RU2631068C1 - Способ деформационно-термической обработки низколегированной стали - Google Patents

Способ деформационно-термической обработки низколегированной стали Download PDF

Info

Publication number
RU2631068C1
RU2631068C1 RU2016140836A RU2016140836A RU2631068C1 RU 2631068 C1 RU2631068 C1 RU 2631068C1 RU 2016140836 A RU2016140836 A RU 2016140836A RU 2016140836 A RU2016140836 A RU 2016140836A RU 2631068 C1 RU2631068 C1 RU 2631068C1
Authority
RU
Russia
Prior art keywords
temperature
deformation
carried out
tempering
low
Prior art date
Application number
RU2016140836A
Other languages
English (en)
Inventor
Андрей Николаевич Беляков
Рустам Оскарович Кайбышев
Жанна Чеславовна Янушкевич
Анастасия Сергеевна Луговская
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") filed Critical Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ")
Priority to RU2016140836A priority Critical patent/RU2631068C1/ru
Application granted granted Critical
Publication of RU2631068C1 publication Critical patent/RU2631068C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

Изобретение относится к области металлургии, а именно к деформационно-термической обработке заготовок из низколегированных сталей, предназначенных для эксплуатации в арктических условиях. Для повышения прочностных свойств и ударной вязкости при отрицательных температурах способ включает гомогенизационный отжиг слитка при температуре 1423±50 К в течение 1 часа, горячую ковку слитка при температуре 1423±50 К до истинной степени деформации не менее 0,5 с последующим охлаждением на воздухе, при этом после каждого прохода заготовку подогревают до температуры ковки, закалку осуществляют при температуре 1373–1423 К в течение 30 минут с охлаждением в масле, отпуск в течение 1 часа при температуре 873–923 К. Затем осуществляют прокатку заготовки при температуре отпуска до истинной степени деформации не менее 1,2, при этом после каждого прохода заготовку подогревают до заданной температуры, обжатие за проход составляет не менее 10%. 3 ил., 2 пр.

