RU2631955C2 - Компоновка редукторного турбовентиляторного газотурбинного двигателя - Google Patents

Компоновка редукторного турбовентиляторного газотурбинного двигателя Download PDF

Info

Publication number
RU2631955C2
RU2631955C2 RU2014134423A RU2014134423A RU2631955C2 RU 2631955 C2 RU2631955 C2 RU 2631955C2 RU 2014134423 A RU2014134423 A RU 2014134423A RU 2014134423 A RU2014134423 A RU 2014134423A RU 2631955 C2 RU2631955 C2 RU 2631955C2
Authority
RU
Russia
Prior art keywords
turbine
fan
shaft
engine
fan drive
Prior art date
Application number
RU2014134423A
Other languages
English (en)
Other versions
RU2014134423A (ru
Inventor
Даниэль Бернард КУПРАТИС
Фредерик М. ШВАРЦ
Original Assignee
Юнайтед Текнолоджиз Корпорейшн
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=48869040&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2631955(C2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from US13/363,154 external-priority patent/US20130192196A1/en
Application filed by Юнайтед Текнолоджиз Корпорейшн filed Critical Юнайтед Текнолоджиз Корпорейшн
Publication of RU2014134423A publication Critical patent/RU2014134423A/ru
Application granted granted Critical
Publication of RU2631955C2 publication Critical patent/RU2631955C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/36Power transmission arrangements between the different shafts of the gas turbine plant, or between the gas-turbine plant and the power user
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/06Rotors for more than one axial stage, e.g. of drum or multiple disc type; Details thereof, e.g. shafts, shaft connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/06Fluid supply conduits to nozzles or the like
    • F01D9/065Fluid supply or removal conduits traversing the working fluid flow, e.g. for lubrication-, cooling-, or sealing fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/04Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/04Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor
    • F02C3/107Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor with two or more rotors connected by power transmission
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/36Open cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/06Arrangements of bearings; Lubricating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/16Control of working fluid flow
    • F02C9/18Control of working fluid flow by bleeding, bypassing or acting on variable working fluid interconnections between turbines or compressors or their stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K1/00Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
    • F02K1/78Other construction of jet pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K3/00Plants including a gas turbine driving a compressor or a ducted fan
    • F02K3/02Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber
    • F02K3/04Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the plant including ducted fans, i.e. fans with high volume, low pressure outputs, for augmenting the jet thrust, e.g. of double-flow type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K3/00Plants including a gas turbine driving a compressor or a ducted fan
    • F02K3/02Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber
    • F02K3/04Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the plant including ducted fans, i.e. fans with high volume, low pressure outputs, for augmenting the jet thrust, e.g. of double-flow type
    • F02K3/06Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the plant including ducted fans, i.e. fans with high volume, low pressure outputs, for augmenting the jet thrust, e.g. of double-flow type with front fan
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K3/00Plants including a gas turbine driving a compressor or a ducted fan
    • F02K3/02Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber
    • F02K3/04Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the plant including ducted fans, i.e. fans with high volume, low pressure outputs, for augmenting the jet thrust, e.g. of double-flow type
    • F02K3/072Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the plant including ducted fans, i.e. fans with high volume, low pressure outputs, for augmenting the jet thrust, e.g. of double-flow type with counter-rotating, e.g. fan rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/009Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids by bleeding, by passing or recycling fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/325Rotors specially for elastic fluids for axial flow pumps for axial flow fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • F05D2220/323Application in turbines in gas turbines for aircraft propulsion, e.g. jet engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/35Combustors or associated equipment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/60Shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/40Transmission of power
    • F05D2260/403Transmission of power through the shape of the drive components
    • F05D2260/4031Transmission of power through the shape of the drive components as in toothed gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/40Transmission of power
    • F05D2260/403Transmission of power through the shape of the drive components
    • F05D2260/4031Transmission of power through the shape of the drive components as in toothed gearing
    • F05D2260/40311Transmission of power through the shape of the drive components as in toothed gearing of the epicyclical, planetary or differential type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Abstract

Газотурбинный двигатель содержит вентиляторную секцию, компрессорную секцию, секцию камеры сгорания и турбинную секцию. Для приведения в движение вентиляторной секции использован редуктор, например, представляющий собой эпициклическую зубчатую передачу, так, чтобы обеспечить возможность вращения вентиляторной секции со скоростью, отличной от скорости вращения турбинной секции, и повысить суммарный тяговый КПД двигателя. В двигателях такой конструкции вал, приводимый в движение одной из турбинных секций, приводит в действие эпициклическую зубчатую передачу, которая вращает вентилятор со скоростью, отличной от скорости вращения турбинной секции, в результате чего скорости вращения как турбинной секции, так и вентиляторной секции могут быть приближены к оптимальным, что обеспечивает повышение рабочих характеристик и производительности за счет использования требуемых сочетаний раскрытых конструктивных особенностей различных компонентов описанного газотурбинного двигателя. 19 з.п. ф-лы, 13 ил.

