RU2631122C1 - Матричный электронный модуль (варианты) - Google Patents

Матричный электронный модуль (варианты) Download PDF

Info

Publication number
RU2631122C1
RU2631122C1 RU2016116125A RU2016116125A RU2631122C1 RU 2631122 C1 RU2631122 C1 RU 2631122C1 RU 2016116125 A RU2016116125 A RU 2016116125A RU 2016116125 A RU2016116125 A RU 2016116125A RU 2631122 C1 RU2631122 C1 RU 2631122C1
Authority
RU
Russia
Prior art keywords
magnets
conductive
boards
module
module according
Prior art date
Application number
RU2016116125A
Other languages
English (en)
Inventor
Валентин Сергеевич Чуйко
Original Assignee
Валентин Сергеевич Чуйко
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Валентин Сергеевич Чуйко filed Critical Валентин Сергеевич Чуйко
Priority to RU2016116125A priority Critical patent/RU2631122C1/ru
Priority to PCT/RU2017/000395 priority patent/WO2017188860A1/ru
Application granted granted Critical
Publication of RU2631122C1 publication Critical patent/RU2631122C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/14Structural association of two or more printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/181Printed circuits structurally associated with non-printed electric components associated with surface mounted components

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Combinations Of Printed Boards (AREA)

Abstract

Изобретение относится к электротехнике и может быть использовано при создании блоков различной радиоэлектронной аппаратуры. Матричный электронный модуль содержит коммутационные платы с размещенными на них электронными компонентами и электрическими соединителями. Платы соединены между собой в пакет посредством размещенных по углам модуля токопроводящих постоянных магнитов с осевой намагниченностью, выполненных с гранями на боковой поверхности для взаимодействия с гранями магнитов присоединяемых модулей. Согласно одному варианту магниты обоими концами соединены с коммутационными платами. Согласно второму варианту магниты соединены одним концом с одной из коммутационных плат и взаимодействуют свободным концом с деталью из магнитного материала, закрепленной на второй коммутационной плате. Технический результат - обеспечение возможности создания объемных пространственных сборок, не зависящих от несущих конструкций, с высокой плотностью упаковки радиоэлектронных компонентов, простоты и высокой производительности монтажных работ, возможности выполнения замены модулей «по горячему», упрощения электропитания модулей. 2 н. и 17 з.п. ф-лы, 16 ил.

