RU2630793C1 - Способ изготовления высокодисперсных гидрофобных магниточувствительных глинистых материалов - Google Patents

Способ изготовления высокодисперсных гидрофобных магниточувствительных глинистых материалов Download PDF

Info

Publication number
RU2630793C1
RU2630793C1 RU2016115113A RU2016115113A RU2630793C1 RU 2630793 C1 RU2630793 C1 RU 2630793C1 RU 2016115113 A RU2016115113 A RU 2016115113A RU 2016115113 A RU2016115113 A RU 2016115113A RU 2630793 C1 RU2630793 C1 RU 2630793C1
Authority
RU
Russia
Prior art keywords
clay
reactor
stirring
materials
magnetosensitive
Prior art date
Application number
RU2016115113A
Other languages
English (en)
Inventor
Дмитрий Олегович Подкопаев
Original Assignee
Дмитрий Олегович Подкопаев
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Дмитрий Олегович Подкопаев filed Critical Дмитрий Олегович Подкопаев
Priority to RU2016115113A priority Critical patent/RU2630793C1/ru
Application granted granted Critical
Publication of RU2630793C1 publication Critical patent/RU2630793C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/36Silicates having base-exchange properties but not having molecular sieve properties
    • C01B33/38Layered base-exchange silicates, e.g. clays, micas or alkali metal silicates of kenyaite or magadiite type
    • C01B33/44Products obtained from layered base-exchange silicates by ion-exchange with organic compounds such as ammonium, phosphonium or sulfonium compounds or by intercalation of organic compounds, e.g. organoclay material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/40Compounds of aluminium
    • C09C1/42Clays
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/04Physical treatment, e.g. grinding, treatment with ultrasonic vibrations
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/06Treatment with inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/08Treatment with low-molecular-weight non-polymer organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

Изобретение может быть использовано в производстве модифицированных глинистых материалов. Для изготовления высокодисперсных гидрофобных магниточувствительных глинистых материалов готовят суспензию глинистых материалов в воде в реакторе с помощью механического перемешивания. Добавляют соли двух- и трехвалентного железа и катионные ПАВ в реактор при перемешивании. Проводят ультразвуковое диспергирование полученной суспензии в реакторе и добавляют раствор щелочи в реактор при перемешивании. Проводят магнитную сепарацию и очистку полученной модифицированной глины в магнитном сепараторе. Полученную модифицированную глину сушат. Изобретение позволяет упростить получение высокодисперсных гидрофобных магниточувствительных глинистых материалов для производства полимерных композиционных материалов с улучшенными характеристиками газо- и паропроницаемости. 1 ил., 1 пр.

