RU2633533C2 - Способ эксплуатации литий-ионной аккумуляторной батареи - Google Patents
Способ эксплуатации литий-ионной аккумуляторной батареи Download PDFInfo
- Publication number
- RU2633533C2 RU2633533C2 RU2016109539A RU2016109539A RU2633533C2 RU 2633533 C2 RU2633533 C2 RU 2633533C2 RU 2016109539 A RU2016109539 A RU 2016109539A RU 2016109539 A RU2016109539 A RU 2016109539A RU 2633533 C2 RU2633533 C2 RU 2633533C2
- Authority
- RU
- Russia
- Prior art keywords
- voltage
- battery
- lithium
- batteries
- value
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/44—Methods for charging or discharging
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
Изобретение относится к электротехнической промышленности и может быть использовано при разработке и эксплуатации литий-ионных аккумуляторных батарей, в том числе в автономных системах электропитания искусственных спутников Земли (ИСЗ). Способ эксплуатации литий-ионной аккумуляторной батареи заключается в проведении зарядно-разрядных циклов, хранении в заряженном состоянии и балансировке аккумуляторов по напряжению, при этом балансировку проводят путем подзаряда от индивидуальных источников напряжения или тока с одновременным разрядом каждого аккумулятора на индивидуальные резисторы, равные между собой по величине сопротивления, которую определяют исходя из соотношения: R=Uмах акк/Iподз, где R - величина сопротивления резистора, Ом; Uмах акк - максимальное значение напряжения аккумулятора, В; Iподз - величина тока подзаряда при максимальном значении напряжения аккумулятора, А. Повышение надежности эксплуатации литий-ионной аккумуляторной батареи является техническим результатом изобретения. 3 з.п. ф-лы, 2 ил.
Description
Изобретение относится к электротехнической промышленности и может быть использовано при разработке и эксплуатации литий-ионных аккумуляторных батарей, в том числе в автономных системах электропитания искусственных спутников Земли (ИСЗ).
Известны литий-ионные аккумуляторные батареи и способы их эксплуатации, заключающиеся в проведении заряд-разрядных циклов и контроле напряжения аккумуляторов и описанные в книге «Д.А. Хрусталев, «Аккумуляторы», М., Изумруд, 2003 г., глава 4». В данной работе отмечается очень низкое внутреннее сопротивление аккумуляторов и возможность управления процессами заряда-разряда только по текущим значениям напряжений аккумуляторов. При этом отмечается, что перезаряд и переразряд аккумуляторов категорически недопустим и в аккумуляторных батареях должны быть предусмотрены средства зашиты. Однако известная информация касается в основном наземного применения литий-ионных аккумуляторных батарей в мобильных телефонах и компьютерной технике и не решает вопросов надежной эксплуатации в течение длительного ресурса в составе ИСЗ.
Известен способ эксплуатации литий-ионной аккумуляторной батареи, заключающийся в проведении заряд-разрядных циклов, контроле напряжения аккумуляторов и проведении в процессе эксплуатации балансировки аккумуляторов по напряжению путем подразряда аккумуляторов на резисторы до достижения их напряжением величины напряжения наиболее разряженного (наименее заряженного) аккумулятора («Батарея 6ЛИ-25, ЖЦПИ.563561.002 ПС», разработки и изготовления предприятия ОАО «Сатурн», г. Краснодар).
В известной литий-ионной аккумуляторной батарее 6ЛИ-25, согласно ЖЦПИ.563561.002 ПС, периодически контролируют напряжение аккумуляторов и, если разность поэлементных напряжений наиболее заряженного и наименее заряженного аккумуляторов превышает 25 мВ, проводят выравнивание аккумуляторов по емкости путем разряда более заряженных аккумуляторов на балансировочные резисторы до снижения отличия в напряжениях аккумуляторов не более 10 мВ.
Недостатком известного способа выравнивания аккумуляторов по емкости, реализованного известной аккумуляторной батареей является то, что процесс выравнивания может быть достаточно длительным, что ограничивает функциональные возможности ИСЗ.
Кроме того, приведение емкости всех аккумуляторов к емкости наименее заряженного аккумулятора (а не наоборот) представляется неэффективным, так как на момент достижения выравнивания аккумуляторов батарея имеет емкость меньше ее потенциальных возможностей.