Description

Изобретение относится к электротехнике и может быть использовано при создании блоков различной радиоэлектронной аппаратуры.
Уровень техники
Известен трехмерный электронный модуль (патент RU 2335821, МПК: H01L 25/00, Н05К 7/20, опубл. 10.10.2008), содержащий две параллельные коммутационные платы с размещенными на них корпусированными и бескорпусными электронными компонентами и/или микросхемами, соединенные между собой посредством соединительных плат с образованием «трубной» или кубической ячейки-модуля, имеющего возможность соединения с аналогичными модулями с образованием объемной трехмерной конструкции (сборки, матрицы). Электрическое соединение плат внутри модуля и модулей между собой обеспечивают сформированные внутри коммутационных плат трехмерные электрические соединители, контакты которых выведены на каждую сторону по периметру платы.
Упомянутое решение характеризуется высокой ремонтопригодностью и обеспечивает широкие возможности пространственного конструирования, однако при этом имеет ряд существенных недостатков. Во-первых, невысокую надежность конструкции, обусловленную тем, что механическое соединение плат и модулей выполняется только за счет электрических соединителей. Во-вторых, низкую плотность упаковки, что ведет к существенным габаритам создаваемой аппаратуры. В-третьих, в этой конструкции не решен вопрос закрепления сборки в корпусе.
Известен радиоэлектронный блок, содержащий совокупность размещенных в ряд модулей, установленных в общем корпусе (патент RU 50070 U1, МПК: Н05К 5/00, опубл. 10.12.2005). Каждый модуль образован парой печатных плат, соединенных между собой в пакет посредством дистанционных упоров - стоек.
Термин «пакет» здесь и далее используется в своем значении «стопка, стопа», в которой печатные платы ориентированы плоскостями параллельно друг другу, размещены «этажеркой», одна над другой, если не учитывать последующую ориентацию пакета.
На печатных платах размещены электронные компоненты и электрические разъемы, один из которых служит для соединения с ответной частью, размещенной на объединительной плате корпуса. Противоположно расположенные, относительно упомянутого разъема, торцы плат соединены лицевой панелью, выполненной с разъемами для внешних подключений. Модули устанавливаются в направляющих корпуса и закрепляются винтами через отверстия на лицевой панели.
Такая конструкция модуля проста в изготовлении, характеризуется высокой ремонтопригодностью и может быть использована для создания пространственных сборок, однако в этом случае потребуется разработка специальной (индивидуальной) несущей конструкции для размещения и соединения модулей.
Другим недостатком упомянутого решения является высокая вероятность механического повреждения выступающих наружу контактов разъема модуля в процессе его монтажа или транспортировки, а также повреждения статическим электричеством чувствительных электронных компонентов, электрически соединенных с ними.
Известен электронный модуль (см. патент DE 2920578, МПК: Н05К 7/14, опубл. 04.12.1980), содержащий набор печатных плат, электрически соединенных посредством межплатных соединительных пар и механически стянутых между собой в пакет посредством крепежных стержневых элементов, пропущенных через соосные отверстия плат. Ступенчатые перепады диаметров стержней создают упоры для плат и обеспечивают фиксированное расстояние между ними. Головка стержня, размещаемая в ответной выемке основания или крышки корпуса, обеспечивает фиксированное положение сборки в корпусе после соединения крышки и основания между собой.
Упомянутое решение обеспечивает высокую плотность упаковки и надежность соединения плат, однако оно не позволяет создавать разветвленные пространственные сборки и может быть использовано только для формирования пакетов плат.
В качестве наиболее близкого, по наличию сходных существенных признаков, аналога для всех вариантов заявляемого изобретения выбрана конструкция модуля, раскрытая в патенте RU 2498544, МПК: Н05К 7/20, опубл. 10.11.2013.
Согласно упомянутому патенту, радиоэлектронный блок содержит совокупность функциональных ячеек - модулей. Каждый модуль состоит из двух коммутационных печатных плат с размещенными на них радиоэлектронными компонентами и электрическими соединителями. Платы механически соединены между собой в пакет посредством размещенных между платами по углам модуля соединительных элементов - угловых стоек, выполненных с резьбовыми отверстиями для крепежных элементов.
В упомянутом аналоге каждый модуль установлен в отдельной ячейке корпуса, конструкция которого определяет пространственную структуру блока. Вне корпуса возможность соединения модулей не предусмотрена.
В основу настоящего изобретения положено решение задачи создания универсального простого быстросъемного модуля, обеспечивающего высокую плотность упаковки радиоэлектронных компонентов и позволяющего создавать на его базе различные объемные сборки, не зависящие от несущих конструкций.
Раскрытие изобретения