Description

Изобретение относится к области производства модифицированных глинистых материалов. Глинистые материалы представляют большой интерес у производителей полимерных и упаковочных материалов, т.к. способны значительно улучшить их газо- и паропроницаемость. Прямое использование немодифицированных глинистых материалов типа монтмориллонита не дает возможность производителям существенно улучшить газо- и паропроницаемость готового продукта. Для существенного улучшения барьерных свойств полимеров и композитов используют в основном модифицированные глины. Глина, применяемая в качестве добавки в полимерные упаковочные материалы, должна обладать следующими характеристиками: хорошо распределяться в структуре полимера (обладать подходящими гидрофильными/гидрофобными свойствами); находиться в максимально диспергированном (расшелушенном) состоянии; ориентация отдельных чешуек глины должна быть перпендикулярна потоку газа, проходящего через упаковку. Улучшение распределения глины в композите достигается в основном за счет модификации глин различными ПАВ. Диспергирование (расшелушивание) глины может быть осуществлено как до стадии введения глины в полимер, так и на этапе введения в расплав полимера. Ориентация отдельных частиц может осуществляться с помощью электрического и магнитного полей.
Существуют различные способы модификации глин, в том числе с использованием расслаивающих добавок. Подобные технологии (Способ получения органомодифицированного монтмориллонита с повышенной термической стабильностью (варианты). RU 2519174) характеризуются тем, что полученные глины достаточно хорошо распределяются в среде расплавленного полимера за счет модификации катионными ПАВ, однако ограниченно диспергируются (расшелушиваются). Кроме того, скопления чешуек таких глин располагаются в композите случайным образом (имеют произвольную ориентацию).
Существуют следующие способы получения глин с магнитными свойствами.
Method for treating Cr6+ in waste water and method for preparing montmorillonite-base nano magnetite used thereof. CN 101215041 (A), CN 101215041 (В). В данном методе используется предварительное ультразвуковое расшелушивание глины, однако не используются ПАВ для гидрофобизации, т.к. полученная глина используется для очистки сточных вод, вследствие чего глина является гидрофильной и не может быть эффективно использована в качестве добавки к гидрофобному пластику.
Nano zero-valent iron with montmorillonite serving as carrier and preparation method, and application thereof. CN 102923835 (A), CN 102923835 (B). В данном методе используется предварительное ультразвуковое расшелушивание глины, однако не используются ПАВ для гидрофобизации, т.к. полученная глина используется для очистки сточных вод, вследствие чего глина является гидрофильной и не может быть эффективно использована в качестве добавки к гидрофобному пластику. Кроме того, магнитные свойства обусловлены восстановленным железом, вследствие чего необходимо добавление дополнительных реагентов.
Prepn process of magnetic composite organic bentonite as water treating material. CN 1673108 (A). В данном методе не используется предварительное ультразвуковое расшелушивание глины, в результате чего такая глина ограниченно диспергируется в расплаве полимера. ПАВ используются на отдельной технологической стадии. Глина используется для очистки сточных вод.
Новизной описанного в данном патенте метода является возможность проведения полной модификации глины (обработка ПАВ для улучшенного распределения в структуре полимера; расшелушивание глины ультразвуком; придание частицам глины магнитных свойств) в одном реакторе за 1 стадию. В результате такой модификации получается продукт, обладающий всеми необходимыми свойствами для производства полимерных композитов с улучшенными барьерными свойствами. Дополнительными стадиями производства глины являются лишь концентрирование (магнитная сепарация) и сушка.
Задачей изобретения является создание максимально технологически простого и экономичного способа изготовления высокодисперсных гидрофобных магниточувствительных глинистых материалов для производства на их основе полимерных композитов с улучшенными характеристиками газо- и паропроницаемости.
Поставленная задача решается предлагаемым способом, включающим: приготовление суспензии глинистых материалов в воде в реакторе с помощью механического перемешивания; добавление солей двух- и трехвалентного железа и катионных ПАВ в реактор при перемешивании, ультразвуковое диспергирование полученной суспензии в реакторе, добавление раствора щелочи в реактор при перемешивании, магнитную сепарацию и очистку полученной модифицированной глины в магнитном сепараторе, сушку полученной модифицированной глины.
Техническим результатом изобретения является создание высокодисперсных гидрофобных магниточувствительных глинистых материалов, способных существенно улучшить газо- и паропроницаемость полимерных композиционных материалов на основе технологически простого, имеющего низкую фондоемкость и, как итог, экономически целесообразного способа.
