RU2631514C2 - Способ оценки повреждений обсадных колонн нефтегазовых скважин - Google Patents

Способ оценки повреждений обсадных колонн нефтегазовых скважин Download PDF

Info

Publication number
RU2631514C2
RU2631514C2 RU2015137478A RU2015137478A RU2631514C2 RU 2631514 C2 RU2631514 C2 RU 2631514C2 RU 2015137478 A RU2015137478 A RU 2015137478A RU 2015137478 A RU2015137478 A RU 2015137478A RU 2631514 C2 RU2631514 C2 RU 2631514C2
Authority
RU
Russia
Prior art keywords
damage
walls
wall
casing
columns
Prior art date
Application number
RU2015137478A
Other languages
English (en)
Other versions
RU2015137478A (ru
Inventor
Виталий Юрьевич Хатьков
Владимир Иванович Масленников
Олег Витальевич Иванов
Владимир Александрович Марков
Николай Александрович Кузичкин
Original Assignee
Общество с ограниченной ответственностью "Газпром георесурс"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Газпром георесурс" filed Critical Общество с ограниченной ответственностью "Газпром георесурс"
Priority to RU2015137478A priority Critical patent/RU2631514C2/ru
Publication of RU2015137478A publication Critical patent/RU2015137478A/ru
Application granted granted Critical
Publication of RU2631514C2 publication Critical patent/RU2631514C2/ru

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Geophysics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

Изобретение относится к области геофизических исследований и может быть использовано для диагностики технического состояния обсадных колонн скважин нефтегазовых месторождений. Технический результат заключается в повышении достоверности выявления различных видов повреждений стенок колонн и точности оценки их количественных характеристик. Способ оценки повреждений обсадных колонн нефтегазовых скважин включает обследование стенок обсадной колонны с применением акустического сканера на отраженных волнах высокого разрешения. В результате построения цифровой трехмерной модели внутренней стенки колонн, координатами которой служат текущая глубина, круговая развертка поверхности 360° и глубина повреждений стенок, определяемая по измерению времени прихода отраженной волны от стенки колонн с учетом скорости ультразвука в скважинной жидкости, выполняют идентификацию, количественную оценку площадных и объемных характеристик многообразных видов повреждений. 5 ил.