Все варианты предлагаемого технического решения обеспечивают достижение следующих технических результатов:
- возможность создания на базе модуля объемных пространственных сборок, не зависящих от несущих конструкций и характеризующихся высокой плотностью упаковки радиоэлектронных компонентов,
- простоту и высокую производительность монтажных работ,
- возможность выполнения замены модулей «по горячему», т.е. без отключения питания, что особенно востребовано в различных компьютерных системах обработки информации,
- упрощение организации электропитания модулей, появление возможности его резервирования.
Упомянутые технические результаты достигаются благодаря тому, что в матричном электронном модуле, содержащем коммутационные платы с размещенными на них электронными компонентами и электрическими соединителями, механически соединенные между собой в пакет посредством размещенных между платами по углам модуля соединительных элементов, согласно первому варианту заявляемого изобретения, соединительные элементы выполнены в виде токопроводящих постоянных магнитов с осевой намагниченностью, соединенных концами с коммутационными платами и выполненных с гранями на боковой поверхности для взаимодействия с гранями магнитов присоединяемых модулей.
Упомянутые технические результаты достигаются также благодаря тому, что в матричном электронном модуле, содержащем коммутационные платы с размещенными на них электронными компонентами и электрическими соединителями, механически соединенные между собой в пакет посредством размещенных между платами по углам модуля соединительных элементов, согласно второму варианту заявляемого изобретения, соединительные элементы выполнены в виде токопроводящих постоянных магнитов с осевой намагниченностью, соединенных одним концом с одной из коммутационных плат и взаимодействующих свободным концом с деталью из магнитного материала, закрепленной на второй коммутационной плате, при этом на боковой поверхности каждого токопроводящего магнита сформированы грани для взаимодействия с гранями магнитов присоединяемых модулей.
Токопроводящие магниты - магниты, обладающие свойством электропроводности.
Магнитные материалы - вещества с ярко выраженными магнитными свойствами, ферромагнетики, преимущественно железо и его сплавы.
В отличие от обычных стоек или стержней, служащих только для механического соединения коммутационных плат в известных аналогах, токопроводящие магниты в предлагаемой конструкции дополнительно обеспечивают возможность механического соединения между собой модулей, а также могут выступать в качестве электрических соединителей плат и модулей.
Возможность простого и быстрого присоединения к модулю аналогичных электронных модулей обеспечивается за счет использования сил взаимного притяжения между разноименными полюсами постоянных магнитов, размещенных по углам модуля и имеющих площадки (грани) на боковой поверхности, выполненные с возможностью контакта с такими же площадками (гранями) магнитов размещаемых рядом модулей.
Для образования сборки достаточно просто сблизить правильно сориентированные модули между собой и магниты «притянут» модули друг к другу. При этом магниты сами «подскажут» правильность ориентации: при неправильной ориентации модулей магнитные поля будут отталкиваться друг от друга, показывая неправильность сборки.
Более того, магниты не только обеспечивают быстроту соединения и разъединения модулей, но и выполняют функции направляющих элементов, обеспечивая правильное позиционирование ответных частей электрических разъемов модулей. Это объясняется тем, что при равенстве прочих параметров (силе взаимодействующих магнитов, площади контактирующих полюсов) наиболее сильное взаимодействие между магнитами осуществляется по кратчайшему пути, когда магниты точно размещены друг относительно друга, т.е. магниты сами себя ориентируют.
Для преодоления сил взаимного притяжения магнитов при разъединении модулей потребуется только приложить соответствующее усилие.
Предлагаемая конструкция обеспечивает возможность присоединения к одному модулю до шести модулей одновременно, с любой стороны, что позволяет формировать пространственные сборки самых разных форм и размерности.
Пространственные сборки создаются по принципу матрицы, при этом направление «роста» матрицы может задаваться любое, например, исходя из формы имеющегося в наличии корпуса, с целью максимального использования его объема.
Благодаря свойству электропроводности магнитов, помимо механического соединения плат и модулей, они могут дополнительно выполнять функции электрических соединителей, в частности, могут быть использованы для передачи электропитания между платами и между модулями. Это способствует упрощению организации питания модулей, появлению возможности его резервировании, благодаря тому, что в предлагаемой конструкции подача питания может быть осуществлена с любой из шести сторон модуля.
Вместо организации питания возможно использование упомянутого функционала для обеспечения экранирования модуля.