Технический результат достигается в результате совмещения технологий диспергирования, гидрофобизации и придания магнитной чувствительности глинистым материалам в одном реакторе за 1 стадию, т.е. в производстве продукта с новыми свойствами максимально быстрым и наименее затратным способом.
Способ может осуществляться с помощью оборудования, представленного на технологической схеме (фиг. 1) следующим образом.
На этапе приготовления суспензии глинистых материалов в реакторе (1) с помощью механического перемешивания (4) происходит первичное диспергирование глины в воде, оно необходимо для разрушения крупных конгломератов частиц и равномерного распределения глины по всему объему реактора. Загрузка сыпучих глинистых материалов производится через люк (5). Далее в реактор добавляется раствор солей двух- и трехвалентного железа и катионных ПАВ через трубопровод, подсоединенный к фланцу (3). В процессе добавления смесь перемешивается механической мешалкой (4). В результате одновременного добавления солей железа и катионных ПАВ происходит их частичная сорбция на поверхности частиц глины. После добавления всех компонентов в реактор включается ультразвуковой диспергатор (2) с частотой звукового излучения 25-45 кГц, находящийся внутри реактора. Диспергатор разрушает более мелкие частицы глины, расшелушивает глину. В результате протекания данного процесса в течение от 10 секунд до 30 минут происходит сорбция ионов железа и ПАВ на уже расшелушенных частицах. Глина приобретает амфифильные свойства. Данный процесс сопровождается нагревом, в связи с этим нет необходимости для подведения дополнительного тепла. Кроме того, механическое перемешивание на данном этапе интенсифицирует процесс, однако не является строго необходимым, при этом мешалка может быть выключена для экономии электроэнергии. После проведения ультразвукового диспергирования в реактор через фланец (3) добавляется раствор щелочи. В качестве щелочи могут быть использованы гидроксиды натрия, калия или аммония, карбонаты натрия или калия. Добавление растворов щелочи ведут при интенсивном перемешивании. Щелочь медленно добавляют до достижения водородного показателя (pH) в районе 11-12 ед. После добавления щелочи на поверхности частиц глины формируется слой из оксидов железа, в результате чего амфифильная глина приобретает магнитные свойства. В результате проведения всех вышеописанных действий в реакторе (1) образуется коллоидный раствор высокодисперсных амфифильных магниточувствительных частиц глины. Ввиду того, что в промышленности, как правило, используется сухой продут, модифицированная глина нуждается в концентрировании и сушке. Для концентрирования используется магнитная сепарация с дополнительной промывкой. Данный процесс осуществляется путем рециркуляции раствора из реактора через магнитный сепаратор (7) с помощью насоса (8) и открытых кранов/вентилей (6 и 10). При этом магнитные частицы концентрируются в магнитном сепараторе в виде пастообразной массы черного цвета. Рециркуляцию ведут до практически полного сепарирования частиц глины. Очищенный раствор, находящийся в реакторе (1), содержащий остатки ПАВ, может быть использован повторно. После проведения сепарации глиняных частиц возможна их дополнительная промывка в сепараторе от щелочи и избытка ПАВ. Для этого закрывают кран/вентиль (6), открывают трехходовой кран/вентиль (10) на второе положение и включают рециркуляцию чистой воды через сепаратор с помощью насоса (8). Подачу чистой воды осуществляют через трубопровод (9). Очищенная, модифицированная, гидрофобная глина в виде пасты выгружается из магнитного сепаратора (А) и отправляется на сушку любым удобным для производителя методом. Полученная модифицированная глина обладает совокупностью всех необходимых свойств для создания на ее основе полимерных композиционных материалов с улучшенными барьерными характеристиками.
Ввиду низкой фондоемкости способ производства может быть осуществлен на уже существующих предприятиях по выпуску и переработке глинистых материалов.
В качестве примера, подтверждающего достижение вышеуказанного технического результата, ниже изложен один из вариантов осуществления заявленного способа.
Для получения глинистых материалов в реактор объемом 2 л заливается 1 л воды, включается мешалка и засыпается 4 г немодифицированной ММТ глины. Смесь перемешивается в течение 10 минут, после чего в нее добавляется 200 мл раствора солей железа (4 г хлорида железа III и 4 г сульфата железа II в 200 мл воды) и 10 мл 20% раствора N,N-бис(3-аминопропил)додециламина (ПАВ). Далее включается ультразвуковой диспергатор и смесь обрабатывается ультразвуком в течение 10 минут. После этого в реактор добавляется 50% раствор гидроксида натрия до достижения рН 11. Смесь перемешивается еще 10 минут. В результате проведения всех вышеописанных действий в реакторе образуется коллоидный раствор модифицированных частиц глины. Для очистки и получения сухого товарного продукта раствор прокачивается насосом через магнитный сепаратор до практически полного осаждения частиц глины на магнитах. Для дополнительной очистки глина промывается потоком чистой воды непосредственно в сепараторе в течение 5 минут. Очищенная, модифицированная, гидрофобная глина в виде пасты выгружается из магнитного сепаратора и отправляется на сушку при температуре 25°C.