Известен способ эксплуатации литий-ионной аккумуляторной батареи (патент КНР CN 1607708), заключающийся в проведении заряд-разрядных циклов, контроле напряжения аккумуляторов и проведении в процессе эксплуатации балансировки аккумуляторов по напряжению путем индивидуального подзаряда или подразряда аккумуляторов на резисторы до достижения их напряжения наперед выбранной величины.
Недостатками известного способа выравнивания аккумуляторов по емкости являются низкие технологичность и надежность, обусловленные наличием многочисленных коммутаторов и необходимостью индивидуальной работы с каждым аккумулятором.
Наиболее близким техническим решением является способ эксплуатации литий-ионной аккумуляторной батареи (патент RU №2408958), заключающийся в проведении зарядно-разрядных циклов, контроле напряжения каждого аккумулятора и балансировке аккумуляторов по напряжению, отличающийся тем, что балансировку аккумуляторов по напряжению проводят путем подзаряда от индивидуальных источников напряжения с ограничением по току посредством резисторов, при этом уровень напряжения индивидуальных источников выбирают не более максимального зарядного напряжения аккумулятора, а ток подзаряда ограничивают по его минимальному эффективному значению при минимальном существенном значении разницы напряжений аккумуляторов, но на уровне больше максимального тока саморазряда аккумуляторов, кроме того, мощность индивидуальных источников напряжения выбирают из условия непревышения током подзаряда заранее выбранной величины, в пределах рабочего диапазона напряжения аккумуляторов. Этот способ принят за прототип заявляемому техническому решению.
Известный способ устраняет указанные выше недостатки, однако требует обеспечения высокой точности и стабильности выходного напряжения индивидуальных источников, что при длительном ресурсе работы представляет существенную сложность и снижает надежность способа эксплуатации литий-ионной аккумуляторной батареи.
Задачей предлагаемого изобретения является повышение надежности эксплуатации литий-ионной аккумуляторной батареи.
Поставленная задача решается тем, что при проведении зарядно-разрядных циклов, хранении в заряженном состоянии и балансировке аккумуляторов по напряжению, путем подзаряда от индивидуальных источников напряжения или тока, балансировку аккумуляторов по напряжению от индивидуальных источников напряжения или тока проводят с одновременным разрядом каждого аккумулятора на индивидуальные резисторы, равные между собой по величине сопротивления. При этом величину сопротивления индивидуальных резисторов выбирают исходя из соотношения:
R = Uмax акк/Iподз,
где R - величина сопротивления резистора, Ом;
Uмax акк - максимальное значение напряжения аккумулятора, В;
Iподз - величина тока подзаряда при максимальном значении напряжения аккумулятора, А.
Кроме того, балансировку аккумуляторов по напряжению проводят в процессе эксплуатации литий-ионной аккумуляторной батареи в составе ИСЗ или в процессе хранения литий-ионной аккумуляторной батареи в заряженном состоянии.
Действительно, предлагается использовать известные способы выравнивания напряжения аккумуляторов путем их индивидуального подзаряда или подразряда. Однако совмещение двух известных способов выравнивания напряжения аккумуляторов дает новый положительный эффект, а именно, позволяет обеспечить автономность процесса выравнивания, когда не требуется контроля напряжения аккумуляторов в процессе эксплуатации аккумуляторной батареи. Процесс выравнивания идет непрерывно и без дополнительных корректирующих действий. Это повышает надежность процесса выравнивания и, соответственно, надежность эксплуатации литий-ионной аккумуляторной батареи. Можно отметить, что это наиболее актуально, когда возможности контроля за процессом выравнивания напряжения аккумуляторов ограничены, например, при отсутствии в составе ИСЗ бортовой ЭВМ или эксплуатации аккумуляторной батареи в составе низколетящих ИСЗ, находящихся в зоне радиовидимости весьма ограниченное время.
При этом наиболее эффективно балансировку аккумуляторов по напряжению по заявляемому способу проводить в процессе эксплуатации литий-ионной аккумуляторной батареи в составе ИСЗ или в процессе хранения литий-ионной аккумуляторной батареи в заряженном состоянии.