Description

Перекрестная ссылка на родственную заявку
[0001] Настоящая заявка является частичным продолжением заявки США №13/363154, поданной 31 января 2012 г. и испрашивает приоритет в соответствии с предварительной заявкой США №61/653745, поданной 31 мая 2012 г.
Уровень техники
[0002] Газотурбинный двигатель, как правило, содержит вентиляторную секцию, компрессорную секцию, секцию камеры сгорания и турбинную секцию. Воздух, поступающий в компрессорную секцию, сжимают и подают в секцию камеры сгорания, где происходит его смешивание с топливом и воспламенение для образования высокоскоростного потока газов сгорания. Высокоскоростной поток газов сгорания проходит через турбинную секцию, приводя в действие компрессор и вентиляторную секцию. Компрессорная секция обычно содержит компрессоры низкого и высокого давления, а турбинная секция содержит турбины низкого и высокого давления.
[0003] Турбина высокого давления приводит в действие компрессор высокого давления при помощи внешнего вала, причем вместе они составляют каскад высокого давления, а турбина низкого давления приводит в действие компрессор низкого давления при помощи внутреннего вала, причем вместе они составляют каскад низкого давления. Внутренний вал также может приводить в действие вентиляторную секцию. Безредукторный газотурбинный двигатель содержит вентиляторную секцию, приводимую в действие внутренним валом, причем компрессор низкого давления, турбина низкого давления и вентиляторная секция имеют одни и те же скорость и направление вращения.
[0004] Для приведения в действие вентиляторной секции могут быть использовано устройство изменения скорости, например, планетарный редуктор, обеспечивающий вращение вентиляторной секции со скоростью, отличной от скорости вращения турбинной секции, с целью увеличения суммарного тягового КПД двигателя. В двигателях такой конструкции вал, приводимый во вращение одной из турбинных секций, приводит в действие планетарный редуктор, который вращает вентиляторную секцию со скоростью, отличной от скорости вращения турбинной секции, что обеспечивает возможность вращения турбинной секции и вентиляторной секции со скоростями, более близкими к оптимальным.
[0005] В качестве ближайшего аналога настоящего изобретения можно назвать газотурбинный двигатель, известный из англоязычного документа: «Excerpt ED - BILL GUNSTON, 1 марта 2000, JANE'S AERO-ENGINES, стр. 365, 506-508, 509, XP 008174443». Хотя редукторные конструкции имеют более высокий тяговый КПД, производители турбинных двигателей по-прежнему испытывают потребность в повышении эксплуатационных характеристик двигателей, в том числе термического КПД, КПД передачи и тягового КПД. Таким образом, задача и технический результат настоящего изобретения заключаются в улучшении эксплуатационных характеристик газотурбинных двигателей, в том числе в повышении термического КПД, КПД передачи и тягового КПД.
Сущность изобретения
[0006] Газотурбинный двигатель согласно одному из примерных вариантов осуществления настоящего изобретения содержит, среди прочих возможных элементов, вентилятор, содержащий множество лопаток, вращающихся вокруг оси, компрессорную секцию, камеру сгорания, сообщающуюся по текучей среде с компрессорным узлом, и турбинную секцию, сообщающуюся по текучей среде с камерой сгорания. Турбинная секция содержит турбину привода вентилятора и вторую турбину. Вторая турбина расположена перед турбиной привода вентилятора. Турбина привода вентилятора содержит множество роторов турбины, причем отношение числа лопаток вентилятора к числу роторов турбины привода вентилятора превышает приблизительно 2,5. Система изменения скорости, приводимая в действие турбиной привода вентилятора, обеспечивает вращение вентилятора вокруг оси. Турбина привода вентилятора имеет первую площадь выходного сечения и вращается с первой скоростью. Вторая турбина имеет вторую площадь выходного сечения и вращается со второй скоростью, превышающей первую скорость вращения. Первый характеризующий параметр определяется как произведение квадрата первой скорости и первой площади. Второй характеризующий параметр определяется как произведение квадрата второй скорости и второй площади. Отношение первого характеризующего параметра ко второму характеризующему параметру составляет от приблизительно 0,5 до приблизительно 1,5.
[0007] В другом варианте осуществления раскрытого выше двигателя отношение характеризующих параметров больше или равно приблизительно 0,8.
[0008] В соответствии с еще одним вариантом осуществления любого из раскрытых выше двигателей первый характеризующий параметр больше или равен приблизительно 4.
[0009] В соответствии с еще одним вариантом осуществления любого из раскрытых выше двигателей система изменения скорости содержит редуктор. Вращение вентилятора и турбины привода вентилятора вокруг оси происходит в первом направлении, а вращение секции второй турбины происходит во втором направлении, противоположном первому направлению.
[0010] В соответствии с еще одним вариантом осуществления любого из раскрытых выше двигателей система изменения скорости содержит редуктор. Вращение вентилятора, турбины привода вентилятора и секции второй турбины вокруг оси происходит в первом направлении.
[0011] В соответствии с еще одним вариантом осуществления любого из раскрытых выше двигателей система изменения скорости содержит редуктор. Вращение вентилятора и второй турбины вокруг оси происходит в первом направлении, а вращение турбины привода вентилятора происходит во втором направлении, противоположном первому направлению.
[0012] В соответствии с еще одним вариантом осуществления любого из раскрытых выше двигателей система изменения скорости содержит редуктор. Вращение вентилятора вокруг оси происходит в первом направлении, а вращение турбины привода вентилятора и секции второй турбины происходит во втором направлении, противоположном первому направлению.
[0013] В соответствии с еще одним вариантом осуществления любого из раскрытых выше двигателей система изменения скорости содержит понижающую зубчатую передачу с передаточным отношением, превышающим приблизительно 2,3.
[0014] В соответствии с еще одним вариантом осуществления любого из раскрытых выше двигателей вентилятор подает часть воздуха во внешний контур. Степень двухконтурности определена как отношение части воздуха, подаваемой во внешний контур, к части воздуха, подаваемой в компрессорную секцию, причем степень двухконтурности превышает приблизительно 6,0.
[0015] В соответствии с еще одним вариантом осуществления любого из раскрытых выше двигателей степень двухконтурности превышает приблизительно 10,0.
[0016] В соответствии с еще одним вариантом осуществления любого из раскрытых выше двигателей степень повышения давления в вентиляторе меньше чем приблизительно 1,5.
[0017] В соответствии с еще одним вариантом осуществления любого из раскрытых выше двигателей вентилятор содержит приблизительно 26 или менее лопаток.
[0018] В соответствии с еще одним вариантом осуществления любого из раскрытых выше двигателей секция турбины привода вентилятора содержит не более 6 ступеней.
[0019] В соответствии с еще одним вариантом осуществления любого из раскрытых выше двигателей отношение числа лопаток вентилятора к числу роторов турбины привода вентилятора меньше, чем приблизительно 8,5.
[0020] В соответствии с еще одним вариантом осуществления любого из раскрытых выше двигателей коэффициент расширения в секции турбины привода вентилятора превышает приблизительно 5:1.
[0021] В соответствии с еще одним вариантом осуществления любого из раскрытых выше двигателей двигатель имеет удельную мощность, которая больше чем приблизительно 1,5 фунт-сила/дюйм3 и меньше или равна приблизительно 5,5 фунт-сила/дюйм3.
[0022] В соответствии с еще одним вариантом осуществления любого из раскрытых выше двигателей турбина привода вентилятора содержит первый задний ротор, прикрепленный к первому валу. Вторая турбина содержит второй задний ротор, прикрепленный ко второму валу. Аксиально позади первого соединения между первым задним ротором и первым валом расположен первый подшипниковый узел. Аксиально позади второго соединения между вторым задним ротором и вторым валом расположен второй подшипниковый узел.
[0023] В соответствии с еще одним вариантом осуществления любого из раскрытых выше двигателей турбина привода вентилятора содержит первый задний ротор, прикрепленный к первому валу. Вторая турбина содержит второй задний ротор, прикрепленный ко второму валу. Аксиально позади первого соединения между первым задним ротором и первым валом расположен первый подшипниковый узел. Аксиально впереди второго соединения между вторым задним ротором и вторым валом расположен второй подшипниковый узел.
[0024] В соответствии с еще одним вариантом осуществления любого из раскрытых выше двигателей турбина привода вентилятора содержит первый задний ротор, прикрепленный к первому валу. Вторая турбина содержит второй задний ротор, прикрепленный ко второму валу. Аксиально позади первого соединения между первым задним ротором и первым валом расположен первый подшипниковый узел. В кольцевом пространстве между первым валом и вторым валом расположен второй подшипниковый узел.
[0025] В соответствии с еще одним вариантом осуществления любого из раскрытых выше двигателей турбина привода вентилятора содержит первый задний ротор, прикрепленный к первому валу. Вторая турбина содержит второй задний ротор, прикрепленный ко второму валу. Аксиально впереди первого соединения между первым задним ротором и первым валом расположен первый подшипниковый узел. Аксиально позади второго соединения между вторым задним ротором и вторым валом расположен второй подшипниковый узел.
[0026] Хотя различные примеры осуществления проиллюстрированы с использованием конкретных компонентов, варианты осуществления настоящего изобретения не ограниченны именно представленными сочетаниями элементов.
Некоторые компоненты или характеристики из одного из примеров осуществления могут быть использованы в сочетании с характеристиками или компонентами из другого примера.
[0027] Эти и другие признаки, раскрытые в настоящем изобретении, будут понятны из нижеприведенного описания и прилагаемых чертежей, кратко охарактеризованных ниже
Краткое описание чертежей
[0028] На фиг. 1 схематически представлен пример осуществления газотурбинного двигателя.
[0029] На фиг. 2 представлена схема, иллюстрирующая относительное вращение различных секций в примере осуществления газотурбинного двигателя.
[0030] На фиг. 3 представлена другая схема, иллюстрирующая относительное вращение различных секций в примере осуществления газотурбинного двигателя.
[0031] На фиг. 4 представлена другая схема, иллюстрирующая относительное вращение различных секций в примере осуществления газотурбинного двигателя.
[0032] На фиг. 5 представлена другая схема, иллюстрирующая относительное вращение различных секций в примере осуществления газотурбинного двигателя.
[0033] На фиг. 6 представлена схема конфигурации подшипников, обеспечивающих вращение каскадов низкого и высокого давления в примере осуществления газотурбинного двигателя.
[0034] На фиг. 7 представлена другая схема конфигурации подшипников, обеспечивающих вращение каскадов низкого и высокого давления в примере осуществления газотурбинного двигателя.
[0035] На фиг. 8А представлена другая схема конфигурации подшипников, обеспечивающих вращение каскадов низкого и высокого давления в примере осуществления газотурбинного двигателя.
[0036] На фиг. 8В представлен пример осуществления конфигурации подшипников по фиг. 8А в увеличенном виде.
[0037] На фиг. 9 представлена другая схема конфигурации подшипников, обеспечивающих вращение каскадов низкого и высокого давления в примере осуществления газотурбинного двигателя.
[0038] На фиг. 10 схематически представлен пример осуществления компактной турбинной секции.
[0039] На фиг. 11 схематически представлены в разрезе ступени газотурбинного двигателя по одному из примеров осуществления изобретения.
[0040] На фиг. 12 схематически представлен пример осуществления ротора турбины в плоскости, перпендикулярной оси вращения.
Подробное раскрытие изобретения
[0041] Фиг. 1 схематически иллюстрирует пример осуществления газотурбинного двигателя 20, который содержит вентиляторную секцию 22, компрессорную секцию 24, секцию 26 камеры сгорания и турбинную секцию 28. В альтернативных вариантах осуществления двигатель может содержать секцию форсажной камеры (не показана), а также другие системы и элементы. Вентиляторная секция 22 нагнетает воздушный поток В наружного контура, а компрессорная секция 24 засасывает воздушный поток С внутреннего контура, сжимая воздух и подавая его в секцию 26 камеры сгорания. В секции 26 камеры сгорания воздух смешивают с топливом и воспламеняют для формирования потока газов сгорания под высоким давлением, который выходит через турбинную секцию 28, в которой энергию, извлеченную из этого потока, используют для приведения в движение вентиляторной секции 22 и компрессорной секции 24.
[0042] Хотя описываемые не накладывающие ограничений варианты осуществления изобретения относятся к турбовентиляторному газотурбинному двигателю, следует понимать, что описываемые принципы не ограничены применением к системам с использованием турбовентиляторов и могут быть применены к турбинным двигателям других типов, например, к турбинному двигателю с трехкаскадной конструкцией, в котором предусмотрены три концентрических каскада, вращающихся вокруг общей оси, причем каскад низкого давления обеспечивает приведение в действие вентилятора турбиной низкого давления посредством редуктора, каскад промежуточного давления обеспечивает приведение в действие первого компрессора компрессорной секции турбиной промежуточного давления, а каскад высокого давления обеспечивает приведение в действие компрессора высокого давления компрессорной секции турбиной высокого давления.
[0043] Проиллюстрированный двигатель 20 обычно содержит низкоскоростной каскад 30 и высокоскоростной каскад 32, установленные с возможностью вращения вокруг центральной продольной оси А двигателя относительно неподвижной конструкции 36 двигателя с помощью нескольких систем 38 подшипников. Следует понимать, что могут быть предусмотрены другие или дополнительные различные системы 38 подшипников, установленные в различных местах.
[0044] Низкоскоростной каскад 30 обычно содержит внутренний вал 40, соединяющий вентилятор 42 и секцию компрессора 44 низкого давления (или первый компрессор) с секцией турбины 46 низкого давления (или первой турбиной). Внутренний вал 40 приводит вентилятор 42 во вращение через устройство для изменения скорости, которое может представлять собой редуктор 48, чтобы обеспечить вращение вентилятора 42 со скоростью, которая меньшей скорости низкоскоростного каскада 30. Высокоскоростной каскад 32 содержит внешний вал 50, соединяющий секцию компрессора 52 высокого давления (или второй компрессор) с секцией турбины 54 высокого давления (или второй турбиной). Внутренний вал 40 и внешний вал 50 установлены концентрично с возможностью вращения вокруг центральной продольной оси А двигателя посредством систем 38 подшипников.
[0045] Между компрессором 52 высокого давления и турбиной 54 высокого давления расположена камера 56 сгорания. В соответствии с одним из примеров турбина 54 высокого давления содержит по меньшей мере две ступени, образуя двухступенчатую турбину 54 высокого давления. В другом примере турбина 54 высокого давления содержит всего одну ступень. В контексте настоящего описания компрессор или турбина «высокого давления» испытывают воздействие более высокого давления, чем соответствующие компрессор или турбина «низкого давления».
[0046] Представленная турбина 46 низкого давления имеет коэффициент расширения, которое больше, чем приблизительно 5. Коэффициент расширения представленной турбины 46 низкого давления определяют как отношение давления, измеренного перед входом турбины 46 низкого давления, к давлению, измеренному на выходе турбины 46 низкого давления, перед выпускным соплом.
[0047] Между турбиной 54 высокого давления и турбиной 46 низкого давления обычно предусмотрена промежуточная силовая рама 58 неподвижной конструкции 36 двигателя. Промежуточная силовая рама 58 дополнительно поддерживает системы 38 подшипников турбинной секции 28, а также направляет воздушный поток, входящий в турбину низкого давления.