Предлагаемая конструкция модуля может быть использована в электронной аппаратуре с «горячим резервом», в которой замена модулей производится без отключения электропитания. Высокая скорость соединения модулей, находящихся под питанием, позволяет сократить время переходных процессов, возникающих при неодновременном или неправильном соединении полюсов питания, что положительно сказывается на надежности модулей.
Независимо от некоторых конструктивных отличий в исполнении и закреплении токопроводящих магнитов, все предлагаемые варианты электронного модуля, в собранном виде, обеспечивают достижение всех вышеупомянутых технических результатов.
В предпочтительных частных случаях реализации электронный модуль по первому варианту исполнения характеризуется следующими признаками:
- токопроводящие магниты размещены в каждом углу модуля;
- токопроводящие магниты установлены в двух диагонально противолежащих углах модуля, при этом в двух других диагонально противолежащих углах модуля установлены соединительные детали аналогичной магнитам формы, выполненные из магнитного материала;
- токопроводящие магниты соединены с коммутационными платами посредством клеевого слоя;
- токопроводящие магниты выполнены составными из двух частей (иначе говоря - разъемными в поперечной плоскости);
- по углам плат в зонах размещения токопроводящих магнитов выполнены сквозные металлизированные отверстия, при этом металлизация отверстий электрически соединена с соответствующим токопроводящим магнитом;
- металлизированные отверстия, расположенные диагонально противоположно, электрически соединены между собой внутриплатной разводкой;
- концы токопроводящих магнитов запрессованы в металлизированных отверстиях плат;
- на боковой поверхности запрессовываемого конца токопроводящего магнита сформированы радиальные выступы;
- токопроводящие магниты выполнены со сквозными отверстиями для крепежных элементов;
- в зонах размещения токопроводящих магнитов с внешней стороны коммутационной платы закреплены токопроводящие пластины.
В предпочтительных частных случаях реализации электронный модуль по второму варианту исполнения характеризуется следующими признаками:
- токопроводящие магниты и детали из магнитного материала соединены с платами посредством клеевого слоя;
- по углам плат в зонах размещения токопроводящих магнитов и деталей из магнитного материала выполнены сквозные металлизированные отверстия, при этом металлизация отверстий электрически соединена с магнитом или упомянутой деталью, соответственно;
- металлизированные отверстия, расположенные диагонально, электрически соединены между собой внутриплатной разводкой;
- концы токопроводящих магнитов запрессованы в металлизированных отверстиях плат;
- боковой поверхности запрессовываемого конца токопроводящего магнита сформированы радиальные выступы.
- в токопроводящих магнитах и деталях из магнитного материала выполнены сквозные отверстия для крепежных элементов;
- в зонах размещения токопроводящих магнитов с внешней стороны коммутационной платы закреплены токопроводящие пластины.
Краткое описание чертежей
Сущность изобретения поясняется приведенными ниже примерами осуществления и чертежами, на которых изображены:
на фиг.1 - общий вид электронного модуля по 1 варианту, изометрия;
на фиг.2 - вид А с фиг.1, показано два примера закрепления магнитов: посредством клеевого слоя (а) и методом запрессовки (в);
на фиг. 3 - коммутационная плата;
на фиг. 4 - частный случай исполнения токопроводящего магнита, изометрия;
на фиг. 5 - сечение А-А с фиг. 4;
на фиг. 6 - сечение В-В с фиг. 5;
на фиг. 7 - сечение С-С с фиг. 5;
на фиг. 8 - показан пример выполнения электронного модуля с составными токопроводящими магнитами, изометрия;
на фиг.9 - вид В с фиг.8;
на фиг. 10 - общий вид электронного модуля по 2 варианту, изометрия;
на фиг.11 - вид С с фиг.10;
на фиг. 12 - показано соединение плат модуля между собой;
на фиг. 13 - иллюстрирован процесс пространственной сборки модулей;
на фиг. 14 - показан фрагмент сборки модулей по 1 варианту;
на фиг. 15 - показан фрагмент сборки модулей по 2 варианту.
Осуществление изобретения
Электронный модуль (фиг. 1, 2) содержит коммутационные платы 1 и 2 (далее - платы) с размещенными на них электронными компонентами 3 (показаны схематично) и электрическими соединителями 4. Платы 1 и 2 соединены между собой в пакет посредством размещенных между платами по углам модуля соединительных элементов, выполненных в виде токопроводящих постоянных магнитов 5 с осевой намагниченностью и гранями 6 на боковой поверхности.
Грани 6 магнитов 5 предпочтительно расположены в одной плоскости с торцевыми гранями плат 1 и 2, либо могут немного выступать за их пределы, что обеспечивает возможность получения хорошего надежного контакта с гранями магнитов присоединяемых модулей. Площадь граней 6 магнитов 5 определяет площадь соприкосновения и силу взаимодействия магнитов. Чем больше площадь соприкосновения, тем больше сила притяжения магнитов, а значит и выше надежность механического соединения модулей.