На фиг. 1 приведены графики изменения тока подзаряда аккумулятора при подзаряде его от источника напряжения - 1, тока подзаряда аккумулятора при подзаряде его от источника тока - 2 и тока подразряда аккумулятора на индивидуальный резистор - 3, в зависимости от текущего напряжения аккумулятора U.
Руководствуясь соотношением настоящего изобретения:
R=Uмax акк/Iподз,
где R - величина сопротивления резистора, Ом;
Uмax акк - максимальное значение напряжения аккумулятора, В;
Iподз - величина тока подзаряда при максимальном значении напряжения аккумулятора, А, все перечисленные выше графики пересекутся в точке &, соответствующей максимальному значению напряжения аккумулятора Uмax акк.
Иными словами, в точке & ток подзаряда аккумулятора становится равным току подразряда и процесс автоматически переходит в равновесное состояние.
На фиг. 2 приведена упрощенная функциональная схема литий-ионной аккумуляторной батареи с преобразователем постоянного напряжения в постоянное напряжение, поясняющая работу по предлагаемому способу.
Аккумуляторная батарея 1 содержит «n» последовательно соединенных аккумуляторов 21-2n.
Параллельно аккумуляторам подключены резисторы 2/1-2/n через контакты 2-1 - 2-n.
Дополнительно введен маломощный преобразователь постоянного напряжения в постоянное напряжение 4 с «n» гальванически развязанными (посредством трансформатора 5) выходами (индивидуальными источниками) с выпрямителями постоянного тока.
Каждый из индивидуальных источников (выходов преобразователя) состоит из вторичной обмотки 61-6n трансформатора 5 и диодов 71-7n и 81-8n. Первичная обмотка 9 трансформатора 5, имеющая среднюю точку, предназначена для подключения к источнику стабилизированного постоянного напряжения (к выходу автономной системы электропитания) - клеммы «+» и «-» через преобразователь постоянного напряжения в переменное 10 на транзисторах 11 и 12.
Для ограничения тока подзаряда предусмотрены резисторы 31-3n, а для защиты от отрицательного влияния схемы подзаряда отказавшего (закороченного) аккумулятора (на случай появления такового), в цепях подзаряда предусмотрены плавкие предохранители 131-13n, рассчитанные на критичную величину тока подзаряда.
Кроме того, предусмотрена схема контроля напряжения питания 14 преобразователя постоянного напряжения в постоянное напряжение 4 для управления замыканием контактов 2-1 - 2-n включения резисторов 2/1 - 2/n.
Аккумуляторная батарея 1 в составе автономной системы электропитания работает следующим образом.
Если преобразователь постоянного напряжения в постоянное 4 по входу не запитан, то диоды 71-7n и 81-8n заперты напряжением аккумуляторов 21-2n и процесс балансировки не проводится.
При подаче стабилизированного напряжения на вход маломощного преобразователя постоянного напряжения в постоянное 4 (например, с выхода автономной системы электропитания - на схеме не показано), на его гальванически развязанных выходах появятся равные друг другу стабильные напряжения, при этом на каждый аккумулятор потечет ток подзаряда, причем его величина будет обратно пропорциональна текущему значению напряжения каждого аккумулятора, что обеспечивает устранение (или компенсацию) разбаланса аккумуляторов, обусловленного различиями в их токах саморазряда.
Кроме того, схема контроля напряжения питания 14 подключит резисторы 2/1 - 2/n и с каждого аккумулятора потечет ток подразряда, причем его величина будет прямо пропорциональна текущему значению напряжения каждого аккумулятора, что также способствует устранению разбаланса аккумуляторов по напряжению.
При работе аккумуляторной батареи в составе автономной системы электропитания ИСЗ, включение и отключение подзаряда аккумуляторов (подача стабилизированного напряжения на вход маломощного преобразователя постоянного напряжения в постоянное) решается в рамках оптимальной работы системы электропитания и с учетом текущих данных по величине напряжения аккумуляторов литий-ионной аккумуляторной батареи. При этом управляющие воздействия формируются через командно-измерительную радиолинию с наземного комплекса управления или от бортовой ЭВМ по заложенной программе.