[0048] Воздушный поток С внутреннего контура сжимают при помощи компрессора 44 низкого давления, а затем - компрессора 52 высокого давления, смешивают с топливом и воспламеняют в камере 56 сгорания для формирования высокоскоростных газов сгорания, которые затем выходят через турбину 54 высокого давления и турбину 46 низкого давления. Промежуточная силовая рама 58 содержит направляющие лопатки 60, расположенные в канале течения воздушного потока внутреннего контура и действующие как входные направляющие лопатки турбины 46 низкого давления. Использование направляющих лопаток 60 промежуточной силовой рамы 58 в качестве входных направляющих лопаток турбины 46 низкого давления позволяет уменьшить длину турбины 46 низкого давления без увеличения аксиальной длины промежуточной силовой рамы 58. Уменьшение числа направляющих лопаток турбины 46 низкого давления или полное их устранение позволяет уменьшить аксиальную длину турбинной секции 28. Таким образом можно увеличить компактность газотурбинного двигателя 20 и повысить его удельную мощность.
[0049] Представленный газотурбинный двигатель 20 в одном из примеров представляет собой редукторный авиационный двигатель с высокой степенью двухконтурности. В других примерах осуществления газотурбинный двигатель 20 имеет степень двухконтурности, превышающую приблизительно шесть (6), а в одном из вариантов осуществления - превышающую приблизительно десять (10). Типовой редуктор 48 может представлять собой, например, эпициклическую зубчатую передачу, такую как планетарную зубчатую передачу, звездную зубчатую передачу или зубчатую передачу другого известного типа с передаточным числом, превышающим приблизительно 2,3.
[0050] В одном из раскрытых вариантов осуществления газотурбинный двигатель 20 имеет степень двухконтурности, превышающую приблизительно десять (10:1), причем диаметр вентилятора значительно больше, чем внешний диаметр компрессора 44 низкого давления. Однако следует понимать, что вышеуказанные параметры соответствуют лишь одному из вариантов осуществления газотурбинного двигателя с редукторной конструкцией, а настоящее изобретение также применимо и к другим газотурбинным двигателям.
[0051] В связи с высокой степенью двухконтурности внешний контур В обеспечивает значительную величину тяги. Вентиляторная секция 22 двигателя 20 рассчитана на работу в определенных условиях полета - как правило, для крейсерского полета со скоростью около 0,8 Маха на высоте около 35000 футов. Условия полета со скоростью 0,8 Маха на высоте 35000 футов при работе двигателя в режиме устойчивого оптимального потребления топлива на единицу производимой тяги - также известного под названием удельного расхода топлива на единицу тяги в час (TSFC, от англ. Thrust Specific Fuel Consumption) в крейсерском режиме полета - определяют по промышленному стандартному параметру, измеряемому как отношение количества топлива, сжигаемого в течение одного часа, выраженного в фунтах массы, к тяге, вырабатываемой двигателем в крейсерском режиме, выраженной в фунтах-сила.
[0052] «Минимальная степень повышения давления в вентиляторе» равна отношению давлений исключительно на лопатке вентилятора, без учета системы выходных направляющих лопаток вентилятора (FEGV, от англ. Fan Exit Guide Vane). В соответствии с одним из раскрытых в настоящем документе неограничивающих вариантов осуществления минимальная степень повышения давления в вентиляторе меньше чем приблизительно 1,50. В соответствии с другим неограничивающим вариантом осуществления минимальная степень повышения давления в вентиляторе меньше чем приблизительно 1,45.
[0053] «Минимальная скорректированная окружная скорость лопатки вентилятора» равна отношению реальной окружной скорости лопатки вентилятора в фут/сек, разделенной на промышленную стандартную температурную поправку, равную [(Tram °R)/518,7)0,5]. В одном из описываемых вариантов осуществления изобретения, не налагающем каких-либо ограничений, «минимальная скорректированная окружная скорость лопатки вентилятора» составляет меньше чем приблизительно 1150 фут/сек.
[0054] Взятый в качестве примера газотурбинный двигатель содержит вентилятор 42, который в одном из неограничивающих вариантов осуществления, содержит меньше, чем приблизительно 26 лопаток вентилятора. В другом неограничивающем варианте осуществления, вентиляторная секция 22 содержит меньше чем приблизительно 18 лопаток вентилятора. Кроме того, в одном из раскрытых вариантов осуществления турбина 46 низкого давления содержит не более чем приблизительно 6 ступеней турбины, схематически обозначенных номером позиции 34. В другом неограничивающим примере осуществления турбина 46 низкого давления содержит приблизительно 3 или более ступеней турбины. Отношение числа лопаток вентилятора 42 к числу ступеней турбины низкого давления составляет от приблизительно 2,5 до приблизительно 8,5. Представленная турбина 46 низкого давления обеспечивает приводную мощность для вращения вентиляторной секции 22, при этом соотношение между числом ступеней 34 турбины в турбине 46 низкого давления и числом лопаток 42 в вентиляторной секции 22 обеспечивает возможность получения газотурбинного двигателя 20 с повышенным КПД передачи мощности.
[0055] Повышенный КПД передачи мощности получают отчасти благодаря более широкому использованию усовершенствованных материалов и методов изготовления турбинных лопаток, таких как отливка с направленной кристаллизацией и монокристаллические материалы, обеспечивающих возможность увеличения скорости вращения турбин и сокращения числа ступеней. Кроме того, в описываемой турбине 46 низкого давления используют диски усовершенствованной конфигурации, позволяющие обеспечить дальнейшее увеличение прочности при повышенных скоростях вращения турбины.
[0056] На фиг. 2 и 3 представлен пример устройства изменения скорости, представляющего собой эпициклический редуктор планетарного типа, в котором входной элемент представляет собой центральную солнечную шестерню 62. Планетарные шестерни 64 (показана только одна) приводятся во вращение и пространственно разнесены посредством водила 68, которое вращается в том же направлении, что и солнечная шестерня 62. Вся система зубчатых колес заключена внутри кольцевой шестерни 66, жестко прикрепленной к неподвижному корпусу 36 двигателя (показано на фиг. 1). Вентилятор 42 прикреплен к водилу 68, которое приводит его в движение так, что направление вращения вентилятора 42 совпадает с направлением вращения водила 68, которое, в свою очередь, совпадает с направлением вращения входной солнечной шестерни 62.
[0057] В приведенных ниже чертежах использованы следующие обозначения для определения направления относительного вращения различных элементов газотурбинного двигателя 20. Вентиляторная секция показана со знаком «+», который соответствует первому направлению вращения. Вращение других элементов газотурбинного двигателя относительно вентиляторной секции 22 обозначено либо знаком «+», либо знаком «-». Знак «-» обозначает вращение в направлении, противоположном направлению вращения любых элементов, обозначенных знаком «+».
[0058] Кроме того, термин «турбина привода вентилятора» используется для обозначения турбины, которая обеспечивает приводную мощность для вращения лопаток 42 вентиляторной секции 22. Далее, термин «вторая турбина» используется для обозначения расположенной перед турбиной привода вентилятора турбины, которую не используют для приведения во вращение вентилятора 42. В описываемом примере турбина привода вентилятора представляет собой турбину 46 низкого давления, а вторая турбина представляет собой турбину 54 высокого давления. Однако следует понимать, что другие конфигурации турбинной секции, в которых могут быть предусмотрены дополнительные элементы помимо представленных турбин 54, 46 высокого и низкого давления, также входят в объем настоящего изобретения. Например, двигатель трехкаскадной конфигурации может содержать промежуточную турбину (не представлена), используемую для приведения во вращение вентиляторной секции 22, и также входит в объем настоящего изобретения.
[0059] В одном из раскрытых примеров осуществления изобретения (фиг. 2) турбина привода вентилятора представляет собой турбину 46 низкого давления, вследствие чего направления вращения вентиляторной секции 22 и турбины 46 низкого давления совпадают и обозначены одним и тем же знаком «+», определяющим направления вращения вентилятора 42 и турбины 46 низкого давления. Кроме того, в данном примере направление вращение турбины 54 высокого давления, или второй турбины, также совпадает с направлением вращения турбины 46 привода вентилятора. В другом примере, проиллюстрированном на фиг. 3, направление вращение турбины 54 высокого давления, или второй турбины, противоположно направлению вращения турбины привода вентилятора (турбины 46 низкого давления) и вентилятора 42.
[0060] Вращение компрессора 44 низкого давления и турбины 46 низкого давления в направлении, противоположном направлению вращения компрессора 52 высокого давления и турбины 54 высокого давления, создает более благоприятные аэродинамические условия в турбинной секции 28 при перемещении формируемого высокоскоростного потока газов сгорания из турбины 54 высокого давления в турбину 46 низкого давления. Относительное вращение в компрессорной и турбинной секциях создает приблизительно требуемые углы направления воздушного потока между секциями, что повышает общий КПД турбинной секции 28 и обеспечивает возможность уменьшения общей массы турбинной секции 28 благодаря сокращению или ликвидации аэродинамических профилей или целого ряда направляющих лопаток.
[0061] На фиг. 4 и 5 представлен другой пример осуществления устройства изменения скорости, представляющего собой эпициклический редуктор, называемый редуктором звездного типа, в которой входной элемент представляет собой центральную солнечную шестерню 62. Звездные шестерни 65 (представлена лишь одна) в фиксированном положении вращаются вокруг солнечной шестерни 62 и пространственно разнесены посредством водила 68, прикрепленного к неподвижному корпусу 36 (лучше видно на фиг. 1). Вся система зубчатых колес заключена внутри кольцевой шестерни 66, установленной с возможностью свободного вращения. Вентилятор 42 прикреплен к кольцевой шестерне 66, которая приводит его в движение так, что направление вращения вентилятора 42 противоположно направлению вращения входной солнечной шестерни 62.
Соответственно, направление вращения компрессора 44 низкого давления и турбины 46 низкого давления противоположно направлению вращения вентилятора 42.
[0062] В одном из раскрытых примеров осуществления изобретения, проиллюстрированном на фиг. 4, турбина привода вентилятора представляет собой турбину 46 низкого давления, и, следовательно, направление вращения вентилятора 42 противоположно направлению вращения турбины 46 низкого давления и компрессора 44 низкого давления. Кроме того, в данном примере направление вращения каскада 32 высокого давления, содержащего турбину 54 высокого давления и компрессор 52 высокого давления, противоположно направлению вращения вентилятора 42 и совпадает с направлением вращения каскада 30 низкого давления, содержащего компрессор 44 низкого давления и турбину 46 привода вентилятора.
[0063] В другом примере осуществления газотурбинного двигателя, проиллюстрированном на фиг. 5, направление вращения турбины 54 высокого давления, или второй турбины, совпадает с направлением вращения вентилятора 42 и противоположно направлению вращения каскада 30 низкого давления, содержащего компрессор 44 низкого давления и турбину 46 привода вентилятора.
[0064] На фиг. 6 представлены подшипниковые узлы, расположенные вблизи переднего конца валов двигателя в точках 70 и 72, которые обеспечивают вращение внутреннего вала 40 и внешнего вала 50, обеспечивая противодействие результирующим осевым силам, направленным параллельно оси А, создаваемым обратной нагрузкой турбины 46 низкого давления и турбины 54 высокого давления за вычетом нагрузок компрессора 52 высокого давления и компрессора 44 низкого давления, которые также вносят вклад в осевые силы, воздействующие, соответственно, на каскад 30 низкого давления и каскад 32 высокого давления.
[0065] В данном примере осуществления изобретения первый передний подшипниковый узел 70 установлен на участке неподвижной конструкции, обозначенной на схеме номером позиции 36, и поддерживает передний конец внутреннего вала 40. В данном примере первый передний подшипниковый узел 70 представляет собой упорный подшипник, который регулирует перемещения внутреннего вала 40 и, следовательно, каскада 30 низкого давления, в аксиальном направлении. Второй передний подшипниковый узел 72 установлен на неподвижной конструкции 36 и обеспечивает вращение каскада 32 высокого давления, по существу, исключая перемещение в аксиальном направлении внешнего вала 50. Первый передний подшипниковый узел 70 установлен для поддержки внутреннего вала 40 в точке, расположенной перед соединением 88 ротора 90 компрессора низкого давления. Второй передний подшипниковый узел 72 установлен перед соединением, называемым втулкой 92, между ротором 94 компрессора высокого давления и внешним валом 50. Первый задний подшипниковый узел 74 поддерживает задний участок внутреннего вала 40. Первый задний подшипниковый узел 74 представляет собой роликовый подшипник, который обеспечивает возможность вращения, но не оказывает сопротивления смещению вала 40 в аксиальном направлении. Вместо этого задний подшипник 74 допускает тепловое расширение вала 74 между точкой своего расположения и точкой расположения подшипника 72. В данном примере первый задний подшипниковый узел 74 расположен после соединительной втулки 80 соединения между ротором 78 турбины низкого давления и внутренним валом 40. Второй задний подшипниковый узел 76 поддерживает задний участок внешнего вала 50. В данном примере второй задний подшипниковый узел 76 представляет собой роликовый подшипник, удерживаемый соответствующей неподвижной конструкцией 36 через промежуточную силовую раму 58 и обеспечивающий передачу радиальной нагрузки через проточный канал турбины на корпус 36. Второй задний подшипниковый узел 76 поддерживает внешний вал 50 и, следовательно, каскад 32 высокого давления в точке, расположенной за втулкой 84 соединения между ротором 82 турбины высокого давления и внешним валом 50.
[0066] В данном раскрытом примере осуществления изобретения первый и второй передние подшипниковые узлы 70, 72, а также первый и второй задние подшипниковые узлы 74, 76 имеют опору снаружи от соответствующих соединительных втулок 80, 88 компрессоров или турбин, что обеспечивает охватывающие опорные конструкции соответствующих внутреннего вала 40 и внешнего вала 50. Охватывающие опоры внутреннего вала 40 и внешнего вала 50 обеспечивают их поддержку и сообщают им жесткость, требуемые для работы газотурбинного двигателя 20.
[0067] На фиг. 7 представлен другой пример конфигурации поддержки валов, содержащей первый и второй передние подшипниковые узлы 70, 72, выполненные с возможностью поддержки передних участков соответствующих внутреннего вала 40 и внешнего вала 50. Первый задний подшипниковый узел 74 расположен после соединения 80 между ротором 78 и внутренним валом 40. Первый задний подшипниковый узел 74 представляет собой роликовый подшипник и поддерживает внутренний вал 40 посредством опоры охватывающей конфигурации. Поскольку охватывающая конфигурация может требовать дополнительной длины внутреннего вала 40, в альтернативном варианте может быть использована конфигурация, называемая подвешенной. В данном примере поддержку внешнего вала 50 обеспечивает второй задний подшипниковый узел 76, расположенный перед соединением 84 между ротором 82 турбины высокого давления и внешним валом 50. Соответственно, втулка 84 соединения ротора 82 турбины высокого давления с внешним валом 50 подвешена после подшипникового узла 76. Такое расположение второго заднего подшипника 76 в подвешенной конфигурации потенциально позволяет уменьшить длину внешнего вала 50.
[0068] Кроме того, такое расположение заднего подшипника 76 также может исключить потребность в использовании других несущих конструкций, таких как промежуточная силовая рама 58, так как подшипниковый узел 76 поддерживает турбину 54 высокого давления, а подшипниковый узел 74 поддерживает турбину 56 низкого давления. Стойка 58 промежуточной силовой рамы может дополнительно содержать дополнительный роликовый подшипник 74А, который может быть добавлен для сокращения мод вибрации внутреннего вала 40.
[0069] На фиг. 8А и 8В представлен другой пример конфигурации поддержки валов, содержащей первый и второй передние подшипниковые узлы 70, 72, выполненные с возможностью поддержки передних участков соответствующих внутреннего вала 40 и внешнего вала 50. Первый задний подшипниковый узел 74 поддерживает внутренний вал 40 в точке, расположенной после соединения 80, при помощи охватывающей несущей конструкции. В данном примере для поддержки заднего участка внешнего вала 50 предусмотрен роликоподшипниковый узел 86, установленный в зазоре 96, предусмотренном между внешней поверхностью внутреннего вала 40 и внутренней поверхностью внешнего вала 50.
[0070] Роликоподшипниковый узел 86 поддерживает задний участок внешнего вала 50 на внутреннем валу 40. Использование роликоподшипникового узла 86 для поддержки внешнего вала 50 исключает потребность в несущих конструкциях, соединенных с неподвижной конструкцией 36 через промежуточную силовую раму 58. Кроме того, представленный подшипниковый узел 86 может обеспечить возможность как уменьшения длины валов, так и поддержки внешнего вала 50 в положении, по существу, соосном с втулкой 84 соединения ротора 82 турбины высокого давления и внешнего вала 50. Как видно из чертежа, подшипниковый узел 86 расположен после втулки 82, причем его поддерживает крайний задний участок вала 50. На фиг. 9 представлен другой пример конфигурации опирания валов, содержащей первый и второй передние подшипниковые узлы 70, 72, обеспечивающие поддержку передних участков, соответственно, внутреннего вала 40 и внешнего вала 50. Первый задний подшипниковый узел установлен в точке внутреннего вала 40, расположенной перед соединением 80 между ротором 78 турбины низкого давления и внутренним валом 40.
[0071] Размещение первого заднего подшипникового узла 74 перед соединением 80 может быть использовано для уменьшения общей длины двигателя 20. Кроме того, размещение первого заднего подшипникового узла 74 перед соединением 80 обеспечивает возможность опоры на неподвижный корпус 38 через промежуточную силовую раму 58. Кроме того, в данном примере осуществления предусмотрен второй задний подшипниковый узел, установленный в охватывающей несущей конструкции после соединения 84 между внешним валом 50 и ротором 82. Соответственно, в данном примере осуществления первый и второй задние подшипниковые узлы 74, 76 имеют общую конструкцию, обеспечивающую опирание на неподвижную внешнюю конструкцию 38. Следует отметить, что такой общий несущий элемент упрощает конструкцию двигателя и уменьшает общую массу двигателя. Кроме того, сокращение числа необходимых несущих конструкций приводит к уменьшению общей массы и, таким образом, к дальнейшему повышению эффективности сжигания топлива воздушного судна.
[0072] На фиг. 10 представлен участок турбинной секции 28 по одному из примеров осуществления изобретения, содержащий турбину 46 низкого давления и турбину 54 высокого давления, причем между выходом турбины высокого давления и турбиной низкого давления расположена промежуточная силовая рама 58. Промежуточная силовая рама 58 и направляющая лопатка 60 расположены перед первой ступенью 98 турбины 46 низкого давления. Хотя на чертеже представлена лишь одна направляющая лопатка 60, подразумевается наличие нескольких направляющих лопаток 60, разнесенных в направлении по окружности. Направляющая лопатка 60 изменяет направление потока, поступающего из турбины 54 высокого давления при его приближении к первой ступени 98 турбины 46 низкого давления. Как можно видеть, для увеличения КПД желательно обеспечить такое направление потока между турбиной 54 высокого давления и турбиной 46 низкого давления направляющей лопаткой 60, при котором поток расширяющихся газов поступал бы в требуемом направлении на входе в турбину 46 низкого давления. В связи с этим направляющая лопатка 60 может быть фактическим аэродинамическим профилем с соответствующими кривизной и изгибом, обеспечивающими поворот воздушного потока и его требуемое направление в турбину 46 низкого давления.
[0073] Использование в промежуточной силовой раме 58 направляющей лопатки 60, обеспечивающей поворот воздушного потока, вместо обтекаемой стойки и ряда лопаток статора, расположенных после стойки, позволяет уменьшить суммарную длину и объем турбинных узлов 46, 54, вместе взятых, так как направляющая лопатка 60 выполняет несколько функций, включая уменьшение лобового сопротивления промежуточной силовой рамы 58, защиту всех статических конструкций и маслопроводов, обслуживающих подшипниковый узел, от воздействия тепла и поворот потока, входящего в турбину 46 низкого давления, таким образом, чтобы обеспечить его вхождение во вращающийся аэродинамический профиль 100 под требуемым аэродинамическим углом. Кроме того, совместное использование этих элементов позволяет уменьшить общий объем конструкции и турбинной секции 28.
[0074] Вышеописанные конструктивные особенности приводят к получению турбинной секции, содержащий обе турбины 54, 46 высокого и низкого давления, более компактного объема по сравнению с известными решениями. Кроме того, в соответствии с одним из примеров осуществления для уменьшения ее объема могут быть усовершенствованы материалы, используемые для изготовления турбины 46 низкого давления,. В число таких материалов могут входить, например, материалы с улучшенными термическими и механическими характеристиками, соответствующими возможному росту нагрузок при эксплуатации турбины 46 низкого давления на повышенной скорости. Кроме того, повышенные скорости и повышенные рабочие температуры на входе турбины 46 низкого давления обеспечивают возможность передачи турбиной 46 низкого давления большего количества энергии для обеспечения более производительной работы вентилятора 42 большего диаметра, приводимого во вращение через редуктор 48, и повышения КПД компрессора 44 низкого давления.
[0075] В альтернативном варианте могут быть использованы менее дорогостоящие материалы в сочетании со средствами охлаждения, способными компенсировать повышение температур в турбине 46 низкого давления. В соответствии с тремя примерами осуществления первая вращающаяся лопатка 100 турбины 46 низкого давления может представлять собой литую лопатку с направленной кристаллизацией, монокристаллическую литую лопатку или полую лопатку с внутренним охлаждением. Улучшенные механические и тепловые характеристики материала турбинных лопаток согласно изобретению обеспечивают возможность эксплуатации при повышенных температурах и скоростях, что, в свою очередь, обеспечивает повышение КПД каждой ступени и позволяет сократить число ступеней турбины низкого давления. В свою очередь, уменьшение числа ступеней турбины низкого давления позволяет уменьшить общий объем турбины одновременно с требуемым повышением скорости вращения турбины низкого давления.
[0076] Уменьшение числа ступеней и уменьшение объема обеспечивают улучшение КПД двигателя и сгорания топлива воздушного судна благодаря уменьшению общего веса. Кроме того, меньшее число рядов турбинных лопаток обеспечивает уменьшение числа каналов утечки в венцах роторных лопаток, уменьшение числа каналов утечки во внутренних уплотнениях направляющих лопаток и сокращение потерь в ступенях ротора.
[0077] Удельная мощность компактной турбинной секции в соответствии с примером осуществления изобретения может быть определена как отношение производимой тяги, выраженной в фунтах-сила (Ibf), к общему объему турбинной секции 28. Объем турбинной секции 28 может быть определен как пространство от входа 102 первой турбинной направляющей лопатки 104 турбины 54 высокого давления до выхода 106 последней вращающегося аэродинамического профиля 108 турбины 104 низкого давления и выражен в кубических дюймах. Удельную мощность определяют как отношение постоянной тяги двигателя в установившемся режиме работы при взлете на уровне моря (SLTO, от англ. Sea Level Takeoff,) к объему турбинной секции, причем при уменьшенной массе двигателя может быть желательным увеличение удельной мощности. Тяга двигателя в установившемся режиме работы при взлете на уровне моря может быть измерена в фунтах-сила (Ibf), а объем может быть равен объему участка от кольцевого входа 102 первой направляющей турбинной лопатки 104 турбины 54 высокого давления до кольцевого выхода 106 переднего конца последней лопатки 108 турбины 46 низкого давления. Максимальная тяга может представлять собой тягу при взлете на уровне моря (Sea Level Takeoff, SLTO), которую обычно считают равной постоянной тяге, производимой турбовентиляторным двигателем в установившемся режиме работы на уровне моря.
[0078] Объем V турбинной секции более ясно проиллюстрирован на фиг. 10. Как видно из чертежа, промежуточная силовая рама 58 расположена между турбиной 54 высокого давления и турбиной 46 низкого давления. Объем V, обозначенный пунктирной линией, занимает пространство от внутреннего края I до внешнего края О. Внутренний край определен проточной частью роторов, а также внутренними каналами полок лопаток. Внешний край определен направляющими лопатками, а также внешними герметизирующими элементами проточной части. Объем занимает пространство от самого переднего по потоку края направляющей лопатки 104, обычно представляющего собой ее входную кромку, до самого заднего по потоку края последнего вращающегося аэродинамического профиля 108 секции турбины 46 низкого давления. Как правило, такой край представляет собой выходную кромку аэродинамического профиля 108.
[0079] Удельная мощность описанного газотурбинного двигателя значительно выше, чем у ранее известных конструкций. Ниже приведены примеры восьми двигателей, содержащих турбинные секции и общие приводные системы двигателя и компоновки согласно настоящему изобретению. Их параметры представлены в Таблице 1.
Figure 00000001
[0080] Таким образом, в примерах осуществления изобретения удельная мощность больше или равна приблизительно 1,5 фунт-сила/дюйм3. Точнее, удельная мощность больше или равна приблизительно 2,0 фунт-сила/дюйм3. Еще точнее, удельная мощность больше или равна приблизительно 3,0 фунт-сила/дюйм3. Точнее, удельная мощность больше или равна приблизительно 4,0 фунт-сила/дюйм3. Кроме того, в вариантах осуществления изобретения удельная мощность больше или равна приблизительно 5,5 фунт-сила/дюйм3.
[0081] Таким образом, двигатели, изготовленные в соответствии с описанным решением и содержащие турбинные секции, раскрытые в настоящей заявке, с изменениями, не выходящими за пределы объема настоящего изобретения, обладают высокой производительностью, повышенным топливным КПД и уменьшенным весом на единицу тяги.
[0082] Площадь 112 выходного сечения определена в точке выхода для турбины 54 высокого давления, а площадь 110 выходного сечения - на выходе 106 турбины 46 низкого давления. Редуктор 48 (представлен на фиг. 1) обеспечивает набор различных скоростей вращения турбины привода вентилятора, которая в данном варианте осуществления представляет собой турбину 46 низкого давления, и вентилятора 42 (фиг. 1). Соответственно, турбина 46 низкого давления, а с нею и каскад 30 низкого давления, содержащий компрессор 44 низкого давления, могут вращаться с чрезвычайно высокой скоростью. Работа турбины 46 низкого давления и турбины 54 высокого давления может быть оценена по характеризующему параметру, равному произведению площади выходного сечения соответствующей турбины на квадрат соответствующей скорости. Этот характеризующий параметр (PQ, от англ. Performance Quantity) определяют следующим образом:
[0083] Уравнение 1: PQltp=(Alpt×Vlpt 2);
[0084] Уравнение 2: PQhpt=(Ahpt×Vhpt 2),
[0085] где Alpt - площадь 110 турбины 46 низкого давления на выходе 106, a Vlpt - скорость узла турбины низкого давления; Ahpt - площадь турбины 54 высокого давления на выходе 114, a Vhpt - скорость турбины 54 высокого давления.
[0086] Тогда отношение характеризующего параметра турбины 46 низкого давления к характеризующему параметру турбины 54 высокого давления равно:
[0087] Уравнение 3: (Alpt×Vlpt 2)/(Ahpt×Vhpt 2)=PQltp/PQhpt.
[0088] В одном из вариантов осуществления турбин, изготовленных в соответствии с вышеописанной конструкцией, площади турбин 46, 54 низкого и высокого давления равны 557,9 дюйм2 и 90,67 дюйм2 соответственно. Кроме того, скорости вращения турбин низкого и высокого давления равны, соответственно, 10179 об/мин и 24346 об/мин. Тогда в соответствии с приведенными выше уравнениями 1 и 2 характеризующие параметры турбин 46, 54 низкого и высокого давления равны:
[0089] Уравнение 1: PQltp=(Alpt×Vlpt 2)=(557,9 дюйм2)(10179 об/мин)2=57805157673,9 дюйм2⋅(об/мин)2;
[0090] Уравнение 2: PQhpt=(Ahpt×Vhpt 2)=(90,67 дюйм2)(24346 об/мин)2=53742622009,72 дюйм2⋅(об/мин)2,
[0091] а в соответствии с вышеприведенным Уравнением 3 отношение характеризующих параметров секции турбины низкого давления и секции турбины высокого давления равно:
[0092] Отношение=PQltp/PQhpt=57805157673,9 дюйм2⋅(об/мин)2/53742622009,72 дюйм2⋅(об/мин)2=1,075.
[0093] В другом варианте осуществления изобретения данное отношение составляет более 0,5, а в еще одном варианте осуществления изобретения данное отношение составляет более 0,8. При отношении PQltp/PQhpt в диапазоне от 0,5 до 1,5 может быть получена чрезвычайно высокая общая производительность газотурбинного двигателя. Точнее, отношения PQltp/PQhpt, составляющие не менее 0,8, обеспечивают повышенную общую производительность газотурбинного двигателя. Еще точнее, отношения PQltp/PQhpt, составляющие не менее 1,0, обеспечивают еще более высокий термодинамический КПД, а также позволяют получить уменьшение массы, которое повышает эффективность сгорания топлива воздушного судна. Такие значения отношения PQltp/PQhpt, в частности, позволяют значительно уменьшить размеры - как диаметр, так и аксиальную длину - турбинной секции 28 по сравнению с известными конструкциями. Кроме того, они обеспечивают значительное повышение общего КПД двигателя.
[0094] На фиг. 11 схематически представлены некоторые участки компрессора 44 низкого давления и турбины 46 низкого давления каскада 30 низкого давления, содержащие роторы 116 турбины 46 низкого давления и роторы 132 компрессора 44 низкого давления. Каждый из роторов 116 имеет радиус 112 канала, радиус 124 вращающегося диска и ширину 126 канала, измеряемую в направлении, параллельном оси А. Ротор 116 поддерживает турбинные лопатки 118, вращающиеся относительно направляющих турбинных лопаток 120. Компрессор 44 низкого давления содержит роторы 132, имеющие радиус 134 канала, радиус 136 вращающегося диска и ширину 138 канала. Ротор 132 поддерживает компрессорные лопатки 128, вращающиеся относительно направляющих лопаток 130.
[0095] Радиус 122 канала представляет собой радиальное расстояние между внутренней поверхностью канала и осью. Радиус 124 вращающегося диска представляет собой радиальное расстояние между осью А вращения и частью ротора, на которой установлены лопатки аэродинамического профиля. Ширина 126 канала в данном примере представляет собой наибольшую ширину ротора, расположенную на некотором радиальном расстоянии от оси А, определенном для обеспечения требуемых физических рабочих характеристик.
[0096] Скорость вращения роторов как компрессора 44 низкого давления, так и турбины 46 низкого давления выше, чем в известных конструкциях роторов низкого давления. Их геометрические параметры, включая радиус канала, радиус вращающегося диска и ширину канала, определяют так, чтобы получить требуемые рабочие характеристики роторов с учетом механических и тепловых нагрузок, воздействующих на роторы в рабочем режиме. На фиг. 12 представлен ротор 116 турбины по фиг. 11 с целью иллюстрации соотношения между радиусом 126 канала и радиусом 124 вращающегося диска. Кроме того, описанные соотношения применимы к известному ассортименту материалов, обычно используемых для изготовления каждого из роторов.
[0097] Соответственно, повышение рабочих характеристик и производительности может быть обеспечено требуемым сочетанием раскрытых конструктивных особенностей различных компонентов описанных вариантов осуществления газотурбинного двигателя.
[0098] Хотя в вышеприведенном описании представлен один из примеров осуществления изобретения, для специалиста в данной области должно быть очевидно, что в него могут быть внесены изменения, не выходящие за рамки объема изобретения. В связи с этим объем и содержание настоящего изобретения должно быть определено по нижеприведенной формуле изобретения.

