprodukt für Hochtemperaturanwendungen

Also Published As

Publication number Publication date
RU2016109729A (ru) 2017-09-21

Similar Documents

Publication Publication Date Title
KR102037086B1 (ko) 지열 발전 터빈 로터용 저합금강 및 지열 발전 터빈 로터용 저합금 물질, 및 이들의 제조 방법
CA2841329A1 (en) Hot-forgeable ni-based superalloy excellent in high temperature strength
JP6476704B2 (ja) ニッケル基鋳造合金及び熱間鍛造金型
JP6965938B2 (ja) オーステナイト系ステンレス鋼溶接金属および溶接構造物
JP2010150624A (ja) 鋳造用アルファ+ベータ型チタン合金及びこれを用いたゴルフクラブヘッド
WO2019069998A1 (ja) オーステナイト系ステンレス鋼
JP6690359B2 (ja) オーステナイト系耐熱合金部材およびその製造方法
JP2010188421A (ja) 溶接充填材
RU2634557C2 (ru) Литейный сплав на основе титана
JP6795038B2 (ja) オーステナイト系耐熱合金およびそれを用いた溶接継手
JP6747207B2 (ja) Ni基耐熱合金部材
JP5852039B2 (ja) 耐熱マグネシウム合金
JP6736964B2 (ja) オーステナイト系耐熱合金部材
RU2588949C1 (ru) СПЛАВ НА ОСНОВЕ ИНТЕРМЕТАЛЛИДА Ni3Al И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО
JP2017137534A (ja) ニッケル基合金
JP6045823B2 (ja) スタッド溶接に用いられる鉄筋用棒鋼の製造方法
RU2614228C1 (ru) Литейный сплав на основе титана
JP6787246B2 (ja) 耐熱部材用合金原板、耐熱部材用合金板、およびエンジンの排気系部材用のガスケット
JP5554180B2 (ja) オーステナイト系ステンレス鋼
JP6825514B2 (ja) オーステナイト系耐熱合金部材
JP2015187304A (ja) 高温強度に優れた耐熱合金およびその製造方法と耐熱合金ばね
JP2019130591A (ja) 溶接継手
JP2019173122A (ja) 溶接継手
JP2015004125A (ja) 析出硬化型Fe−Ni合金
RU2560481C1 (ru) СПЛАВ НА ОСНОВЕ СИСТЕМЫ Al-Cu-Li И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО