RU2632499C1 - Плакированная коррозионностойкая сталь повышенной прочности - Google Patents

Плакированная коррозионностойкая сталь повышенной прочности Download PDF

Info

Publication number
RU2632499C1
RU2632499C1 RU2016150595A RU2016150595A RU2632499C1 RU 2632499 C1 RU2632499 C1 RU 2632499C1 RU 2016150595 A RU2016150595 A RU 2016150595A RU 2016150595 A RU2016150595 A RU 2016150595A RU 2632499 C1 RU2632499 C1 RU 2632499C1
Authority
RU
Russia
Prior art keywords
steel
strength
corrosion
clad
resistance
Prior art date
Application number
RU2016150595A
Other languages
English (en)
Inventor
Валерий Георгиевич Моляров
Анастасия Вячеславовна Калашникова
Алексей Валерьевич Моляров
Альберт Николаевич Бочаров
Ирина Гавриловна Родионова
Original Assignee
Акционерное общество "ВНИИНЕФТЕМАШ"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "ВНИИНЕФТЕМАШ" filed Critical Акционерное общество "ВНИИНЕФТЕМАШ"
Priority to RU2016150595A priority Critical patent/RU2632499C1/ru
Application granted granted Critical
Publication of RU2632499C1 publication Critical patent/RU2632499C1/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

Изобретение относится к области металлургии, а именно к плакированной коррозионностойкой листовой стали, используемой для изготовления сварных корпусов сосудов и аппаратов, технологических трубопроводов нефтеперерабатывающей, нефтехимической и химической промышленности. Плакированная сталь состоит из основного слоя, выполненного из низкоуглеродистой высокопрочной микролегированной стали, и плакирующего слоя, выполненного из коррозионностойкой высоколегированной аустенитно-ферритной стали, содержащей следующие компоненты, мас.%: углерод 0,02-0,06, кремний 0,55-0,85, марганец 1,0-1,8, хром 21,5-23,5, никель 5,0-9,0, молибден 2,5-3,5, азот 0,10-0,27, сера не более 0,005, фосфор не более 0,020, ванадий не более 0,06, титан не более 0,05, ниобий не более 0,05, алюминий не более 0,05, кальций не более 0,03, железо и неизбежные примеси – остальное. Прочность сцепления основного и плакирующего слоев плакированной стали составляет не менее 560 Н/мм2. Обеспечивается повышение прочности плакированной стали как слоистого материала, ее коррозионной стойкости, в частности стойкости к питтинговой коррозии в средах, содержащих хлориды, а также прочности сцепления слоев при сохранении уровня пластичности и свариваемости. 3 табл.

Description

Изобретение относится к области металлургии, к слоистым материалам, а именно к плакированной коррозионностойкой листовой стали, используемой для изготовления сварных корпусов сосудов и аппаратов, технологических трубопроводов нефтеперерабатывающей, нефтехимической, химической промышленности и для других целей.
Основными требованиями, предъявляемыми к таким сталям, является стойкость к питтинговой, общей, межкристаллитной и другим видам коррозии, прочность, пластичность, вязкость, высокая прочность сцепления слоев, технологичность, а именно способность к холодной деформации и удовлетворительная свариваемость.
Известна двухслойная высокопрочная коррозионностойкая сталь, состоящая из основного слоя, содержащего следующие компоненты, мас. %: углерод 0,08-0,10; кремний 0,17-0,37; марганец 0,3-0,6; хром 0,6-0,9; никель 2,0-3,0; медь 0,4-0,7; молибден 0,35-0,45; алюминий 0,02-0,06; ниобий 0,02-0,05; сера 0,001-0,010; фосфор 0,001-0,015; железо - остальное, и плакирующего слоя, содержащего следующие компоненты, мас. %: углерод 0,01-0,12; кремний 0,2-0,8; марганец 1,3-2,5; хром 17,0-20,5; никель 8,0-11,5; ниобий 0,7-1,2; железо - остальное, при условии, что толщина плакирующего слоя составит 5,7-16,7% от общей толщины биметалла (патент RU 2016912, МПК С22С 38/48, В32В 15/14, опубликован 30.07.1994).
Такая двухслойная высокопрочная коррозионностойкая сталь имеет достаточную прочность, временное сопротивление не менее 670 Н/мм2 и отличную хладостойкость, является стойкой к общей и межкристаллитной коррозии во многих средах, так как плакирующий слой выполнен из стали типа Х18Н10Б, однако недостатком является то, что стойкость такой стали к питтинговой коррозии недостаточна. К тому же эта сталь имеет высокую стоимость за счет высокого содержания никеля не только в плакирующем слое, но и в основном слое.
Известна двухслойная коррозионностойкая листовая сталь, состоящая из основного слоя и плакирующего слоя из коррозионностойкой стали. В основном слое обеспечивают следующее соотношение компонентов, мас. %: углерод 0,05-0,20; кремний 0,10-0,40; марганец 0,4-0,7; фосфор не более 0,025; сера не более 0,020; хром 0,8-2,5; молибден 0,2-1,0; железо и неизбежные примеси - остальное. При этом минимально допустимое содержание углерода в стали основного слоя определяют в зависимости от его толщины в готовом листе в соответствии с выражением: Смин=0,0007⋅Но.с+0,053, где Но.с - толщина основного слоя в готовом листе, мм. При этом плакирующий слой выполнен из стали следующего состава, мас. %: углерод 0,05-0,12; кремний 0,2-0,8; марганец 0,4-2,5; фосфор не более 0,040; сера не более 0,007; хром 14-20; никель 7-12; ниобий не более 1,5. Минимальное допустимое содержание ниобия определяется в зависимости от содержания углерода в соответствии с выражением: (Nb)=7,5⋅(С). Прочность сцепления слоев не ниже прочности основного слоя, а содержание серы в стали плакирующего слоя не более 0,007 мас. % (патент RU 2201469, МПК С22С 38/22, В32В 15/18, опубликован 27.03.2003).
Такая двухслойная коррозионностойкая листовая сталь имеет достаточно прочный основной слой, временное сопротивление которого находится в пределах 440-520 Н/мм2, и прочность сцепления слоев такой стали не ниже прочности основного слоя. Тем не менее недостатком этой стали является то, что плакирующий слой выполнен из стали типа Х18Н10Б, которая имеет недостаточную коррозионную стойкость к питтингообразованию в средах, содержащих хлориды.
Известна двухслойная коррозионностойкая листовая сталь по ГОСТ 10885-85 с основным слоем из углеродистой стали ферритно-перлитного класса марок Ст3сп, 20K и плакирующим слоем из коррозионностойкой стали аустенитно-ферритного класса марки 08Х22Н6Т. Такая двухслойная сталь обладает достаточной коррозионной стойкостью во многих эксплуатационных средах, прочностью, однако недостатком является то, что отсутствие молибдена и азота в стали плакирующего слоя ограничивает возможность применения в средах, содержащих хлориды и вызывающих питтинговую коррозию, высокий допустимый уровень содержания серы не способствует стойкости к коррозионному растрескиванию, а прочность стали основного слоя на уровне 370-410 Н/мм2 приводит к увеличению металлоемкости изделий, выполненных из такой двухслойной листовой стали. Также к недостаткам такой двухслойной листовой стали помимо высокой стоимости относят низкие технологические характеристики, в частности повышенное сопротивление деформации стали плакирующего слоя при высоких температурах сопровождается неравномерной деформацией слоев и увеличением нагрузок на технологическое оборудование при горячей обработке давлением, низкую прочность сцепления слоев не более 400 H/мм2.
Наиболее близким аналогом заявленного изобретения является плакированная высокопрочная коррозионностойкая сталь, состоящая из плакирующего слоя, выполненного из коррозионностойкой аустенитной стали типа Х18Н10Б, и основного слоя, выполненного из низкоуглеродистой высокопрочной микролегированной стали, содержащей следующие компоненты, мас. %: углерод 0,04-0,07; кремний 0,10-0,50; марганец 0,5-2,0; алюминий 0,015-0,090; молибден 0,10-0,27; титан 0,10-0,20; хром не более 0,5; фосфор не более 0,030; сера не более 0,005; азот не более 0,010; железо и неизбежные примеси - остальное, при этом содержание молибдена и титана в стали основного слоя связано зависимостью: [Мо]=(1÷1,35)[Ti], способствующей образованию объемной системы наноразмерных выделений карбидов комплексного состава (Ti,Mo)C (патент RU 2602585, МПК С22С 38/38, С22С 38/28, В32B 15/18, В32B 15/01, опубликован 20.11.2016 - прототип).
Такая плакированная сталь имеет основной слой, обладающий высокой прочностью (временное сопротивление 900 Н/мм2, предел текучести 760 Н/мм2), достаточной пластичностью (относительное удлинение 19%), хладостойкостью и удовлетворительной свариваемостью, что позволяет снизить металлоемкость сварных конструкций, а также достаточной коррозионной стойкостью, однако недостатком является то, что содержание хрома в среднем 18 мас. %, отсутствие молибдена и азота в стали плакирующего слоя ограничивает возможность применения в средах, содержащих хлориды и вызывающих питтинговую коррозию, высокий допустимый уровень содержания серы в стали плакирующего слоя не способствует стойкости к коррозионному растрескиванию, содержание никеля в среднем 10 мас. % не способствует снижению себестоимости плакированной стали. К тому же прочность такой плакированной стали будет ниже прочности основного слоя за счет того, что сталь 08Х18Н12Б, применяемая для плакирующего слоя, имеет более низкие показатели прочности (временное сопротивление не менее 530 Н/мм2, предел текучести 205 Н/мм2 по ГОСТ 5582-75), и общая прочность плакированной стали как слоистого материала будет ниже на 100-200 Н/мм2.
Техническим результатом изобретения является повышение прочности плакированной стали как слоистого материала, ее коррозионной стойкости, в частности стойкости к питтинговой коррозии в средах, содержащих хлориды, а также прочности сцепления слоев при сохранении уровня пластичности и свариваемости.
Технический результат достигается тем, что предложена плакированная коррозионностойкая сталь повышенной прочности, состоящая из основного слоя, выполненного из низкоуглеродистой высокопрочной микролегированной стали, и плакирующего слоя, отличающаяся тем, что плакирующий слой выполнен из коррозионностойкой высоколегированной аустенитно-ферритной стали, содержащей следующие компоненты, мас. %:
углерод 0,02-0,06
кремний 0,55-0,85
марганец 1,0-1,8
хром 21,5-23,5
никель 5,0-9,0
молибден 2,5-3,5
азот 0,10-0,27
сера не более 0,005
фосфор не более 0,020
ванадий не более 0,06
титан не более 0,05
ниобий не более 0,05
алюминий не более 0,05
кальций не более 0,03
железо и неизбежные примеси остальное
при этом прочность сцепления слоев плакированной стали не ниже 560 Н/мм2.
Сущность изобретения заключается в следующем.
Заявленный химический состав стали плакирующего слоя обеспечивает повышение прочности плакированной стали как слоистого материала, ее коррозионной стойкости, в частности стойкости к питтинговой коррозии в средах, содержащих хлориды, а также прочности сцепления слоев при сохранении уровня пластичности и свариваемости.
Содержание азота в предлагаемых пределах обеспечивает повышенную прочность при сохранении пластичности за счет твердорастворного упрочнения и увеличения деформационной способности аустенита. Содержание молибдена в предлагаемых пределах обеспечивает повышенную прочность и стойкость к межкристаллитной коррозии за счет образования твердого раствора по механизму замещения и формирования мелкозернистой структуры. Содержание углерода в предлагаемых пределах обеспечивает прочность и стойкость к общей и межкристаллитной коррозии, удовлетворительную свариваемость. Содержание кремния в предлагаемых пределах обеспечивает необходимое раскисление и твердорастворное упрочнение стали.
Содержание хрома и никеля в предлагаемых пределах обеспечивает формирование аустенитно-ферритной структуры с соотношением фаз: 50-70% аустенита и 50-30% феррита и стойкость к общей и межкристаллитной коррозии. Более высокое содержание хрома способствует повышению температурной области возникновения интерметаллидов, отрицательно влияющих на коррозионную стойкость стали и приводящих к ее охрупчиванию, снижению технологичности при изготовлении изделий. Более высокое содержание никеля способствует увеличению доли аустенитной фазы, следовательно, уменьшению ферритной фазы и стойкости к питтинговой и межкристаллитной коррозии, а также повышению себестоимости изделий.
Совместное легирование хромом, молибденом и азотом обеспечивает повышенную стойкость к питтинговой коррозии в средах, содержащих хлориды, и стойкость к коррозионному растрескиванию под напряжением.