Claims (27)

1. Газотурбинный двигатель, содержащий:
вентилятор, содержащий множество лопаток вентилятора, приводимых во вращение вокруг оси;
компрессорную секцию;
камеру сгорания, сообщающуюся по текучей среде с компрессорной секцией;
турбинную секцию, сообщающуюся по текучей среде с камерой сгорания, причем турбинная секция содержит турбину привода вентилятора и вторую турбину, при этом вторая турбина расположена перед турбиной привода вентилятора, а турбина привода вентилятора содержит множество ступеней турбины, причем отношение числа лопаток вентилятора к числу ступеней турбины привода вентилятора превышает 2,5; и
систему изменения скорости, приводимую в действие турбиной привода вентилятора для вращения вентилятора вокруг оси,
причем турбина привода вентилятора имеет первую площадь выходного сечения и способна вращаться с первой скоростью, а вторая турбина имеет вторую площадь выходного сечения и способна вращаться со второй скоростью, превышающей первую скорость,
причем первый характеризующий параметр определен как произведение квадрата первой скорости и первой площади, а второй характеризующий параметр определен как произведение квадрата второй скорости и второй площади, при этом отношение первого характеризующего параметра ко второму характеризующему параметру составляет от 0,5 до 1,5.
2. Двигатель по п. 1, в котором отношение характеризующих параметров больше или равно 0,8.
3. Двигатель по п. 1, в котором первый характеризующий параметр больше или равен 4.
4. Двигатель по п. 1, в котором система изменения скорости содержит редуктор, причем вентилятор и турбина привода вентилятора выполнены с возможностью вращения вокруг оси в первом направлении, а секция второй турбины выполнена с возможностью вращения во втором направлении, противоположном первому направлению.
5. Двигатель по п. 1, в котором система изменения скорости содержит редуктор, причем вентилятор, турбина привода вентилятора и секция второй турбины выполнены с возможностью вращения вокруг оси в первом направлении.
6. Двигатель по п. 1, в котором система изменения скорости содержит редуктор, причем вентилятор и вторая турбина выполнены с возможностью вращения вокруг оси в первом направлении, а турбина привода вентилятора выполнена с возможностью вращения во втором направлении, противоположном первому направлению.
7. Двигатель по п. 1, в котором система изменения скорости содержит редуктор, причем вентилятор выполнен с возможностью вращения вокруг оси в первом направлении, а турбина привода вентилятора и секция второй турбины выполнены с возможностью вращения во втором направлении, противоположном первому направлению.
8. Двигатель по п. 1, в котором система изменения скорости содержит понижающую зубчатую передачу с передаточным отношением, превышающим 2,3.
9. Двигатель по п. 1, в котором указанный вентилятор выполнен с возможностью подачи части воздуха во внешний контур, причем степень двухконтурности определена как отношение части воздуха, подаваемой во внешний контур, к части воздуха, подаваемой в компрессорную секцию, причем степень двухконтурности превышает 6,0.
10. Двигатель по п. 9, в котором степень двухконтурности превышает 10,0.
11. Двигатель по п. 1, в котором степень повышения давления в вентиляторе меньше чем 1,5.
12. Двигатель по п. 1, в котором указанный вентилятор содержит 26 или менее лопаток.
13. Двигатель по п. 12, в котором указанная секция турбины привода вентилятора содержит вплоть до 6 ступеней.
14. Двигатель по п. 1, в котором отношение числа лопаток вентилятора к числу ступеней турбины привода вентилятора меньше чем 8,5.
15. Двигатель по п. 1, в котором коэффициент расширения в секции турбины привода вентилятора превышает 5:1.
16. Двигатель по п. 1, имеющий удельную мощность, которая больше чем 1,5 фунт-сила/дюйм3 и меньше или равна 5,5 фунт-сила/дюйм3.
17. Двигатель по п. 1, в котором турбина привода вентилятора содержит первый задний ротор, прикрепленный к первому валу, а вторая турбина содержит второй задний ротор, прикрепленный ко второму валу, причем аксиально позади первого соединения между первым задним ротором и первым валом расположен первый подшипниковый узел, а аксиально позади второго соединения между вторым задним ротором и вторым валом расположен второй подшипниковый узел.
18. Двигатель по п. 1, в котором турбина привода вентилятора содержит первый задний ротор, прикрепленный к первому валу, а вторая турбина содержит второй задний ротор, прикрепленный ко второму валу, причем аксиально позади первого соединения между первым задним ротором и первым валом расположен первый подшипниковый узел, а аксиально впереди второго соединения между вторым задним ротором и вторым валом расположен второй подшипниковый узел.
19. Двигатель по п. 1, в котором турбина привода вентилятора содержит первый задний ротор, прикрепленный к первому валу, а вторая турбина содержит второй задний ротор, прикрепленный ко второму валу, причем аксиально позади первого соединения между первым задним ротором и первым валом расположен первый подшипниковый узел, а в кольцевом пространстве между первым валом и вторым валом расположен второй подшипниковый узел.
20. Двигатель по п. 1, в котором турбина привода вентилятора содержит первый задний ротор, прикрепленный к первому валу, а вторая турбина содержит второй задний ротор, прикрепленный ко второму валу, причем аксиально впереди первого соединения между первым задним ротором и первым валом расположен первый подшипниковый узел, а аксиально позади второго соединения между вторым задним ротором и вторым валом расположен второй подшипниковый узел.
RU2014134423A 2012-01-31 2013-01-29 Компоновка редукторного турбовентиляторного газотурбинного двигателя RU2631955C2 (ru)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US13/363,154 US20130192196A1 (en) 2012-01-31 2012-01-31 Gas turbine engine with high speed low pressure turbine section
US13/363,154 2012-01-31
US201261653745P 2012-05-31 2012-05-31
US61/653,745 2012-05-31
US13/645,606 2012-10-05
US13/645,606 US8935913B2 (en) 2012-01-31 2012-10-05 Geared turbofan gas turbine engine architecture
PCT/US2013/023559 WO2013169316A2 (en) 2012-01-31 2013-01-29 Geared turbofan gas turbine engine architecture