Description

Изобретение относится к области металлургии, а именно к деформационно-термической обработке низколегированных сталей, и может быть использовано в транспортном машиностроении для производства стрел автокранов, рам грузовых автомобилей, в судостроении для изделий, предназначенных для эксплуатации в арктических условиях, а также возможно применение в качестве основного слоя биметаллических листов для железнодорожных и автомобильных цистерн, перевозящих продукты нефтехимии и пищевые продукты.
В настоящее время железнодорожные и автомобильные цистерны для широкого класса грузов изготавливают из стали 09Г2С, а также ВСтЗсп5, которые применяются в качестве основного слоя биметаллического листа. Предел прочности и предел текучести этих сталей не превышает 550 МПа и 350 МПа соответственно. Величина ударной вязкости KCU сталей 09Г2С и ВСтЗсп5 при комнатной температуре составляет 40 Дж/см2, а при -60°С не превышает 34 Дж/см2. Совершенствование конструкций железнодорожных и автомобильных цистерн идет по пути уменьшения их веса, которое может быть достигнуто за счет уменьшения толщины стенок. Однако для этого необходимо повысить прочностные характеристики сталей, из которых изготавливают цистерны. Таким образом, это требует применения свариваемых сталей с пределом прочности, близким к 1000 МПа, и значениям ударной вязкости KCU при -60°С около 100 Дж/см2.
На сегодняшний день наиболее перспективным материалом для применения в качестве основного слоя биметаллических листов являются высокопрочные низколегированные низкоуглеродистые стали. Однако стали данного класса в состоянии поставки не удовлетворяют предъявляемым требованиям: величина ударной вязкости KCU при -60°С менее 34 Дж/см2, предел прочности 750-950 МПа, относительное удлинение менее 11%.
Из уровня техники известны режимы деформационно-термической обработки стали для повышения ее прочностных характеристик.
Известен способ деформационно-термической обработки низколегированной стали (Патент RU2544730, опубликованный 20.03.2015). Сущность способа заключается в следующем: нагрев стали, деформация, охлаждение, нагрев под закалку, охлаждение и отпуск. Перед деформацией сталь подвергают ковке и закалке с температуры ковки, при этом нагрев под деформацию осуществляют до Ac1 - (5-15)°С со скоростью от 80 до 100 град/мин и выдержкой при этой температуре от 2 до 2,5 ч, деформацию осуществляют со степенью от 30 до 60%, а нагрев под закалку осуществляют до температур Ac1 +(40-50)°С с охлаждением в масле. Способ позволяет получить стали с мелкозернистой структурой и высоким уровнем прочностных характеристик.
Основным недостатком данного способа является то, что предложенная деформационно-термическая обработка не позволяет достигнуть необходимого уровня механических свойств - сталь после обработки имеет низкие показатели ударной вязкости.
Известен способ, описанный в патенте RU2340684, опубликованном 10.12.2008. Способ деформационно-термической обработки стержневой арматуры крупных профилей включает горячую прокатку в два этапа с суммарным обжатием 60-77% от площади поперечного сечения раската на каждом этапе с выдержкой 19-26 с после первого и 12-17 с после второго этапа с предварительным охлаждением раската до температур не ниже Ar3 , окончательную прокатку в этой области температур, циклическое охлаждение поверхности с количеством циклов, равным двум, в течение времени (0,017-0,020)Д с в первом цикле и (0,05-0,06)Д с во втором цикле с промежуточным отогревом в течение 0,2-0,3 с и окончательным отогревом поверхности до температур ниже точки Ac1 и окончательное охлаждение на воздухе, где Д - диаметр проката в мм. Такая обработка позволяет получить предел прочности 700-750 МПа, предел текучести 570-590 МПа, а относительное удлинение 16-24%.
Недостатком данного способа является необходимость применения специализированного и энергозатратного оборудования. Также описанный способ обработки не обеспечивает получение требуемого уровня механических свойств.
Наиболее близким к предложенному изобретению является способ, описанный в статье «Tempforming in medium-carbon low-alloy steel» ( J. Alloys Compd.,vol. 577, pp. S538-S542) авторами Y. Kimura, T. Inoue, K. Tsuzaki. Согласно этому способу слиток низколегированной стали, полученный путем вакуумной плавки и литья, подвергают гомогенизационному отжигу при 1200°C и деформационной обработке путем горячей прокатки до пластины толщиной 4 см, затем из стальных слитков вырезают заготовки, размерами 12 см × 4 см × 4 см, для последующей обработки. Вырезанные заготовки нагревают до 1200°C и выдерживают в течение 1 ч, после чего подвергают горячей прокатке в пруток с квадратным поперечным сечением 9 см2 с последующей закалкой в воде. Закаленные прутки подвергают отпуску при 500°C в течение 1 часа и многократной прокатке при температуре отпуска в пруток с квадратным поперечным сечением 2 см2 и последующему охлаждению на воздухе. Ударная вязкость после термообработки: KCV-20°C = 336 Дж/см2, KCV-60°C = 291 Дж/см2.
Недостатком данного способа является то, что он предназначен для обработки низколегированных среднеуглеродистых сталей и не обеспечивает получение достаточно высоких значений ударной вязкости при отрицательных температурах.