В качестве коммутационных плат (см. фиг. 3) используют, преимущественно, равновеликие жесткие пластины с системой печатных проводников, расположенных на поверхности и/или в объеме диэлектрического основания и соединенных между собой в соответствии с принципиальной электрической схемой, т.е. двухслойные и многослойные печатные платы. В платах выполнены металлизированные отверстия 7 для установки радиоэлектронных компонентов и электрических разъемов и угловые металлизированные отверстия 8 для размещения и электрического соединения с токопроводящими магнитами.
Диагонально противоположно расположенные отверстия 8 соединены между собой внутриплатной электрической разводкой (условно показана пунктирной линией) для удобства организации электропитания модуля. В зонах отверстий 8 (в зонах размещения магнитов) на внешней стороне платы могут быть закреплены токопроводящие пластины 9.
Токопроводящие магниты 5 соединяют с платами 1 и 2 посредством клеевого слоя (см. фиг. 2а), либо - запрессовывают в сквозных металлизированных отверстиях 8 плат 1 и 2 (см. фиг. 2в), при этом металлизацию отверстий 8 соединяют с токопроводящими магнитами 5 для возможности передачи питания с платы на плату и между модулями.
В большинстве случаев токопроводящие магниты 5 размещают в каждом углу модуля. Однако в некоторых случаях, например, для крайних модулей сборки, может быть достаточно только два соединительных магнита, размещенных в диагонально противоположных углах модуля.
Возможным также является использование двух токопроводящих магнитов, размещенных в двух диагонально противолежащих углах модуля в совокупности с установкой в двух других диагонально противолежащих углах модуля - соединительных деталей аналогичной магнитам формы, выполненных из магнитного материала.
Как известно магнит притягивает к себе не только магниты, но и предметы из магнитных материалов, поэтому в этом случае также будут действовать магнитные силы притяжения, а значит, будет обеспечиваться механическое соединение соседних модулей за счет взаимного притяжения между токопроводящими магнитами и деталями из магнитного материала.
При этом магнитные материалы, например железо или сталь, также обладают электропроводностью, поэтому действительным будет все, что касается возможности использования соединительных элементов для электрического соединения плат и модулей.
Наиболее простой формой исполнения магнитов 5 является форма в виде прямоугольного параллелепипеда или близкая к ней, что обусловлено обычно используемой формой коммутационных печатных плат. При этом возможно использование стержневых (цилиндрических) и иных форм магнитов, при условии наличия на их боковой поверхности граней - плоских участков.
На фиг. 4-7 показаны магниты 5 со сложной формой, включающей концевые участки 10, предназначенные для запрессовки в отверстиях 8 плат. На концевых участках 10 сформированы радиальные выступы 11, обеспечивающие плотность запрессовки и хороший электрический контакт между токопроводящим магнитом 5 и металлизацией отверстия 8. На средней части магнита, образующей дистанционный упор между платами 1 и 2, сформированы грани 6 для взаимодействия с магнитами других модулей. Для возможности закрепления модулей, например к корпусу, в токопроводящих магнитах 5 могут быть выполнены сквозные резьбовые отверстия 12 и 13.
Во всех вышеприведенных примерах реализации конструкция электронных модулей является неразборной и в случае возникновения неполадок потребуется его полная замена.
Для упрощения обслуживания и повышения ремонтопригодности модуля более целесообразным является выполнение токопроводящих магнитов составными из двух частей (см. фиг. 8, 9). В этом случае каждую из частей магнита (5' и 5ʺ) закрепляют одним концом к соответствующей плате (1, 2), при этом при соединении плат части (5' и 5ʺ) взаимодействуют между собой вторым, свободным концом, образуя после соединения магнит, полностью соответствующий по своим свойствам «цельному» магниту, приведенному в первом примере (фиг. 1-2).
Подобную разборную конструкцию представляет собой и электронный модуль, выполненный согласно второму варианту изобретения (см. фиг. 10-11). В этом случае токопроводящие магниты 5 закреплены только одним своим концом, например, к плате 1 и взаимодействуют свободным концом с деталью 14 из магнитного материала, закрепленной на плате 2.
В обоих случаях обеспечивается простое и быстроразъемное соединение коммутационных плат 1 и 2 между собой (см. фиг. 12). При сближении плат 1 и 2 части 5' и 5ʺ магнита (или магнит 5 и деталь 14 из магнитного материала) притягиваются одна к другой с силой, соответствующей силе магнитов, и надежно соединяют части модуля.
В собранном виде, когда части 5' и 5ʺ (или магнит 5 и деталь 14) притянуты друг к другу, образуется «единый» магнит, на одном конце которого (у одной платы) формируется положительный полюс, а на другом - отрицательный. При этом «составной» магнит работает точно так же, как и цельный магнит в приведенных выше примерах.