Publications (2)

Publication Number Publication Date
RU2014134423A RU2014134423A (ru) 2016-03-27
RU2631955C2 true RU2631955C2 (ru) 2017-09-29

Family

ID=48869040

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014134423A RU2631955C2 (ru) 2012-01-31 2013-01-29 Компоновка редукторного турбовентиляторного газотурбинного двигателя

Country Status (8)

Country Link
US (4) US8935913B2 (ru)
EP (3) EP2809939B1 (ru)
JP (1) JP2017015090A (ru)
BR (1) BR112014016277B1 (ru)
CA (2) CA2854082C (ru)
RU (1) RU2631955C2 (ru)
SG (1) SG11201402667QA (ru)
WO (1) WO2013169316A2 (ru)

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150192070A1 (en) 2012-01-31 2015-07-09 United Technologies Corporation Geared turbofan gas turbine engine architecture
US20150345426A1 (en) 2012-01-31 2015-12-03 United Technologies Corporation Geared turbofan gas turbine engine architecture
US10240526B2 (en) 2012-01-31 2019-03-26 United Technologies Corporation Gas turbine engine with high speed low pressure turbine section
US20160032756A1 (en) * 2012-01-31 2016-02-04 United Technologies Corporation Low noise turbine for geared turbofan engine
US9845726B2 (en) 2012-01-31 2017-12-19 United Technologies Corporation Gas turbine engine with high speed low pressure turbine section
US10287914B2 (en) 2012-01-31 2019-05-14 United Technologies Corporation Gas turbine engine with high speed low pressure turbine section and bearing support features
US8935913B2 (en) 2012-01-31 2015-01-20 United Technologies Corporation Geared turbofan gas turbine engine architecture
US10309232B2 (en) * 2012-02-29 2019-06-04 United Technologies Corporation Gas turbine engine with stage dependent material selection for blades and disk
US10125693B2 (en) 2012-04-02 2018-11-13 United Technologies Corporation Geared turbofan engine with power density range
US8572943B1 (en) 2012-05-31 2013-11-05 United Technologies Corporation Fundamental gear system architecture
US20150308351A1 (en) 2012-05-31 2015-10-29 United Technologies Corporation Fundamental gear system architecture
WO2015050619A2 (en) 2013-08-20 2015-04-09 United Technologies Corporation High thrust geared gas turbine engine
WO2015031143A1 (en) * 2013-08-29 2015-03-05 United Technologies Corporation Three spool geared turbofan with low pressure compressor drive gear system and mechanical controller
SG10201403358XA (en) * 2013-09-24 2015-04-29 United Technologies Corp Fundamental gear system architecture
US20150300264A1 (en) 2013-09-30 2015-10-22 United Technologies Corporation Geared turbofan architecture for regional jet aircraft
FR3020658B1 (fr) * 2014-04-30 2020-05-15 Safran Aircraft Engines Capot de recuperation d'huile de lubrification pour un equipement de turbomachine
US9869190B2 (en) 2014-05-30 2018-01-16 General Electric Company Variable-pitch rotor with remote counterweights
US10287976B2 (en) * 2014-07-15 2019-05-14 United Technologies Corporation Split gear system for a gas turbine engine
US20160363003A1 (en) * 2014-08-15 2016-12-15 Gen Electric Mechanical drive architectures with hybrid-type low-loss bearings and low-density materials
US20160047308A1 (en) * 2014-08-15 2016-02-18 General Electric Company Mechanical drive architectures with low-loss lubricant bearings and low-density materials
US20160047335A1 (en) * 2014-08-15 2016-02-18 General Electric Company Mechanical drive architectures with mono-type low-loss bearings and low-density materials
US20160090841A1 (en) * 2014-09-29 2016-03-31 United Technologies Corporation Gas turbine engine blade slot heat shield
US10072510B2 (en) 2014-11-21 2018-09-11 General Electric Company Variable pitch fan for gas turbine engine and method of assembling the same
US9915225B2 (en) 2015-02-06 2018-03-13 United Technologies Corporation Propulsion system arrangement for turbofan gas turbine engine
US20160237914A1 (en) * 2015-02-18 2016-08-18 United Technologies Corporation Geared Turbofan With High Gear Ratio And High Temperature Capability
CA2923329A1 (en) * 2015-03-19 2016-09-19 Daniel Bernard KUPRATIS Geared turbofan gas turbine engine architecture
US10100653B2 (en) 2015-10-08 2018-10-16 General Electric Company Variable pitch fan blade retention system
EP3165754A1 (en) * 2015-11-03 2017-05-10 United Technologies Corporation Gas turbine engine with high speed low pressure turbine section and bearing support features
CA2945265A1 (en) * 2015-11-09 2017-05-09 United Technologies Corporation Gas turbine engine with high speed low pressure turbine section
US20180003071A1 (en) * 2016-07-01 2018-01-04 United Technologies Corporation High efficiency aircraft parallel hybrid gas turbine electric propulsion system
US11428170B2 (en) * 2016-07-01 2022-08-30 Raytheon Technologies Corporation Descent operation for an aircraft parallel hybrid gas turbine electric propulsion system
GB201613029D0 (en) * 2016-07-28 2016-09-14 Rolls Royce Plc A sun gear drive arrangement
US11053797B2 (en) * 2017-01-23 2021-07-06 General Electric Company Rotor thrust balanced turbine engine
US10876407B2 (en) * 2017-02-16 2020-12-29 General Electric Company Thermal structure for outer diameter mounted turbine blades
US10294821B2 (en) * 2017-04-12 2019-05-21 General Electric Company Interturbine frame for gas turbine engine
US10815881B2 (en) 2017-09-20 2020-10-27 General Electric Company Counter rotating turbine with reversing speed reduction assembly
US10502076B2 (en) 2017-11-09 2019-12-10 Honeywell International Inc. Inter-turbine ducts with flow control mechanisms
GB201805764D0 (en) * 2018-04-06 2018-05-23 Rolls Royce Plc A casing
US11085515B2 (en) 2019-02-20 2021-08-10 General Electric Company Gearbox coupling in a turbomachine
US11021970B2 (en) 2019-02-20 2021-06-01 General Electric Company Turbomachine with alternatingly spaced rotor blades
US11073088B2 (en) 2019-02-20 2021-07-27 General Electric Company Gearbox mounting in a turbomachine
US11156097B2 (en) 2019-02-20 2021-10-26 General Electric Company Turbomachine having an airflow management assembly
US11753939B2 (en) 2019-02-20 2023-09-12 General Electric Company Turbomachine with alternatingly spaced rotor blades
US10844721B2 (en) 2019-03-13 2020-11-24 Rolls-Royce Plc Gas turbine engine for an aircraft
GB201907257D0 (en) * 2019-05-23 2019-07-10 Rolls Royce Plc Gas turbine engine
GB201907256D0 (en) 2019-05-23 2019-07-10 Rolls Royce Plc Gas turbine engine
IT201900014724A1 (it) 2019-08-13 2021-02-13 Ge Avio Srl Elementi di trattenimento delle pale per turbomacchine.
IT201900014736A1 (it) 2019-08-13 2021-02-13 Ge Avio Srl Elementi di tenuta integrali per pale trattenute in un rotore a tamburo esterno anulare girevole in una turbomacchina.
IT201900014739A1 (it) 2019-08-13 2021-02-13 Ge Avio Srl Elementi di trattenimento delle pale per turbomacchine.
US11242770B2 (en) 2020-04-02 2022-02-08 General Electric Company Turbine center frame and method
US11781506B2 (en) 2020-06-03 2023-10-10 Rtx Corporation Splitter and guide vane arrangement for gas turbine engines
US11428160B2 (en) 2020-12-31 2022-08-30 General Electric Company Gas turbine engine with interdigitated turbine and gear assembly
US11674435B2 (en) 2021-06-29 2023-06-13 General Electric Company Levered counterweight feathering system
US11795964B2 (en) 2021-07-16 2023-10-24 General Electric Company Levered counterweight feathering system
US11655768B2 (en) 2021-07-26 2023-05-23 General Electric Company High fan up speed engine
US11739689B2 (en) 2021-08-23 2023-08-29 General Electric Company Ice reduction mechanism for turbofan engine
US11767790B2 (en) 2021-08-23 2023-09-26 General Electric Company Object direction mechanism for turbofan engine
US11480063B1 (en) 2021-09-27 2022-10-25 General Electric Company Gas turbine engine with inlet pre-swirl features
US20230121939A1 (en) * 2021-10-19 2023-04-20 Raytheon Technologies Corporation Straddle mounted low pressure compressor
US11788465B2 (en) 2022-01-19 2023-10-17 General Electric Company Bleed flow assembly for a gas turbine engine
KR20230123270A (ko) 2022-02-16 2023-08-23 안동대학교 산학협력단 배관 내면의 결함 탐상 장치
US11808281B2 (en) 2022-03-04 2023-11-07 General Electric Company Gas turbine engine with variable pitch inlet pre-swirl features
US11725526B1 (en) 2022-03-08 2023-08-15 General Electric Company Turbofan engine having nacelle with non-annular inlet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5433674A (en) * 1994-04-12 1995-07-18 United Technologies Corporation Coupling system for a planetary gear train
RU2295046C2 (ru) * 2002-03-01 2007-03-10 Дженерал Электрик Компани Узел авиационного газотурбинного двигателя
EP1921290A2 (en) * 2006-10-31 2008-05-14 General Electric Company Turbofan engine assembly and method of assembling same
US20100080700A1 (en) * 2008-05-16 2010-04-01 Gideon Venter Two-shaft engine for an aircraft gas turbine