Description

Изобретение относится к области геофизических исследований и может быть использовано для диагностики технического состояния обсадных колонн скважин нефтегазовых месторождений.
Длительный срок эксплуатации скважин нефтегазовых месторождений и ПХГ понижает качество технического состояния обсадных эксплуатационных колонн. Возникает многообразие сочетающихся коррозионных и механических видов повреждений внутренней поверхности колонн стенок колонн, лимитирующих их прочность при конкретных условиях предельных внутренних и внешних давлений. Высокое содержание агрессивных компонентов в продукте скважины нефтегазовых месторождений, таких как сероводород, кислород и др., способствует интенсивному коррозионному повреждению металла труб. В процессе эксплуатации и проведения периодических технологических операций при капитальном ремонте скважин дополнительно возникают разного рода механические повреждения стенок труб. В соответствии с нормативно-техническими документами (например, СТО Газпром 2-2.3-145-2007 «Инструкция по техническому диагностированию скважин ПХГ» и СТО Газпром 2-2.3-312-2009 «Методика проведения технического диагностирования газовых и газоконденсатных скважин газодобывающих предприятий ОАО «Газпром») в задачи технического диагностирования обсадных колонн скважин геофизическими методами входит выявление повреждений внутренней поверхности эксплуатационной колонны -коррозионных и механических (износа, трещин, порывов, порезов и т.д.). Используемые при оценке остаточной прочности труб для последующей их безопасной эксплуатации алгоритмы расчета различны для каждого отдельного вида и варианта сочетающихся повреждений, таких как утонение стенок труб при общем коррозионном износе, желобообразные выработки, U- и V-образные повреждения (например, СТО Газпром 2-2.3-117-2007 «Инструкция по расчету поврежденных и находящихся в особых условиях эксплуатационных обсадных колонн», СТО Газпром 2-3.2-346-2009. «Инструкция по расчету долговечности и остаточного ресурса скважин»). Таким образом, при диагностике технического состояния обсадных колонн скважин чрезвычайно актуальной задачей является выявление, идентификация и измерение геометрических размеров повреждений. При диагностировании технического состояния обсадных эксплуатационных колонн важной задачей является прямое дистанционное обследование стенок по всей длине труб с применением геофизических технологий на основе применения сканирующей аппаратуры высокого разрешения.
Из современного технического уровня известны способы оценки повреждений стенок обсадных труб (коррозионных повреждений стенок, механических воздействий на стенки колонн различными видами перфорации и др.), использующие сканирующие геофизические методы.
Известен способ контроля технического состояния обсадных колонн скважин с применением аппаратурно-программного комплекса видеокаротажа АВК-42М [1]. По данным временных и амплитудных характеристик отраженного акустического сигнала метод позволяет получать развернутое изображение поверхности стенки скважины. Полученные видеограммы используются для обнаружения каверн, трещин, интервалов коррозионного повреждения обсадной колонны, количества и местоположения перфорационных отверстий. Проявление одиночной коррозионной язвы отмечается на видеограмме темным пятном. Множественные язвы и самые крупные из них, выявленные электромагнитным дефектоскопом ЭМДС-С, характеризуются АВК-42М как интенсивной внутренней площадной коррозией. Также существенное уменьшение толщины стенки скважины, измеряемое прибором ЭМДС-С, на видеограмме АВК-42М отмечается потемнением цветовой окраски, связанным с падением интенсивности отраженного сигнала.
Недостатком этого способа является то, что применяемые средства обработки исходных данных и варианты визуализации разного рода повреждений стенок колонны позволяют охарактеризовать их только на качественном уровне.
Путем физического моделирования и скважинных исследований показана возможность определения линейных размеров повреждений стенок труб с применением сканирующей аппаратуры высокого разрешения - скважинного акустического телевизора САТ-4М [2]. Объектом скважинных исследований являются механические выработки обсадных колонн, выполненные сверлящим керноотборником СКМ-8-9 и точечно-щелевой перфорации ТЩ-ГПП. Показано, что изображение внутренней поверхности в трехмерном измерении 3D позволяет оценить конфигурацию и размеры отдельных выработок, идентифицировать их как сквозные.
Недостатком этого способа является то, что показана разрешающая возможность аппаратуры сканирующего акустического метода и возможность оценки линейных размеров отдельных выработок стенок труб в заведомо известных участках воздействия.
Наиболее близким техническим решением к предлагаемому является способ [3] определения геометрических размеров повреждений внутренней поверхности стенок труб, основанный на применении скважинного акустического сканера на высокочастотных отраженных волнах САС-90. Аппаратура обладает расширенными функциональными возможностями (500 точек измерений по периметру трубы) в обсаженных скважинах по выявлению различных видов перфорации, определения местоположения и количества перфорационных отверстий в обсадных колоннах, обнаружению в них различного рода нарушений и дефектов. Высокое разрешение с дискретностью 1.0 мм обеспечивает точное видеоизображение внутренней поверхности стенки колонн по амплитудным характеристикам отраженного сигнала. Для более наглядного представления возможно построение трехмерного изображения. По измерению временных характеристик прихода отраженной волны от стенки колонны возможно определение геометрических характеристик труб (внутреннего профиля).