Ограничение верхнего предела содержания серы обеспечивает стойкость к коррозионному растрескиванию, удовлетворительную свариваемость плакирующего слоя и прочность сцепления слоев плакированной стали. Ограничение верхнего предела содержания фосфора, алюминия, кальция обеспечивает повышение качества стали и способствует стабильности механических свойств. Ограничение верхнего предела содержания ванадия, титана, ниобия обеспечивает удовлетворительную свариваемость, пластичность, поскольку исключает возможность образования карбонитридов.
Схожее низкое содержание углерода в основном слое (0,04-0,07 мас. %) и в плакирующем слое (0,02-0,06 мас. %) способствует уменьшению обезуглероженной прослойки в зоне сплавления слоев, улучшению свариваемости и повышению прочности сцепления слоев. Схожее содержание марганца в основном слое (0,5-2,0 мас. %) и в плакирующем слое (1,0-1,8 мас. %) обеспечивает их прочность, пластичность, в том числе при горячей деформации, удовлетворительную свариваемость.
Прочность сцепления слоев не ниже 560 Н/мм2 и повышенная прочность предложенной плакированной стали как слоистого материала обеспечивается тем, что основной и плакирующий слой выполнены из сталей, обладающих близкими температурными коэффициентами линейного расширения и высокой прочностью.
Примеры осуществления изобретения
Для подтверждения заявленного технического результата были изготовлены и исследованы 3 типа образцов с различными вариациями химического состава плакирующего слоя. Изготовление образцов включало наплавку плакирующего слоя толщиной 15-18 мм на горячекатаные заготовки основного слоя толщиной 45-50 мм, общая толщина плакированной стали составляла 60-68 мм, нагрев в печи до температуры 1150-1200°C, прокатку на лабораторном прокатном стане ДУО 300 в 9 проходов до толщины 7 мм с промежуточными подогревами, температура конца прокатки составляла 870-890°C, охлаждение, завершающую термическую обработку по режиму закалки с 1050°C на воздухе и последующий высокий отпуск при 600°C в течение 1 ч и охлаждение на воздухе.
После чего из полученного термообработанного проката были вырезаны образцы для исследований химического состава, испытаний на растяжение по ГОСТ 1497-84, испытаний на срез плакирующего слоя по ГОСТ 10885-85 и испытаний на стойкость плакирующего слоя к питтинговой коррозии в водной среде, содержащей 16,5 г/дм3 хлорида натрия, электрохимическим (потенциодинамическим) методом по ГОСТ 9.912-89. Условием обеспечения требуемой стойкости к питтинговой коррозии является высокий уровень значений коррозионных показателей - базисов питтингообразования и репассивации.
Варианты химического состава основного и плакирующих слоев предложенной плакированной стали и прототипа приведены в таблице 1. Полученные результаты испытаний на прочность плакированной стали как слоистого материала и основы прототипа приведены в таблице 2. Полученные результаты испытаний плакирующих слоев предложенной плакированной стали и прототипа на стойкость к питтинговой коррозии приведены в таблице 3.
Figure 00000001
Figure 00000002
Figure 00000003
Как следует из данных таблицы 1, образцы плакирующих слоев содержат большее количество хрома, молибдена, азота, меньшее количество вредных примесей - серы и фосфора, чем плакирующий слой из стали типа 08Х18Н10Б, что свидетельствует об их повышенной коррозионной стойкости к питтинговой, общей, межкристаллитной и другим видам коррозии, высоком качестве стали. Низкое содержание углерода и серы свидетельствует об удовлетворительной свариваемости.
Как следует из данных таблицы 2, образцы предложенной плакированной стали как слоистого материала имеют высокие показатели прочности (временное сопротивление и предел текучести) и пластичности (относительное удлинение), сопоставимые с показателями прочности и пластичности основного слоя, что свидетельствует о сохранении уровня пластичности. Прочность примененного основного слоя ниже на 10% прочности основного слоя прототипа за счет пониженного содержания углерода и титана и примененной технологии термической обработки, позволяющей достичь более высоких показателей пластичности. Повышенное содержание азота в образце №3 приводит к повышению коррозионной стойкости и прочности при сохранении уровня пластичности стали.
Прочность сцепления слоев плакированной стали при испытании на срез образца №1 составила 641 Н/мм2, образца №2 - 646 Н/мм2, образца №3 - 685 Н/мм2, что больше 560 Н/мм2 и подтверждает заявленные свойства.
Как следует из данных таблицы 3, образцы плакирующих слоев имеют более высокие значения базисов питтингообразования и репассивации, чем плакирующий слой из стали типа 08Х18Н10Б, что свидетельствует об их повышенной коррозионной стойкости в средах, содержащих хлориды, и о достижении заявленного технического результата.
Таким образом, использование настоящего изобретения способствует повышению прочности плакированной стали как слоистого материала, ее коррозионной стойкости, в частности стойкости к питтинговой коррозии в средах, содержащих хлориды, а также прочности сцепления слоев при сохранении уровня пластичности и свариваемости.

Claims (3)

  1. Плакированная коррозионностойкая сталь повышенной прочности, состоящая из основного слоя, выполненного из низкоуглеродистой высокопрочной микролегированной стали, и плакирующего слоя, отличающаяся тем, что плакирующий слой выполнен из коррозионностойкой высоколегированной аустенитно-ферритной стали, содержащей следующие компоненты, мас.%:
  2. углерод 0,02-0,06 кремний 0,55-0,85 марганец 1,0-1,8 хром 21,5-23,5 никель 5,0-9,0 молибден 2,5-3,5 азот 0,10-0,27 сера не более 0,005 фосфор не более 0,020 ванадий не более 0,06 титан не более 0,05 ниобий не более 0,05 алюминий не более 0,05 кальций не более 0,03 железо и неизбежные примеси остальное
  3. при этом прочность сцепления основного и плакирующего слоев плакированной стали составляет не менее 560 Н/мм2.
RU2016150595A 2016-12-22 2016-12-22 Плакированная коррозионностойкая сталь повышенной прочности RU2632499C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016150595A RU2632499C1 (ru) 2016-12-22 2016-12-22 Плакированная коррозионностойкая сталь повышенной прочности

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016150595A RU2632499C1 (ru) 2016-12-22 2016-12-22 Плакированная коррозионностойкая сталь повышенной прочности

Publications (1)

Publication Number Publication Date
RU2632499C1 true RU2632499C1 (ru) 2017-10-05

Family

ID=60040738

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016150595A RU2632499C1 (ru) 2016-12-22 2016-12-22 Плакированная коррозионностойкая сталь повышенной прочности

Country Status (1)

Country Link
RU (1) RU2632499C1 (ru)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57149079A (en) * 1981-03-10 1982-09-14 Kawasaki Steel Corp Clad steel plate with superior local corrosion resistance
US4736884A (en) * 1985-07-15 1988-04-12 Nippon Kokan Kabushiki Kaisha Method for manufacturing high-strength clad steel plate excellent in corrosion resistance
RU2206631C2 (ru) * 2001-07-10 2003-06-20 Закрытое акционерное общество "ТРАНСКОМ" Плакированный стальной сортовой прокат для армирования бетона и способ его изготовления
RU2225793C2 (ru) * 2002-04-29 2004-03-20 Открытое акционерное общество "Северсталь" Плакированная коррозионностойкая сталь и изделие, выполненное из неё
RU2487959C2 (ru) * 2011-10-03 2013-07-20 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Двухслойный стальной прокат
US20130288074A1 (en) * 2011-01-27 2013-10-31 Shinji Tsuge Alloying element-saving hot rolled duplex stainless steel material, clad steel plate having duplex stainless steel as cladding material therefor, and production method for same
RU2602585C1 (ru) * 2015-11-20 2016-11-20 Федеральное Государственное Унитарное Предприятие "Центральный научно-исследовательский институт черной металлургии им. И.П. Бардина" (ФГУП "ЦНИИчермет им. И.П. Бардина") Плакированная высокопрочная коррозионно-стойкая сталь