Разъемная конструкция электронного модуля обеспечивает доступ к электронным компонентам внутри него, позволяя производить ремонт и замены любого из компонентов в случае возникновения неисправности.
Для всех приведенных примеров сборку и использование электронного модуля осуществляют одинаковым образом.
Электронные компоненты 3 и электрические соединители 4 размещают, по возможности, на одной стороне платы (1, 2), что после сборки модуля обеспечивает их расположение во внутреннем пространстве модуля, между платами, а значит высокую защищенность. Однако предлагаемая конструкция не исключает возможности размещения электронных компонентов и электрических соединителей на внешних сторонах плат.
В качестве электрических соединителей могут быть использованы штыревые разъемы, разъемы с пружинными контактами и другие типы соединителей.
В качестве разъемов для внешних подключений модуля предпочтительно использование прямоугольных разъемов с гнездовыми контактами, которые размещают по периметру модуля. Благодаря использованию розеток, как для входных, так и для выходных цепей, в конструкции исключены выступающие по периметру модуля контакты разъемов, что позволяет уменьшить риск повреждения статическим электричеством чувствительных электронных компонентов. Для соединения соседних модулей в этом случае используют штыревые переходники 15 (см. фиг. 13).
Дополнительным преимуществом такого соединения является обеспечение симметричности модуля, позволяющей подключать к нему модули с любой стороны.
Возможно также использование для соединения модулей стандартных разъемов типа вилка-розетка, при этом вилку размещают внутри модуля, между плат, а розетку - так, что она выступает за край коммутационной платы. При соединении модулей внешняя часть розетки будет располагаться в пространстве между платами, образуя при этом минимальный зазор между модулями.
Контакты электрических разъемов в предлагаемой конструкции не подвержены механическим нагрузкам, т.к. последние воспринимаются магнитами.
Предлагаемый модуль, по любому из предлагаемых вариантов, представляет собой унифицированную единицу, позволяющую создавать на его базе объемные трехмерные конструкции радиоэлектронной аппаратуры, различной размерности.
Подобная сборка строится по принципу матрицы, которая может быть двух- или трехмерной. К одному модулю можно присоединить одновременно до шести модулей, с любой стороны.
Сборка может иметь различные геометрические формы: плоскую в виде линии, квадрата, прямоугольника, или объемную: в виде куба, параллелепипеда, или комбинированную, состоящую из плоских и объемных фигур.
При любой реализации необходимо точно знать взаимное расположение модулей (их координаты) в общей матрице для правильной конфигурации, программирования и возможности последующего обслуживания блока.
При проектировании блока каждому модулю назначается программный адрес, взаимосвязанный с пространственными координатами модуля, с помощью которого происходит программное обращение к данному модулю, тем самым обеспечивается возможность маршрутизации информационных потоков.
Собранные, каждый в соответствии с заданной схемой, модули соединяют между собой в необходимой комбинации. Количество, взаимное расположение и последовательность соединения модулей определяется, исходя из реализуемой данным набором (сборкой) задачи и формы корпуса, в котором эта сборка должна быть размещена.
При сближении модулей действуют силы взаимного притяжения разноименных полюсов магнитов, обеспечивая «механическую» связь модулей (см. фиг. 14, 15).
Магнитное соединение модулей отличается простотой и быстротой сборки и демонтажа. Магниты обеспечивают точность позиционирования плат и модулей при соединении.
Использование токопроводящих магнитов 5 для передачи питания между платами и между модулями позволяет существенно упростить схему питания сборки в целом.
В предлагаемой конструкции подача питания может быть осуществлена с любой из шести сторон модуля, что обеспечивает возможность создания резервного питания, что способствует высокой надежности работы электронной аппаратуры.
Современные радиоэлектронные компоненты мало подвержены избыточному нагреву и не нуждаются в интенсивном теплосъеме. При этом в предлагаемой конструкции предусмотрены возможности усиления теплоотвода. Так модули, требующие интенсивного отвода тепла, могут устанавливаться по периметру трехмерной сборки, на крайних модулях. Радиаторы и/или вентиляторы могут быть размещены на внешних сторонах плат крайних модулей, практически полностью свободных. Установить радиатор и/или вентилятор можно клеевым способом, путем закрепления крепежными элементами через отверстия 8 плат, а также путем простого примагничивания к магнитам 5 модуля, при выполнении радиатора из магнитного материала.
Следует понимать, что настоящее изобретение не ограничивается приведенными примерами конкретного осуществления