Family Cites Families (142)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3111005A (en) 1963-11-19 Jet propulsion plant
US2258792A (en) 1941-04-12 1941-10-14 Westinghouse Electric & Mfg Co Turbine blading
US2608821A (en) 1949-10-08 1952-09-02 Gen Electric Contrarotating turbojet engine having independent bearing supports for each turbocompressor
US3021731A (en) 1951-11-10 1962-02-20 Wilhelm G Stoeckicht Planetary gear transmission
US2748623A (en) 1952-02-05 1956-06-05 Boeing Co Orbit gear controlled reversible planetary transmissions
US2936655A (en) 1955-11-04 1960-05-17 Gen Motors Corp Self-aligning planetary gearing
US3033002A (en) 1957-11-08 1962-05-08 Fairfield Shipbuilding And Eng Marine propulsion steam turbine installations
US3194487A (en) 1963-06-04 1965-07-13 United Aircraft Corp Noise abatement method and apparatus
US3287906A (en) 1965-07-20 1966-11-29 Gen Motors Corp Cooled gas turbine vanes
US3352178A (en) 1965-11-15 1967-11-14 Gen Motors Corp Planetary gearing
US3412560A (en) 1966-08-03 1968-11-26 Gen Motors Corp Jet propulsion engine with cooled combustion chamber, fuel heater, and induced air-flow
GB1135129A (en) 1967-09-15 1968-11-27 Rolls Royce Gas turbine engine
GB1257497A (ru) 1969-04-16 1971-12-22
GB1305302A (ru) 1970-04-28 1973-01-31
US3673802A (en) 1970-06-18 1972-07-04 Gen Electric Fan engine with counter rotating geared core booster
GB1309721A (en) 1971-01-08 1973-03-14 Secr Defence Fan
GB1350431A (en) 1971-01-08 1974-04-18 Secr Defence Gearing
US3892358A (en) 1971-03-17 1975-07-01 Gen Electric Nozzle seal
US3747343A (en) 1972-02-10 1973-07-24 United Aircraft Corp Low noise prop-fan
GB1418905A (en) 1972-05-09 1975-12-24 Rolls Royce Gas turbine engines
US3861139A (en) 1973-02-12 1975-01-21 Gen Electric Turbofan engine having counterrotating compressor and turbine elements and unique fan disposition
US3988889A (en) 1974-02-25 1976-11-02 General Electric Company Cowling arrangement for a turbofan engine
US3932058A (en) 1974-06-07 1976-01-13 United Technologies Corporation Control system for variable pitch fan propulsor
GB1484898A (en) 1974-09-11 1977-09-08 Rolls Royce Ducted fan gas turbine engine
US3935558A (en) 1974-12-11 1976-01-27 United Technologies Corporation Surge detector for turbine engines
US4130872A (en) 1975-10-10 1978-12-19 The United States Of America As Represented By The Secretary Of The Air Force Method and system of controlling a jet engine for avoiding engine surge
GB1516041A (en) 1977-02-14 1978-06-28 Secr Defence Multistage axial flow compressor stators
GB2041090A (en) 1979-01-31 1980-09-03 Rolls Royce By-pass gas turbine engines
DE2940446C2 (de) 1979-10-05 1982-07-08 B. Braun Melsungen Ag, 3508 Melsungen Züchtung von tierischen Zellen in Suspensions- und Monolayerkulturen in Fermentationsgefäßen
FR2506840A1 (fr) 1981-05-29 1982-12-03 Onera (Off Nat Aerospatiale) Turboreacteur a roues contra-rotatives
US4478551A (en) 1981-12-08 1984-10-23 United Technologies Corporation Turbine exhaust case design
US4660376A (en) 1984-04-27 1987-04-28 General Electric Company Method for operating a fluid injection gas turbine engine
DE3532456A1 (de) 1985-09-11 1987-03-19 Mtu Muenchen Gmbh Zwischenwellen(intershaft)-lager mit squeezefilmdaempfung mit oder ohne squirrel-cage
US4696156A (en) 1986-06-03 1987-09-29 United Technologies Corporation Fuel and oil heat management system for a gas turbine engine
GB8630754D0 (en) 1986-12-23 1987-02-04 Rolls Royce Plc Turbofan gas turbine engine
GB2207191B (en) 1987-07-06 1992-03-04 Gen Electric Gas turbine engine
FR2644844B1 (fr) 1989-03-23 1994-05-06 Snecma Suspension du rotor de la turbine basse pression d'une turbomachine a double corps
US4979362A (en) 1989-05-17 1990-12-25 Sundstrand Corporation Aircraft engine starting and emergency power generating system
US5141400A (en) 1991-01-25 1992-08-25 General Electric Company Wide chord fan blade
US5102379A (en) 1991-03-25 1992-04-07 United Technologies Corporation Journal bearing arrangement
US5317877A (en) 1992-08-03 1994-06-07 General Electric Company Intercooled turbine blade cooling air feed system
US5447411A (en) 1993-06-10 1995-09-05 Martin Marietta Corporation Light weight fan blade containment system
US5466198A (en) 1993-06-11 1995-11-14 United Technologies Corporation Geared drive system for a bladed propulsor
US5307622A (en) 1993-08-02 1994-05-03 General Electric Company Counterrotating turbine support assembly
US5524847A (en) 1993-09-07 1996-06-11 United Technologies Corporation Nacelle and mounting arrangement for an aircraft engine
RU2082824C1 (ru) 1994-03-10 1997-06-27 Московский государственный авиационный институт (технический университет) Способ защиты жаропрочных материалов от воздействия агрессивных сред высокоскоростных газовых потоков (варианты)
US5778659A (en) 1994-10-20 1998-07-14 United Technologies Corporation Variable area fan exhaust nozzle having mechanically separate sleeve and thrust reverser actuation systems
US5915917A (en) 1994-12-14 1999-06-29 United Technologies Corporation Compressor stall and surge control using airflow asymmetry measurement
JP2969075B2 (ja) 1996-02-26 1999-11-02 ジャパンゴアテックス株式会社 脱気装置
US5857836A (en) 1996-09-10 1999-01-12 Aerodyne Research, Inc. Evaporatively cooled rotor for a gas turbine engine
US5975841A (en) 1997-10-03 1999-11-02 Thermal Corp. Heat pipe cooling for turbine stators
US5971706A (en) 1997-12-03 1999-10-26 General Electric Company Inter-rotor bearing assembly
US5985470A (en) 1998-03-16 1999-11-16 General Electric Company Thermal/environmental barrier coating system for silicon-based materials
JP2002512337A (ja) 1998-04-16 2002-04-23 3カー−ヴァルナー・トゥルボズュステームズ・ゲーエムベーハー ターボチャージ付内燃機関
DE19828562B4 (de) 1998-06-26 2005-09-08 Mtu Aero Engines Gmbh Triebwerk mit gegenläufig drehenden Rotoren
US6517341B1 (en) 1999-02-26 2003-02-11 General Electric Company Method to prevent recession loss of silica and silicon-containing materials in combustion gas environments
US6410148B1 (en) 1999-04-15 2002-06-25 General Electric Co. Silicon based substrate with environmental/ thermal barrier layer
USH2032H1 (en) 1999-10-01 2002-07-02 The United States Of America As Represented By The Secretary Of The Air Force Integrated fan-core twin spool counter-rotating turbofan gas turbine engine
US6315815B1 (en) 1999-12-16 2001-11-13 United Technologies Corporation Membrane based fuel deoxygenator
US6223616B1 (en) 1999-12-22 2001-05-01 United Technologies Corporation Star gear system with lubrication circuit and lubrication method therefor
US6318070B1 (en) 2000-03-03 2001-11-20 United Technologies Corporation Variable area nozzle for gas turbine engines driven by shape memory alloy actuators
US6444335B1 (en) 2000-04-06 2002-09-03 General Electric Company Thermal/environmental barrier coating for silicon-containing materials
EP1317608A4 (en) 2000-09-05 2004-12-15 Sudarshan Paul Dev COMPACT GAS TURBINE
US6669393B2 (en) 2001-10-10 2003-12-30 General Electric Co. Connector assembly for gas turbine engines
US6708482B2 (en) 2001-11-29 2004-03-23 General Electric Company Aircraft engine with inter-turbine engine frame
US20030097872A1 (en) 2001-11-29 2003-05-29 Granitz Charles Robert System for reducing oil consumption in gas turbine engines
US6663530B2 (en) * 2001-12-14 2003-12-16 Pratt & Whitney Canada Corp. Zero twist carrier
US6732502B2 (en) 2002-03-01 2004-05-11 General Electric Company Counter rotating aircraft gas turbine engine with high overall pressure ratio compressor
US6607165B1 (en) 2002-06-28 2003-08-19 General Electric Company Aircraft engine mount with single thrust link
US6814541B2 (en) 2002-10-07 2004-11-09 General Electric Company Jet aircraft fan case containment design
US7021042B2 (en) 2002-12-13 2006-04-04 United Technologies Corporation Geartrain coupling for a turbofan engine
US6709492B1 (en) 2003-04-04 2004-03-23 United Technologies Corporation Planar membrane deoxygenator
GB0315894D0 (en) 2003-07-08 2003-08-13 Rolls Royce Plc Aircraft engine arrangement
DE102004016246A1 (de) 2004-04-02 2005-10-20 Mtu Aero Engines Gmbh Turbine, insbesondere Niederdruckturbine, einer Gasturbine, insbesondere eines Flugtriebwerks
US7137245B2 (en) 2004-06-18 2006-11-21 General Electric Company High area-ratio inter-turbine duct with inlet blowing
US7328580B2 (en) 2004-06-23 2008-02-12 General Electric Company Chevron film cooled wall
DE102004042739A1 (de) 2004-09-03 2006-03-09 Mtu Aero Engines Gmbh Fan für ein Flugtriebwerk sowie Flugtriebwerk
US7409819B2 (en) 2004-10-29 2008-08-12 General Electric Company Gas turbine engine and method of assembling same
US7309210B2 (en) 2004-12-17 2007-12-18 United Technologies Corporation Turbine engine rotor stack
US7845902B2 (en) 2005-02-15 2010-12-07 Massachusetts Institute Of Technology Jet engine inlet-fan system and design method
GB0506685D0 (en) 2005-04-01 2005-05-11 Hopkins David R A design to increase and smoothly improve the throughput of fluid (air or gas) through the inlet fan (or fans) of an aero-engine system
US7374403B2 (en) 2005-04-07 2008-05-20 General Electric Company Low solidity turbofan
WO2008060257A2 (en) 2005-05-25 2008-05-22 Lau Daniel L Projectile tracking system
US7594388B2 (en) 2005-06-06 2009-09-29 General Electric Company Counterrotating turbofan engine
US20070022735A1 (en) 2005-07-29 2007-02-01 General Electric Company Pto assembly for a gas turbine engine
US9657156B2 (en) 2005-09-28 2017-05-23 Entrotech, Inc. Braid-reinforced composites and processes for their preparation
US7685808B2 (en) 2005-10-19 2010-03-30 General Electric Company Gas turbine engine assembly and methods of assembling same
US7490461B2 (en) 2005-10-19 2009-02-17 General Electric Company Gas turbine engine assembly and methods of assembling same
US7513103B2 (en) 2005-10-19 2009-04-07 General Electric Company Gas turbine engine assembly and methods of assembling same
US7752836B2 (en) 2005-10-19 2010-07-13 General Electric Company Gas turbine assembly and methods of assembling same
US7591754B2 (en) 2006-03-22 2009-09-22 United Technologies Corporation Epicyclic gear train integral sun gear coupling design
US7600370B2 (en) 2006-05-25 2009-10-13 Siemens Energy, Inc. Fluid flow distributor apparatus for gas turbine engine mid-frame section
US20080003096A1 (en) 2006-06-29 2008-01-03 United Technologies Corporation High coverage cooling hole shape
US7926260B2 (en) 2006-07-05 2011-04-19 United Technologies Corporation Flexible shaft for gas turbine engine
US7594404B2 (en) 2006-07-27 2009-09-29 United Technologies Corporation Embedded mount for mid-turbine frame
US7694505B2 (en) 2006-07-31 2010-04-13 General Electric Company Gas turbine engine assembly and method of assembling same
US7632064B2 (en) 2006-09-01 2009-12-15 United Technologies Corporation Variable geometry guide vane for a gas turbine engine
WO2008063152A2 (en) * 2006-10-12 2008-05-29 United Technologies Corporation Turbofan engine
EP2066872B1 (en) 2006-10-12 2014-06-18 United Technologies Corporation Method and device to avoid turbofan instability in a gas turbine engine.
US7832193B2 (en) 2006-10-27 2010-11-16 General Electric Company Gas turbine engine assembly and methods of assembling same
US7926259B2 (en) 2006-10-31 2011-04-19 General Electric Company Turbofan engine assembly and method of assembling same
US7882693B2 (en) 2006-11-29 2011-02-08 General Electric Company Turbofan engine assembly and method of assembling same
US20080148881A1 (en) 2006-12-21 2008-06-26 Thomas Ory Moniz Power take-off system and gas turbine engine assembly including same
US7716914B2 (en) 2006-12-21 2010-05-18 General Electric Company Turbofan engine assembly and method of assembling same
US7721549B2 (en) * 2007-02-08 2010-05-25 United Technologies Corporation Fan variable area nozzle for a gas turbine engine fan nacelle with cam drive ring actuation system
US8015828B2 (en) 2007-04-03 2011-09-13 General Electric Company Power take-off system and gas turbine engine assembly including same
US8017188B2 (en) 2007-04-17 2011-09-13 General Electric Company Methods of making articles having toughened and untoughened regions
US7950237B2 (en) 2007-06-25 2011-05-31 United Technologies Corporation Managing spool bearing load using variable area flow nozzle
US20120124964A1 (en) 2007-07-27 2012-05-24 Hasel Karl L Gas turbine engine with improved fuel efficiency
US8844265B2 (en) 2007-08-01 2014-09-30 United Technologies Corporation Turbine section of high bypass turbofan
US8256707B2 (en) 2007-08-01 2012-09-04 United Technologies Corporation Engine mounting configuration for a turbofan gas turbine engine
US9957918B2 (en) 2007-08-28 2018-05-01 United Technologies Corporation Gas turbine engine front architecture
US8205432B2 (en) 2007-10-03 2012-06-26 United Technologies Corporation Epicyclic gear train for turbo fan engine
GB0720628D0 (en) 2007-10-20 2007-11-28 Rolls Royce Plc Bearing arrangement
US8590286B2 (en) 2007-12-05 2013-11-26 United Technologies Corp. Gas turbine engine systems involving tip fans
US8015798B2 (en) 2007-12-13 2011-09-13 United Technologies Corporation Geared counter-rotating gas turbofan engine
US7762086B2 (en) 2008-03-12 2010-07-27 United Technologies Corporation Nozzle extension assembly for ground and flight testing
US20100005810A1 (en) 2008-07-11 2010-01-14 Rob Jarrell Power transmission among shafts in a turbine engine
US7997868B1 (en) 2008-11-18 2011-08-16 Florida Turbine Technologies, Inc. Film cooling hole for turbine airfoil
US8166748B2 (en) 2008-11-21 2012-05-01 General Electric Company Gas turbine engine booster having rotatable radially inwardly extending blades and non-rotatable vanes
US8091371B2 (en) 2008-11-28 2012-01-10 Pratt & Whitney Canada Corp. Mid turbine frame for gas turbine engine
US8061969B2 (en) 2008-11-28 2011-11-22 Pratt & Whitney Canada Corp. Mid turbine frame system for gas turbine engine
US8191352B2 (en) 2008-12-19 2012-06-05 General Electric Company Geared differential speed counter-rotatable low pressure turbine
US8181441B2 (en) 2009-02-27 2012-05-22 United Technologies Corporation Controlled fan stream flow bypass
FR2944558B1 (fr) 2009-04-17 2014-05-02 Snecma Moteur a turbine a gaz double corps pourvu d'un palier de turbine bp supplementaire.
US8172716B2 (en) 2009-06-25 2012-05-08 United Technologies Corporation Epicyclic gear system with superfinished journal bearing
US8375695B2 (en) 2009-06-30 2013-02-19 General Electric Company Aircraft gas turbine engine counter-rotatable generator
US9170616B2 (en) 2009-12-31 2015-10-27 Intel Corporation Quiet system cooling using coupled optimization between integrated micro porous absorbers and rotors
US8905713B2 (en) 2010-05-28 2014-12-09 General Electric Company Articles which include chevron film cooling holes, and related processes
US20140196472A1 (en) 2012-01-31 2014-07-17 United Technologies Corporation Geared turbofan gas turbine engine architecture
US20150089959A1 (en) 2012-01-31 2015-04-02 United Technologies Corporation Gas turbine engine shaft bearing configuration
US20130192263A1 (en) * 2012-01-31 2013-08-01 Gabriel L. Suciu Gas turbine engine with high speed low pressure turbine section
US20130192201A1 (en) 2012-01-31 2013-08-01 United Technologies Corporation Geared turbofan gas turbine engine architecture
US20130192266A1 (en) 2012-01-31 2013-08-01 United Technologies Corporation Geared turbofan gas turbine engine architecture
US8935913B2 (en) 2012-01-31 2015-01-20 United Technologies Corporation Geared turbofan gas turbine engine architecture
US10036351B2 (en) 2012-04-02 2018-07-31 United Technologies Corporation Geared turbofan with three co-rotating turbines
US20130255274A1 (en) 2012-04-02 2013-10-03 Daniel Bernard Kupratis Geared architecture with speed change device for gas turbine engine
US10036350B2 (en) 2012-04-30 2018-07-31 United Technologies Corporation Geared turbofan with three turbines all co-rotating
US10119400B2 (en) 2012-09-28 2018-11-06 United Technologies Corporation High pressure rotor disk
US8834099B1 (en) 2012-09-28 2014-09-16 United Technoloiies Corporation Low noise compressor rotor for geared turbofan engine
US9885282B2 (en) 2013-03-15 2018-02-06 United Technologies Corporation Turbofan engine bearing and gearbox arrangement
US20160032826A1 (en) 2014-08-04 2016-02-04 MTU Aero Engines AG Turbofan aircraft engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5433674A (en) * 1994-04-12 1995-07-18 United Technologies Corporation Coupling system for a planetary gear train
RU2295046C2 (ru) * 2002-03-01 2007-03-10 Дженерал Электрик Компани Узел авиационного газотурбинного двигателя
EP1921290A2 (en) * 2006-10-31 2008-05-14 General Electric Company Turbofan engine assembly and method of assembling same
US20100080700A1 (en) * 2008-05-16 2010-04-01 Gideon Venter Two-shaft engine for an aircraft gas turbine