Недостатком этого способа является то, что при широких функциональных возможностях сканирующей аппаратуры решаются технические задачи на качественном уровне - визуальное выявление локальных участков повреждений стенок труб по видеоизображениям, а из геометрических характеристик труб количественно оценивается только их внутренний профиль.
Существующие подходы к решению проблем технической диагностики, основанные только на упрощенных методах оценки повреждений труб, не позволяют с полной достоверностью оценить безопасность при эксплуатации обсадных колонн нефтегазовых скважин в целом.
Предлагаемый способ оценки повреждений обсадных колонн нефтегазовых скважин основывается на учете всего необходимого комплекса оценочных количественных характеристик, которые формируют уровень безопасности конструкции в конкретных условиях функционирования - предельных внутренних и внешних давлениях.
Технической задачей изобретения является повышение достоверности выявления различных видов повреждений стенок колонн и точности оценки их количественных характеристик.
Технический результат достигается за счет того, что согласно предлагаемому изобретению по результатам акустического секторного сканирования осуществляется построение цифровой трехмерной модели рельефа внутренней стенки обсадных колонн путем измерений глубины повреждений по секторам на каждом кванте глубины при ее дистанционном зондировании средствами геофизических исследований. Цифровую модель используют для решения технических задач: идентификации многообразных видов (коррозионных, механических) повреждений, количественной оценки их площадных и объемных характеристик и выполнения статистической обработки результатов, как для отдельных интервалов труб, так и в целом для обсадных колонн скважин.
Техническая задача решается следующим образом.
При диагностировании технического состояния обсадных эксплуатационных колонн выполняют обследование внутренней стенки колонны по секторам на каждом кванте глубины с применением акустического сканера на отраженных волнах высокого разрешения (например, 500 секторов для аппаратуры САС-90). По измерению времени прихода отраженной волны от стенки колонны с учетом скорости ультразвука в скважинной жидкости определяют глубину повреждений. По результатам сканирования выполняют построение цифровой трехмерной модели рельефа внутренней стенки обсадных колонн, координатами которой служат текущая глубина, круговая развертка поверхности 360° и глубина повреждений стенок. С использованием трехмерной модели рельефа внутренней стенки колонн выполняют идентификацию, количественную оценку площадных и объемных характеристик многообразных видов повреждений.
Идентификацию видов повреждений осуществляют путем сравнения геометрических размеров повреждений по площади, периметру и вдоль внутренней поверхности и глубины повреждений стенок колонны (утонения). Например, в соответствии с ГОСТ 9.908-85 «Методы определения показателей коррозии и коррозионной стойкости» разделяют следующие типы коррозии: питтинговая коррозия - коррозионное поражение глубиной значительно больше ширины, коррозионная язва - коррозионное поражение глубиной приблизительно равной ширине, коррозия пятнами - мелкое коррозионное поражение неправильной формы и др. Механические повреждения (царапина, выработка) идентифицируются как продольная механическая выработка или царапина, если длина намного больше ширины повреждения.
Для количественной оценки степени повреждений труб используются исходные данные в виде цифровой формы модели объекта и способ их структурного описания путем интерполяции. Для построения цифровой модели внутренней поверхности колонн применена известная методика, позволяющая моделировать поверхность рельефа сложного строения [Мусин О.Р. Цифровые модели для ГИС //Информационный бюллетень. ГИС-Ассоциация. 1998. №4 (16). С. 30]. Области применения таких цифровых моделей рельефа разнообразны, например при картографии, строительном проектировании и т.п.
Технический результат заявляемого технического решения иллюстрируется Фиг. 1-5.
На фиг. 1 приведена цифровая модель рельефа внутренней стенки (повреждений)фрагмента обсадной колонны (питтинговая коррозия, коррозионная язва, коррозия пятнами и механическая выработка).
На фиг. 2 приведена видеограмма рельефа внутренней стенки фрагмента обсадной колонны.
На фиг. 3-5 приведены результаты количественной оценки выявленных коррозионных повреждений внутренней стенки обсадной колонны.
На фиг. 3 приведена гистограмма распределения количества повреждений (Σпов) глубиной более 1.5 мм внутренней стенки обсадной колонны по трубам.
На фиг. 4 приведена гистограмма, отражающая площадь (S) выявленных повреждений обсадной колонны относительно площади внутренней поверхности по трубам.
На фиг. 5 приведена гистограмма, отражающая объем выявленных повреждений обсадной колонны (Vпов) относительно объема металла труб.
Экономическая эффективность предлагаемого способа оценки повреждений обсадных колонн нефтегазовых скважин обусловлена высокой достоверностью выявления и точностью определения геометрических размеров повреждений стенок обсадных колонн, обуславливающих техническую и экологическую безопасность эксплуатации скважин.
Источники информации
1. Ташбулатов В.Д., Еникеев В.Н., Гайфуллин М.Я. и др. Возможности аппаратно-программного комплекса видеокаротажа малого диаметра АВК-42М. НТВ «Каротажник», №7-8 (148-149), стр. 242-254, 2006 г.
2. Марков В.А., Масленников В.И., Шулаев В.Ф., Еремин Л.Ю., Кузичкин Н.А. Опыт применения скважинного акустического телевизора для определения размеров дефектов и повреждений обсадных колонн. НТВ «Каротажник» №9 (207), 2011, стр. 39-47.
3. Терехов О.В., Горохов В.М., Садыков А.Р. и др. Акустический сканер САС-90 как инструмент для решения геолого-геофизических задач при исследовании скважин. НТВ «Каротажник», №7-8 (217-218), стр. 25-34, 2012 г.