Задачей предлагаемого изобретения является разработка способа деформационно-термической обработки низколегированных низкоуглеродистых сталей, позволяющего устранить недостатки прототипа.
Технический результат заключается в получении слоистой структуры в низколегированной низкоуглеродистой стали, что обеспечивает повышение прочностных свойств, а также значений ударной вязкости при отрицательных температурах.
Дополнительный технический результат - повышение прочностных характеристик данных сталей при комнатной температуре с сохранением показателей пластичности.
Поставленную задачу можно решить предложенной деформационно-термической обработкой низколегированной низкоуглеродистой стали. Предложенный способ включает гомогенизационный отжиг, деформационную обработку, закалку с последующим отпуском, прокатку при температуре отпуска, в который внесены следующие новые признаки:
- гомогенизационный отжиг проводят при температуре 1423±50 К в течение 1 часа;
- деформационную обработку осуществляют путем горячей ковки при температуре 1423±50 К до истинной степени деформации не менее 0,5 с последующим охлаждением на воздухе, при этом после каждого прохода заготовку подогревают до температуры ковки;
- закалку при температуре 1373 – 1423К в течение 30 минут с охлаждением в масле;
- отпуск в течение 1 часа при температуре 873 – 923 К и последующую прокатку при температуре отпуска до истинной степени деформации не менее 1,2, при этом после каждого прохода сталь подогревают до заданной температуры, обжатие за проход составляет не менее 10%.
Предлагаемое изобретение поясняют следующие чертежи:
Фиг. 1 - схема деформационно-термической обработки низколегированной стали по примеру 1, где ε – истинная степень деформации.
Фиг. 2 - фотография структуры низколегированной стали, подвергнутой деформационно-термической обработке по предложенному способу, полученная с помощью растрового электронного микроскопа. Цветовая карта кристаллографических ориентировок показана на треугольнике.
Фиг. 3 - Таблица 1. Механические свойства низколегированной низкоуглеродистой стали, подвергнутой предложенным способом деформационно-термической обработке.
Примеры осуществления приведены для заготовок из стали S700MC (Fe-0,09C-0,12Si-1,55Mn-1,19Cr-0,42Mo-0,09V-0,05Nb-0,05Ti-0,003B-0,025Al-0,005S-0,003P):
Пример 1. Исходный материал в виде слитка размерами 140×140×140 мм3 подвергали гомогенизационному отжигу в печи при температуре 1423±50 К в течение 1 часа. Полученную заготовку проковали при температуре 1423±50 К до толщины 50 мм, а суммарная истинная степень деформации составила 1. При этом после каждого прохода заготовку подогревали до 1423±50 К и по окончании горячей ковки охладили на воздухе до комнатной температуры. После этого заготовку подвергали закалке в печи при температуре 1373К в течение 30 минут с охлаждением в масле. Следующей стадией был отпуск при температуре 873 К в течение 1 часа. Далее заготовку подвергли прокатке при температуре отпуска до толщины 10 мм, конечная истинная степень деформации составила 1.6. Все стадии прокатки проводили с промежуточным нагревом до температуры 873 К.
Пример 2. Исходный материал в виде слитка размерами 140×140×140 мм3 подвергали гомогенизационному отжигу в печи при температуре 1423±50 К в течение 1 часа. Полученную заготовку проковали при температуре 1423±50 К до толщины 50 мм, а суммарная истинная степень деформации составила 1. При этом после каждого прохода заготовку подогревали до 1423±50 К и по окончании горячей ковки охладили на воздухе до комнатной температуры. После этого заготовку подвергали закалке в печи при температуре 1423 К в течение 30 минут с охлаждением в масле. Следующей стадией был отпуск при температуре 923 К в течение 1 часа. Далее заготовку подвергли прокатке при температуре отпуска до толщины 10 мм, конечная истинная степень деформации составила 1.6. Все стадии прокатки проводили с промежуточным нагревом до температуры 923 К.
После деформационно-термической обработки по предложенному способу сталь характеризуется слоистой микроструктурой со средним размером зерен 530 нм (Фиг.2).
Из полученных стальных заготовок были вырезаны образцы для испытаний на определение механических свойств. Образцы вырезали вдоль направления прокатки.
В таблице 1 (на фигуре 3) представлены результаты механических испытаний образцов низколегированной стали, подвергнутой предложенной деформационно-термической обработке. Механические испытания на растяжения проводили в соответствии с ГОСТ 1497-84 при комнатной температуре. Испытания на ударный изгиб с концентратором вида U и V проводили в соответствии с ГОСТ 9454-78 при температурах -60° и -40°С.
Из таблицы видно, что предложенный способ обработки низколегированной стали приводит к повышению показателей прочности при комнатной температуре с сохранением достаточно высоких показателей пластичности и увеличению значений ударной вязкости при отрицательных температурах: например, значение KCV-60°C по сравнению с прототипом возрастает более чем на 20%. Таким образом, достигнута задача по разработке нового способа деформационно-термической обработки низколегированной низкоуглеродистой стали.