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57149079A (en) * 1981-03-10 1982-09-14 Kawasaki Steel Corp Clad steel plate with superior local corrosion resistance
US4736884A (en) * 1985-07-15 1988-04-12 Nippon Kokan Kabushiki Kaisha Method for manufacturing high-strength clad steel plate excellent in corrosion resistance
RU2206631C2 (ru) * 2001-07-10 2003-06-20 Закрытое акционерное общество "ТРАНСКОМ" Плакированный стальной сортовой прокат для армирования бетона и способ его изготовления
RU2225793C2 (ru) * 2002-04-29 2004-03-20 Открытое акционерное общество "Северсталь" Плакированная коррозионностойкая сталь и изделие, выполненное из неё
US20130288074A1 (en) * 2011-01-27 2013-10-31 Shinji Tsuge Alloying element-saving hot rolled duplex stainless steel material, clad steel plate having duplex stainless steel as cladding material therefor, and production method for same
RU2487959C2 (ru) * 2011-10-03 2013-07-20 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Двухслойный стальной прокат
RU2602585C1 (ru) * 2015-11-20 2016-11-20 Федеральное Государственное Унитарное Предприятие "Центральный научно-исследовательский институт черной металлургии им. И.П. Бардина" (ФГУП "ЦНИИчермет им. И.П. Бардина") Плакированная высокопрочная коррозионно-стойкая сталь

Similar Documents

Publication Publication Date Title
JP6338031B1 (ja) 耐硫酸露点腐食鋼
CA2767439C (en) High-strength steel sheet and method for manufacturing the same
JP5765092B2 (ja) 延性と穴広げ性に優れた高降伏比高強度溶融亜鉛めっき鋼板およびその製造方法
US10597760B2 (en) High-strength steel material for oil well and oil well pipes
EP2980251B1 (en) Hot-rolled ferritic stainless-steel plate, process for producing same, and steel strip
WO2018038197A1 (ja) 耐硫酸露点腐食鋼
JP6332575B1 (ja) 耐硫酸露点腐食鋼
JP2003193193A (ja) 溶接性、穴拡げ性および延性に優れた高強度鋼板およびその製造方法
WO2009093728A1 (ja) 中空部材およびその製造方法
WO2005056856A1 (ja) 自動車構造部材用鋼材およびその製造方法
JP6265108B2 (ja) 冷延鋼板用または溶融亜鉛めっき鋼板用熱延鋼板およびその製造方法
EP2527484A1 (en) High-strength hot-dip galvanized steel sheet with excellent processability and spot weldability and process for producing same
KR102672884B1 (ko) Ti 함유 페라이트계 스테인리스 강판 및 제조 방법 및 플랜지
JP2023182698A (ja) 熱間圧延鋼及びその製造方法
JP2001164334A (ja) 耐食性と耐腐食疲労特性に優れた構造用鋼とその製造方法
RU2695688C1 (ru) Обрабатываемый горячим формованием, закаливаемый на воздухе и поддающийся сварке стальной лист
JP7508469B2 (ja) せん断加工性に優れた超高強度鋼板及びその製造方法
RU2653954C2 (ru) Способ производства толстолистового проката для изготовления электросварных газонефтепроводных труб большого диаметра категории прочности х42-х56, стойких против индуцированного водородом растрескивания в h2s -содержащих средах
RU2681074C1 (ru) Способ производства коррозионностойкого проката из низколегированной стали
RU2632499C1 (ru) Плакированная коррозионностойкая сталь повышенной прочности
US20200392609A1 (en) Utility ferritic stainless steel with excellent hot workability and manufacturing method thereof
RU2709077C1 (ru) Способ производства проката для изготовления труб категории прочности К48-К56, стойких к сероводородному растрескиванию и общей коррозии, и труба, выполненная из него
JP2023547090A (ja) 熱的安定性に優れた高強度鋼板及びその製造方法
RU2602585C1 (ru) Плакированная высокопрочная коррозионно-стойкая сталь
KR20150074968A (ko) 저온 인성이 우수한 강관용 열연강판 및 그 제조방법

Legal Events

Date Code Title Description
QB4A Licence on use of patent

Free format text: LICENCE FORMERLY AGREED ON 20190710

Effective date: 20190710

MM4A The patent is invalid due to non-payment of fees

Effective date: 20201223