Таким образом, предлагаемый способ позволяет повысить надежность эксплуатации литий-ионной аккумуляторной батареи.
Claims (7)
1. Способ эксплуатации литий-ионной аккумуляторной батареи, заключающийся в проведении зарядно-разрядных циклов, хранении в заряженном состоянии и балансировке аккумуляторов по напряжению путем подзаряда от индивидуальных источников напряжения или тока, отличающийся тем, что балансировку аккумуляторов по напряжению от индивидуальных источников напряжения или тока проводят с одновременным разрядом каждого аккумулятора на индивидуальные резисторы, равные между собой по величине сопротивления.2. Способ по п. 1, отличающийся тем, что величину сопротивления индивидуальных резисторов выбирают исходя из соотношения:
R=Uмах акк/Iподз,
где R - величина сопротивления резистора, Ом;
Uмах акк - максимальное значение напряжения аккумулятора, В;
Iподз - величина тока подзаряда при максимальном значении напряжения аккумулятора, А.
3. Способ по п. 1, отличающийся тем, что балансировку аккумуляторов по напряжению проводят в процессе эксплуатации литий-ионной аккумуляторной батареи в составе искусственного спутника Земли (ИСЗ).
4. Способ по п. 1, отличающийся тем, что балансировку аккумуляторов по напряжению проводят в процессе хранения литий-ионной аккумуляторной батареи в заряженном состоянии.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016109539A RU2633533C2 (ru) | 2016-03-16 | 2016-03-16 | Способ эксплуатации литий-ионной аккумуляторной батареи |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016109539A RU2633533C2 (ru) | 2016-03-16 | 2016-03-16 | Способ эксплуатации литий-ионной аккумуляторной батареи |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2016109539A RU2016109539A (ru) | 2017-09-21 |
RU2633533C2 true RU2633533C2 (ru) | 2017-10-13 |
Family
ID=59930931
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2016109539A RU2633533C2 (ru) | 2016-03-16 | 2016-03-16 | Способ эксплуатации литий-ионной аккумуляторной батареи |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2633533C2 (ru) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2704116C1 (ru) * | 2019-03-13 | 2019-10-24 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский государственный технический университет имени Гагарина Ю.А." (СГТУ имени Гагарина Ю.А.) | Способ зарядки литий-ионных аккумуляторных батарей из n последовательно соединенных аккумуляторов с подключенными к ним через коммутаторы балансировочными резисторами |
RU2751995C1 (ru) * | 2021-02-19 | 2021-07-21 | Общество с ограниченной ответственностью «Аккумуляторные системы» | Способ эксплуатации батареи накопителей электрической энергии |
RU2751995C9 (ru) * | 2021-02-19 | 2024-03-07 | Общество с ограниченной ответственностью «Аккумуляторные системы» | Способ эксплуатации батареи накопителей электрической энергии |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201532989U (zh) * | 2009-10-15 | 2010-07-21 | 黎志平 | 新型智能蓄电池均衡器 |
RU2408958C1 (ru) * | 2009-11-03 | 2011-01-10 | Открытое акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнева" | Способ эксплуатации литий-ионной аккумуляторной батареи в автономной системе электропитания искусственного спутника земли |
RU2411618C1 (ru) * | 2009-11-30 | 2011-02-10 | Открытое акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнева" | Способ эксплуатации литий-ионной аккумуляторной батареи в автономной системе электропитания искусственного спутника земли |
RU2461102C1 (ru) * | 2011-04-01 | 2012-09-10 | Открытое акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнёва" | Способ эксплуатации литий-ионной аккумуляторной батареи в автономной системе электропитания |
US20130044402A1 (en) * | 2010-02-19 | 2013-02-21 | Sony Chemical & Information Device Corporation | Protection circuit, battery control device, and battery pack |