Claims (1)

  1. Способ деформационно-термической обработки заготовки из низколегированной низкоуглеродистой стали, включающий гомогенизационный отжиг слитка, его горячую ковку, закалку заготовки с последующим отпуском, прокатку, отличающийся тем, что гомогенизационный отжиг слитка проводят при температуре 1423±50К в течение 1 часа, ведут многопроходную горячую ковку слитка при температуре 1423±50 К до истинной степени деформации не менее 0,5 с последующим охлаждением на воздухе, при этом при ковке после каждого прохода заготовку подогревают до температуры ковки, нагрев заготовки под закалку осуществляют до температуры 1373–1423 К в течение 30 минут и охлаждают в масле, отпуск проводят при температуре 873–923 К в течение 1 часа, а затем при температуре отпуска проводят многопроходную прокатку до истинной степени деформации не менее 1,2, причем при прокатке после каждого прохода заготовку подогревают до температуры отпуска, а обжатие за проход составляет не менее 10%.
RU2016140836A 2016-10-18 2016-10-18 Способ деформационно-термической обработки низколегированной стали RU2631068C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016140836A RU2631068C1 (ru) 2016-10-18 2016-10-18 Способ деформационно-термической обработки низколегированной стали

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016140836A RU2631068C1 (ru) 2016-10-18 2016-10-18 Способ деформационно-термической обработки низколегированной стали

Publications (1)

Publication Number Publication Date
RU2631068C1 true RU2631068C1 (ru) 2017-09-18

Family

ID=59893832

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016140836A RU2631068C1 (ru) 2016-10-18 2016-10-18 Способ деформационно-термической обработки низколегированной стали

Country Status (1)

Country Link
RU (1) RU2631068C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2688017C1 (ru) * 2018-07-19 2019-05-17 Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Способ термомеханической обработки жаропрочной стали мартенситного класса
RU2692539C1 (ru) * 2018-12-24 2019-06-25 Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Способ получения объемных заготовок высокомарганцевой стали с рекристаллизованной мелкозернистой структурой
RU2779416C1 (ru) * 2022-01-25 2022-09-06 Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Способ деформационно-термической обработки биметаллического материала

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2343212C2 (ru) * 2006-12-19 2009-01-10 Федеральное Государственное унитарное предприятие "Государственное научно-производственное предприятие "Сплав" Способ производства листового проката из малоуглеродистой или малоуглеродистой низколегированной стали (варианты)
RU2456368C1 (ru) * 2011-02-08 2012-07-20 Российская Федерация, от имени которой выступает Министерство промышленности и торговли (Минпромторг России) Высокопрочная стойкая при динамическом воздействии сталь и способ производства листов из нее
US20140182752A1 (en) * 2012-12-27 2014-07-03 Hyundai Motor Company Alloy steel for hot forging and heat treatment method thereof
RU2544730C1 (ru) * 2013-10-02 2015-03-20 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" Способ термомеханической обработки низколегированной стали
RU2575527C2 (ru) * 2011-03-04 2016-02-20 Уддехольмс АБ Инструментальная сталь для работы при высоких температурах и способ изготовления инструментальной стали для работы при высоких температурах