Also Published As

Publication number Publication date
BR112014016277B1 (pt) 2022-02-01
CA2933432C (en) 2018-05-01
WO2013169316A3 (en) 2014-01-16
US20170254273A1 (en) 2017-09-07
WO2013169316A2 (en) 2013-11-14
CA2854082A1 (en) 2013-11-14
EP2809939A2 (en) 2014-12-10
EP2809939A4 (en) 2015-11-25
RU2014134423A (ru) 2016-03-27
BR112014016277A2 (pt) 2017-06-13
EP4141239A1 (en) 2023-03-01
US20150330302A1 (en) 2015-11-19
US10030586B2 (en) 2018-07-24
CA2933432A1 (en) 2017-01-01
SG11201402667QA (en) 2014-09-26
EP3324022A1 (en) 2018-05-23
US20130192200A1 (en) 2013-08-01
CA2854082C (en) 2016-04-26
JP2017015090A (ja) 2017-01-19
US8935913B2 (en) 2015-01-20
BR112014016277A8 (pt) 2017-07-04
EP2809939B1 (en) 2017-12-27
US9695751B2 (en) 2017-07-04
US20170122216A1 (en) 2017-05-04

Similar Documents

Publication Publication Date Title
RU2631955C2 (ru) Компоновка редукторного турбовентиляторного газотурбинного двигателя
RU2633218C2 (ru) Компоновка редукторного турбовентиляторного газотурбинного двигателя
RU2630630C2 (ru) Архитектура редукторного турбовентиляторного газотурбинного двигателя
RU2631956C2 (ru) Компоновка редукторного турбовентиляторного газотурбинного двигателя
RU2633498C2 (ru) Конструкция редукторного турбовентиляторного газотурбинного двигателя
RU2633495C2 (ru) Конструкция редукторного турбовентиляторного газотурбинного двигателя
US10288011B2 (en) Geared turbofan gas turbine engine architecture
US20150192070A1 (en) Geared turbofan gas turbine engine architecture