-
2016
- 2016-03-16 RU RU2016109539A patent/RU2633533C2/ru active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201532989U (zh) * | 2009-10-15 | 2010-07-21 | 黎志平 | 新型智能蓄电池均衡器 |
RU2408958C1 (ru) * | 2009-11-03 | 2011-01-10 | Открытое акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнева" | Способ эксплуатации литий-ионной аккумуляторной батареи в автономной системе электропитания искусственного спутника земли |
RU2411618C1 (ru) * | 2009-11-30 | 2011-02-10 | Открытое акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнева" | Способ эксплуатации литий-ионной аккумуляторной батареи в автономной системе электропитания искусственного спутника земли |
US20130044402A1 (en) * | 2010-02-19 | 2013-02-21 | Sony Chemical & Information Device Corporation | Protection circuit, battery control device, and battery pack |
RU2461102C1 (ru) * | 2011-04-01 | 2012-09-10 | Открытое акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнёва" | Способ эксплуатации литий-ионной аккумуляторной батареи в автономной системе электропитания |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2704116C1 (ru) * | 2019-03-13 | 2019-10-24 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский государственный технический университет имени Гагарина Ю.А." (СГТУ имени Гагарина Ю.А.) | Способ зарядки литий-ионных аккумуляторных батарей из n последовательно соединенных аккумуляторов с подключенными к ним через коммутаторы балансировочными резисторами |
RU2751995C1 (ru) * | 2021-02-19 | 2021-07-21 | Общество с ограниченной ответственностью «Аккумуляторные системы» | Способ эксплуатации батареи накопителей электрической энергии |
RU2751995C9 (ru) * | 2021-02-19 | 2024-03-07 | Общество с ограниченной ответственностью «Аккумуляторные системы» | Способ эксплуатации батареи накопителей электрической энергии |
Also Published As
Publication number | Publication date |
---|---|
RU2016109539A (ru) | 2017-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8159187B2 (en) | Charging circuit for secondary battery | |
US7061207B2 (en) | Cell equalizing circuit | |
KR102052590B1 (ko) | 배터리 관리 시스템 및 그 구동 방법 | |
KR100885291B1 (ko) | 충전 장치 | |
RU2461102C1 (ru) | Способ эксплуатации литий-ионной аккумуляторной батареи в автономной системе электропитания | |
CN103997073A (zh) | 大电池组中电压均衡的电路和方法 | |
Tar et al. | An overview of the fundamentals of battery chargers | |
KR102429438B1 (ko) | 전기자동차용 배터리의 균일 충전을 위한 직렬과 병렬의 병행 충전 장치 | |
JP2008002983A (ja) | 車両用の電源装置 | |
JP2007240234A (ja) | 複数の二次電池を直列・並列に接続しているパック電池 | |
RU2411618C1 (ru) | Способ эксплуатации литий-ионной аккумуляторной батареи в автономной системе электропитания искусственного спутника земли | |
US20180145378A1 (en) | Power Storage Device and Connection Control | |
JP7466198B2 (ja) | 蓄電システム | |
RU2408958C1 (ru) | Способ эксплуатации литий-ионной аккумуляторной батареи в автономной системе электропитания искусственного спутника земли | |
RU2479894C2 (ru) | СПОСОБ ЗАРЯДА ЛИТИЙ-ИОННОЙ АККУМУЛЯТОРНОЙ БАТАРЕИ ИЗ n ПОСЛЕДОВАТЕЛЬНО СОЕДИНЕННЫХ АККУМУЛЯТОРОВ С ПОДКЛЮЧЕННЫМИ К НИМ ЧЕРЕЗ КОММУТАТОРЫ БАЛАНСИРОВОЧНЫМИ РЕЗИСТОРАМИ | |
JP2013172552A (ja) | 組電池制御システムおよび組電池制御方法 | |
US10615623B2 (en) | Capacitor quick-charge apparatus | |
RU2633533C2 (ru) | Способ эксплуатации литий-ионной аккумуляторной батареи | |
JPH07105986A (ja) | パック電池 | |
JPH08308115A (ja) | 充放電制御回路 | |
KR102025287B1 (ko) | 충전 제어 장치 및 방법 | |
RU2614514C2 (ru) | Способ заряда литий-ионной аккумуляторной батареи из "n" последовательно соединенных аккумуляторов | |
KR100574037B1 (ko) | 개별 충전이 가능한 배터리 충전장치 | |
JP2003217675A (ja) | リチウムイオン二次電池の充電方法及び装置 | |
RU2461101C1 (ru) | Способ эксплуатации литий-ионной аккумуляторной батареи в автономной системе электропитания |