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2343212C2 (ru) * 2006-12-19 2009-01-10 Федеральное Государственное унитарное предприятие "Государственное научно-производственное предприятие "Сплав" Способ производства листового проката из малоуглеродистой или малоуглеродистой низколегированной стали (варианты)
RU2456368C1 (ru) * 2011-02-08 2012-07-20 Российская Федерация, от имени которой выступает Министерство промышленности и торговли (Минпромторг России) Высокопрочная стойкая при динамическом воздействии сталь и способ производства листов из нее
RU2575527C2 (ru) * 2011-03-04 2016-02-20 Уддехольмс АБ Инструментальная сталь для работы при высоких температурах и способ изготовления инструментальной стали для работы при высоких температурах
US20140182752A1 (en) * 2012-12-27 2014-07-03 Hyundai Motor Company Alloy steel for hot forging and heat treatment method thereof
RU2544730C1 (ru) * 2013-10-02 2015-03-20 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" Способ термомеханической обработки низколегированной стали

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2688017C1 (ru) * 2018-07-19 2019-05-17 Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Способ термомеханической обработки жаропрочной стали мартенситного класса
RU2692539C1 (ru) * 2018-12-24 2019-06-25 Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Способ получения объемных заготовок высокомарганцевой стали с рекристаллизованной мелкозернистой структурой
RU2779416C1 (ru) * 2022-01-25 2022-09-06 Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Способ деформационно-термической обработки биметаллического материала
RU2788770C1 (ru) * 2022-08-22 2023-01-24 Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Способ обработки хромомолибденовой стали перлитного класса

Similar Documents

Publication Publication Date Title
RU2688092C2 (ru) Способ изготовления высокопрочного стального изделия и стальное изделие, полученное таким образом
CN107619993B (zh) 屈服强度750MPa级冷轧马氏体钢板及其制造方法
KR101590689B1 (ko) 초고강도 마텐자이트 강의 제조 방법 및 이 방법에 의해 획득된 시트 또는 부품
US10260121B2 (en) Increasing steel impact toughness
US9297059B2 (en) Method for the manufacture of wrought articles of near-beta titanium alloys
US20030066580A1 (en) Method for making high-strength high-toughness martensitic stainless steel seamless pipe
KR101903823B1 (ko) 초고항복점을 갖는 마텐자이트 강의 제조 방법 및 그로부터 획득되는 시트 또는 부품
WO2017094870A1 (ja) 冷間鍛造調質品用圧延棒線
US20190177809A1 (en) High Strength and High Toughness Stainless Steel and Processing Method Thereof
JP6819198B2 (ja) 冷間鍛造調質品用圧延棒線
Gao et al. Microstructure and properties of forged plasma arc melted pilot ingot of Ti–45Al–8.5 Nb–(W, B, Y) alloy
CN106435380A (zh) 一种微合金化高铝高塑性钢板及其制备方法
CN107012398A (zh) 一种铌微合金化trip钢及其制备方法
JP6720504B2 (ja) 高強度鋼板及びその製造方法
RU2618678C1 (ru) Способ деформационно-термической обработки аустенитной высокомарганцевой стали
RU2631068C1 (ru) Способ деформационно-термической обработки низколегированной стали
JP4340754B2 (ja) 高強度で且つ冷間圧造性に優れた鋼及び強度に優れたねじ及びボルト等の締結部品又は軸類等の成形品並びにそれらの製造方法
EP2883974A1 (en) Wire rod having good strength and ductility and method for producing same
JP4497842B2 (ja) 超高温熱間鍛造非調質部品の製造方法
JP6417977B2 (ja) 鋼板ブランク
US20190071747A1 (en) Method of heat treating steel
RU2643119C2 (ru) Способ деформационно-термической обработки высокомарганцевой стали
JP2011084813A (ja) 切欠き疲労強度に優れた高強度鋼製加工品及びその製造方法
CN103436663A (zh) 一种提高贝氏体钢轨用钢热轧态伸长率的工艺方法
RU2631069C1 (ru) Способ получения листов из высокомарганцевой стали

Legal Events

Date Code Title Description
QB4A Licence on use of patent

Free format text: LICENCE FORMERLY AGREED ON 20180419

Effective date: 20180419