Claims (1)

  1. Способ изготовления высокодисперсных гидрофобных магниточувствительных глинистых материалов включает приготовление суспензии глинистых материалов в воде в реакторе с помощью механического перемешивания, добавление солей двух- и трехвалентного железа и катионных ПАВ в реактор при перемешивании, ультразвуковое диспергирование полученной суспензии в реакторе, добавление раствора щелочи в реактор при перемешивании, магнитную сепарацию и очистку полученной модифицированной глины в магнитном сепараторе, сушку полученной модифицированной глины.
RU2016115113A 2016-04-20 2016-04-20 Способ изготовления высокодисперсных гидрофобных магниточувствительных глинистых материалов RU2630793C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016115113A RU2630793C1 (ru) 2016-04-20 2016-04-20 Способ изготовления высокодисперсных гидрофобных магниточувствительных глинистых материалов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016115113A RU2630793C1 (ru) 2016-04-20 2016-04-20 Способ изготовления высокодисперсных гидрофобных магниточувствительных глинистых материалов

Publications (1)

Publication Number Publication Date
RU2630793C1 true RU2630793C1 (ru) 2017-09-13

Family

ID=59893757

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016115113A RU2630793C1 (ru) 2016-04-20 2016-04-20 Способ изготовления высокодисперсных гидрофобных магниточувствительных глинистых материалов

Country Status (1)

Country Link
RU (1) RU2630793C1 (ru)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000078540A1 (en) * 1999-06-17 2000-12-28 Triton Systems, Inc. High performance nanocomposites
RU2163224C2 (ru) * 1994-09-02 2001-02-20 Акцо Нобель Н.В. Синтетические набухающие глинистые минералы
CN1673108A (zh) * 2005-03-24 2005-09-28 浙江大学 水处理材料磁性复合有机膨润土的制备方法
EP1985585A1 (en) * 2005-12-29 2008-10-29 Nanobiomatters, S.L. Method for producing nanocomposite materials for multi-sectoral applications
US20090048381A1 (en) * 2007-08-16 2009-02-19 Nova Chemical Inc. Process for making polyolefin clay nanocomposites
RU2563477C2 (ru) * 2013-06-25 2015-09-20 Общество с ограниченной ответственностью "МИРРИКО" Способ получения органофильного бентонита

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2163224C2 (ru) * 1994-09-02 2001-02-20 Акцо Нобель Н.В. Синтетические набухающие глинистые минералы
WO2000078540A1 (en) * 1999-06-17 2000-12-28 Triton Systems, Inc. High performance nanocomposites
CN1673108A (zh) * 2005-03-24 2005-09-28 浙江大学 水处理材料磁性复合有机膨润土的制备方法
EP1985585A1 (en) * 2005-12-29 2008-10-29 Nanobiomatters, S.L. Method for producing nanocomposite materials for multi-sectoral applications
US20090048381A1 (en) * 2007-08-16 2009-02-19 Nova Chemical Inc. Process for making polyolefin clay nanocomposites
RU2563477C2 (ru) * 2013-06-25 2015-09-20 Общество с ограниченной ответственностью "МИРРИКО" Способ получения органофильного бентонита

Similar Documents

Publication Publication Date Title
Wan et al. Using magnetic seeds to improve the aggregation and precipitation of nanoparticles from backside grinding wastewater
CN101700491A (zh) 一种粉煤灰的改性方法
CN107174867A (zh) 煤与其它材料混合及混合后再做新材料,除尘及治理雾霾
CN104826600B (zh) 一种磁性高岭土的制备方法
CN103079764B (zh) 氧化铈系研磨材料的再生方法
CN103964538B (zh) 一种氧化铈改性的磁性Fe3O4@SiO2颗粒吸附去除水体中磷酸盐的方法
CN105344325B (zh) 一种处理重金属污染水体的纳米铁/介孔硅复合材料的制备方法
CN105489330B (zh) 一种壳聚糖基磁性纳米材料的超重力制备方法
CN107159172A (zh) 沸石脱氮除磷剂的制备方法及沸石脱氮除磷剂
CN102838195A (zh) 一种用于污水处理的复合絮凝剂
CN107899547A (zh) 一种自来水厂除磷吸附剂及其制备方法
CN111792813A (zh) 一种陶瓷污泥处理方法
KR101679563B1 (ko) 다층막으로 된 하이드로젤 캡슐 및 이의 제조방법
RU2630793C1 (ru) Способ изготовления высокодисперсных гидрофобных магниточувствительных глинистых материалов
CN109046292B (zh) 具有层级结构的有机无机杂化吸附剂及其制备方法和应用
JP2013202569A (ja) 水処理用ろ過助剤及び水処理方法
CN111063502B (zh) 一种稳定性可调的磁流体及其制备与回收方法
CN105469920A (zh) 一种半胱氨酸修饰的磁性纳米材料的超重力制备方法
CN112675804A (zh) 一种水合碳酸铈除磷吸附剂及其制备方法与应用
CN106111069A (zh) 一种新型重金属吸附剂的制备方法
CN107010651A (zh) 纳米氧化锌的表面改性方法
CN105271272A (zh) 负离子干粉表面改性方法
US20220351887A1 (en) Ferrofluid
WO2022022270A1 (zh) 一种陶瓷污泥处理方法及系统
Wei et al. Comparison of polysilicic acid (PSiA) and magnesium sulfate modified polysilicic acid (PMSiS) for effective removal of Congo red from simulated wastewater