Claims (19)

1. Матричный электронный модуль, содержащий коммутационные платы с размещенными на них электронными компонентами и электрическими соединителями, механически соединенные между собой в пакет посредством размещенных между платами по углам модуля соединительных элементов, отличающийся тем, что соединительные элементы выполнены в виде токопроводящих постоянных магнитов с осевой намагниченностью, соединенных концами с коммутационными платами и выполненных с гранями на боковой поверхности для взаимодействия с гранями магнитов присоединяемых модулей.
2. Модуль по п. 1, отличающийся тем, что токопроводящие магниты размещены в каждом углу модуля.
3. Модуль по п. 1, отличающийся тем, что токопроводящие магниты установлены в двух диагонально противолежащих углах модуля, при этом в двух других диагонально противолежащих углах модуля установлены соединительные детали аналогичной магнитам формы, выполненные из магнитного материала.
4. Модуль по п. 1, отличающийся тем, что токопроводящие магниты соединены с коммутационными платами посредством клеевого слоя.
5. Модуль по п. 1, отличающийся тем, что токопроводящие магниты выполнены составными из двух частей.
6. Модуль по п. 1, отличающийся тем, что по углам плат в зонах размещения токопроводящих магнитов выполнены сквозные металлизированные отверстия, при этом металлизация отверстий электрически соединена с соответствующим токопроводящим магнитом.
7. Модуль по п. 6, отличающийся тем, что металлизированные отверстия, расположенные диагонально противоположно, электрически соединены между собой внутриплатной разводкой.
8. Модуль по п. 6, отличающийся тем, что концы токопроводящих магнитов запрессованы в металлизированных отверстиях плат.
9. Модуль по п. 8, отличающийся тем, что на боковой поверхности запрессовываемого конца токопроводящего магнита сформированы радиальные выступы.
10. Модуль по п. 6, отличающийся тем, что токопроводящие магниты выполнены со сквозными отверстиями для крепежных элементов.
11. Модуль по п. 1, отличающийся тем, что в зонах размещения токопроводящих магнитов с внешней стороны коммутационной платы закреплены токопроводящие пластины.
12. Матричный электронный модуль, содержащий коммутационные платы с размещенными на них электронными компонентами и электрическими соединителями, механически соединенные между собой в пакет посредством размещенных между платами по углам модуля соединительных элементов, отличающийся тем, что соединительные элементы выполнены в виде токопроводящих постоянных магнитов с осевой намагниченностью, соединенных одним концом с одной из коммутационных плат и взаимодействующих свободным концом с деталью из магнитного материала, закрепленной на второй коммутационной плате, при этом на боковой поверхности каждого токопроводящего магнита сформированы грани для взаимодействия с гранями магнитов присоединяемых модулей.
13. Модуль по п. 12, отличающийся тем, что токопроводящие магниты и детали из магнитного материала соединены с платами посредством клеевого слоя.
14. Модуль по п. 12, отличающийся тем, что по углам плат в зонах размещения токопроводящих магнитов и деталей из магнитного материала выполнены сквозные металлизированные отверстия, при этом металлизация отверстий электрически соединена с магнитом или упомянутой деталью соответственно.
15. Модуль по п. 14, отличающийся тем, что металлизированные отверстия, расположенные диагонально, электрически соединены между собой внутриплатной разводкой.
16. Модуль по п. 14, отличающийся тем, что концы токопроводящих магнитов запрессованы в металлизированных отверстиях плат.
17. Модуль по п. 16, отличающийся тем, что на боковой поверхности запрессовываемого конца токопроводящего магнита сформированы радиальные выступы.
18. Модуль по п. 14, отличающийся тем, что в токопроводящих магнитах и деталях из магнитного материала выполнены сквозные отверстия для крепежных элементов.
19. Модуль по п. 12, отличающийся тем, что в зонах размещения токопроводящих магнитов с внешней стороны коммутационной платы закреплены токопроводящие пластины.
RU2016116125A 2016-04-25 2016-04-25 Матричный электронный модуль (варианты) RU2631122C1 (ru)