Claims (1)

  1. Способ оценки повреждений обсадных колонн нефтегазовых скважин, включающий обследование стенок обсадной колонны с применением акустического сканера на отраженных волнах высокого разрешения, отличающийся тем, что в результате построения цифровой трехмерной модели внутренней стенки колонн, координатами которой служат текущая глубина, круговая развертка поверхности 360° и глубина повреждений стенок, определяемая по измерению времени прихода отраженной волны от стенки колонн с учетом скорости ультразвука в скважинной жидкости, выполняют идентификацию, количественную оценку площадных и объемных характеристик многообразных видов повреждений.
RU2015137478A 2015-09-02 2015-09-02 Способ оценки повреждений обсадных колонн нефтегазовых скважин RU2631514C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015137478A RU2631514C2 (ru) 2015-09-02 2015-09-02 Способ оценки повреждений обсадных колонн нефтегазовых скважин

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015137478A RU2631514C2 (ru) 2015-09-02 2015-09-02 Способ оценки повреждений обсадных колонн нефтегазовых скважин

Publications (2)

Publication Number Publication Date
RU2015137478A RU2015137478A (ru) 2017-03-09
RU2631514C2 true RU2631514C2 (ru) 2017-09-25

Family

ID=58454133

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015137478A RU2631514C2 (ru) 2015-09-02 2015-09-02 Способ оценки повреждений обсадных колонн нефтегазовых скважин

Country Status (1)

Country Link
RU (1) RU2631514C2 (ru)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5996726A (en) * 1998-01-29 1999-12-07 Gas Research Institute System and method for determining the distribution and orientation of natural fractures
RU2402791C2 (ru) * 2009-01-22 2010-10-27 Открытое акционерное общество НПФ "Геофизика" Способ определения количественных параметров пласта методом отраженных волн
RU2515332C1 (ru) * 2012-09-18 2014-05-10 Федеральное государственное бюджетное учреждение науки Институт геологии рудных месторождений, петрографии, минералогии и геохимии Российской академии наук (ИГЕМ РАН) Способ определения неоднородностей упругих и фильтрационных свойств горных пород

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5996726A (en) * 1998-01-29 1999-12-07 Gas Research Institute System and method for determining the distribution and orientation of natural fractures
RU2402791C2 (ru) * 2009-01-22 2010-10-27 Открытое акционерное общество НПФ "Геофизика" Способ определения количественных параметров пласта методом отраженных волн
RU2515332C1 (ru) * 2012-09-18 2014-05-10 Федеральное государственное бюджетное учреждение науки Институт геологии рудных месторождений, петрографии, минералогии и геохимии Российской академии наук (ИГЕМ РАН) Способ определения неоднородностей упругих и фильтрационных свойств горных пород

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
СТРЕЛКОВ В.И. и др. Микроимиджер-цементомер "АРКЦ-Т-КЦ", как прибор для контроля интервалов перетока при эксплуатации нефтяных и газовых скважин. Материалы VII Межрегиональной геологической конференции, Уфа, 2008, с.266-267. *
ТЕРЕХОВ О.В. и др. Акустический сканер САС-90 как инструмент для решения геолого-геофизических задач при исследовании скважин. НТВ "Каротажник", 2012, N7-8(217-218), с.25-34. *

Also Published As

Publication number Publication date
RU2015137478A (ru) 2017-03-09

Similar Documents

Publication Publication Date Title
US9488749B2 (en) Holographic techniques for corrosion evaluation of wellbore pipes
JP5113340B2 (ja) 超音波走査データを用いて物体を検査する方法およびシステム
US10190404B2 (en) High quality visualization in a corrosion inspection tool for multiple pipes
RU2709853C1 (ru) Способ и система для обнаружения в скважине объектов, отражающих гидравлический сигнал
CN100458360C (zh) 检查金属管材的方法
EP2808677B1 (en) Method for non-contact metallic constructions assessment
WO2017008621A1 (zh) 微磁检测方法和微磁检测装置
WO2015200567A1 (en) Anomaly recognition system and methodology
RU2635751C2 (ru) Система и способ для инспектирования подводных трубопроводов
US20180266992A1 (en) Quantifying tubing defect severity
CN104374828A (zh) 一种隐患探测的超声波层析成像方法
Zhang et al. A review of the integrity management of subsea production systems: Inspection and monitoring methods
Angulo et al. Mooring integrity management: Novel approaches towards in situ monitoring
JP3799552B2 (ja) 超音波による配管劣化診断方法
RU2631514C2 (ru) Способ оценки повреждений обсадных колонн нефтегазовых скважин
Zheng et al. State-of-the-Art Portable Measurement and Defect Detection Technology for Coiled Tubing String
Simpson et al. High-Resolution Acoustic Imaging for Submillimetric Casing Thickness Quantification and Advanced Effective-Area-Based Burst Pressure Analyses
NL2022689B1 (en) Method and system for non-intrusively determining cross-sectional variation for a fluidic channel
RU2688810C1 (ru) Дефектоскопия трещин в трубчатых элементах в стволах скважин под высоким давлением с использованием акустической эмиссии
CN112179987B (zh) 一种长距离薄板结构微缺陷的无损检测方法
Dahl Optimising of pipeline maintenance using deposit profile technology
Sharma et al. Deep-learning-assisted automated detection of gas influx signature in wellbore using distributed acoustic sensor data
Zhao Research on the technology of casing inspection through tubing in the Saertu Development Zone of Daqing Oilfield
Fayzullayevich et al. DIFFECTION METHODS IN PIPELINE EXAMINATION
Gao et al. Investigate performance of current in-line inspection technologies for dents and dent associated with metal loss damage detection