Priority Applications (2)

Application Number Priority Date Filing Date Title
RU2016116125A RU2631122C1 (ru) 2016-04-25 2016-04-25 Матричный электронный модуль (варианты)
PCT/RU2017/000395 WO2017188860A1 (ru) 2016-04-25 2017-06-09 Матричный электронный модуль (варианты)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016116125A RU2631122C1 (ru) 2016-04-25 2016-04-25 Матричный электронный модуль (варианты)

Publications (1)

Publication Number Publication Date
RU2631122C1 true RU2631122C1 (ru) 2017-09-19

Family

ID=59894071

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016116125A RU2631122C1 (ru) 2016-04-25 2016-04-25 Матричный электронный модуль (варианты)

Country Status (2)

Country Link
RU (1) RU2631122C1 (ru)
WO (1) WO2017188860A1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU219635U1 (ru) * 2022-09-15 2023-07-28 Акционерное общество "Информационная внедренческая компания" Литой посредством экструзии металла прямоугольный корпус электронного устройства с возможностью объединения
US20230389175A1 (en) * 2022-05-27 2023-11-30 Microsoft Technology Licensing, Llc Electronic Prototyping

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2920578A1 (de) * 1979-05-21 1980-12-04 Siemens Ag Leiterplattenanordnung
RU50070U1 (ru) * 2005-06-30 2005-12-10 Сухолитко Валентин Афанасьевич Радиоэлектронный блок
RU2335821C1 (ru) * 2007-01-09 2008-10-10 Открытое акционерное общество "Научно-производственный комплекс "ЭЛАРА" имени Г.А. Ильенко" (ОАО "ЭЛАРА") Трехмерный электронный модуль
US20120218211A1 (en) * 2011-02-28 2012-08-30 B-Squares Electrics LLC Electronic module, control module, and electronic module set
RU2498544C2 (ru) * 2010-10-18 2013-11-10 Открытое акционерное общество "Сатурн" Радиоэлектронный блок

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2920578A1 (de) * 1979-05-21 1980-12-04 Siemens Ag Leiterplattenanordnung
RU50070U1 (ru) * 2005-06-30 2005-12-10 Сухолитко Валентин Афанасьевич Радиоэлектронный блок
RU2335821C1 (ru) * 2007-01-09 2008-10-10 Открытое акционерное общество "Научно-производственный комплекс "ЭЛАРА" имени Г.А. Ильенко" (ОАО "ЭЛАРА") Трехмерный электронный модуль
RU2498544C2 (ru) * 2010-10-18 2013-11-10 Открытое акционерное общество "Сатурн" Радиоэлектронный блок
US20120218211A1 (en) * 2011-02-28 2012-08-30 B-Squares Electrics LLC Electronic module, control module, and electronic module set

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230389175A1 (en) * 2022-05-27 2023-11-30 Microsoft Technology Licensing, Llc Electronic Prototyping
RU219635U1 (ru) * 2022-09-15 2023-07-28 Акционерное общество "Информационная внедренческая компания" Литой посредством экструзии металла прямоугольный корпус электронного устройства с возможностью объединения

Also Published As

Publication number Publication date
WO2017188860A1 (ru) 2017-11-02

Similar Documents

Publication Publication Date Title
US11362470B2 (en) Combination outlet and power distribution unit incorporating the same
US8092230B2 (en) Alignment frame for retaining a module on a circuit board
US20080019111A1 (en) Anchoring member to facilitate fastening daughter boards to a mother board and a method for use
CN106647969A (zh) 服务器
TW201334299A (zh) 蓄電裝置
US9099811B2 (en) Self-registered connectors for devices having a curved surface
WO2014121592A1 (zh) 电子设备、电子系统及其电路板互联架构
US10993323B2 (en) Stackable printed circuit board
US20240044477A1 (en) Magnetic conductive track and lighting device
US20130017699A1 (en) Power supply device and power supply system
US9484649B2 (en) Electromechanical assembly with socket and card edge connector
RU2631122C1 (ru) Матричный электронный модуль (варианты)
TWI458185B (zh) 具有減少雜訊的接點圖案之連接器組件
EP3451807A1 (en) Alignment device for orthogonal engagement of line cards and fabric cards in a server
US20210153362A1 (en) Electronic unit
US20180168040A1 (en) Printed circuit board with a co-planar connection
US9510476B2 (en) Standardization of server module in high-density server
US20240141899A1 (en) Axial pump with split printed circuit board assembly (pca)
KR200441153Y1 (ko) 인쇄회로기판 연결장치
CN204088817U (zh) 多端口电连接器总成
CN212112324U (zh) 一种增加电子板卡数量的计算机
CN220646267U (zh) 一种模块化组合风扇
CN218483027U (zh) 一种拓展板和具有该拓展板的电路组件、电子设备
JP3237315U (ja) 電子アセンブリと電気コネクタアセンブリ
CN219498436U (zh) 一种现场总线模块

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180426