RU2629946C1 - Вентильный электропривод колебательного движения - Google Patents

Вентильный электропривод колебательного движения Download PDF

Info

Publication number
RU2629946C1
RU2629946C1 RU2016108900A RU2016108900A RU2629946C1 RU 2629946 C1 RU2629946 C1 RU 2629946C1 RU 2016108900 A RU2016108900 A RU 2016108900A RU 2016108900 A RU2016108900 A RU 2016108900A RU 2629946 C1 RU2629946 C1 RU 2629946C1
Authority
RU
Russia
Prior art keywords
output
input
motor
adder
electric drive
Prior art date
Application number
RU2016108900A
Other languages
English (en)
Inventor
Анатолий Владимирович Аристов
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский политехнический университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский политехнический университет" filed Critical Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский политехнический университет"
Priority to RU2016108900A priority Critical patent/RU2629946C1/ru
Application granted granted Critical
Publication of RU2629946C1 publication Critical patent/RU2629946C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/02Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with armatures moved one way by energisation of a single coil system and returned by mechanical force, e.g. by springs
    • H02K33/04Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with armatures moved one way by energisation of a single coil system and returned by mechanical force, e.g. by springs wherein the frequency of operation is determined by the frequency of uninterrupted AC energisation
    • H02K33/08Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with armatures moved one way by energisation of a single coil system and returned by mechanical force, e.g. by springs wherein the frequency of operation is determined by the frequency of uninterrupted AC energisation with DC energisation superimposed on AC energisation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Stopping Of Electric Motors (AREA)

Abstract

Изобретение относится к области электротехники и может быть использовано при создании вибрационных электроприводов для перемешивания сыпучих, пастообразных и жидких веществ, в автоматизированных электроприводах механизмов с колебательным движением рабочего органа, вибрационных установках в горной промышленности, строительстве, машиностроении или сельском хозяйстве. Технический результат: улучшение энергетических показателей электропривода колебательного движения за счет формирования колебательного режима работы в вентильном электродвигателе с регулируемыми выходными параметрами движения и поддержания резонансного режима работы за счет управления собственной частотой. Вентильный электропривод колебательного движения содержит датчик положения, механически соединенный с валом двигателя, усилитель с регулируемым коэффициентом передачи, источник переменного тока и сумматор, соединенный своим выходом с входом инвертора напряжения, выход которого подключен ко второй статорной обмотки двигателя. Первая статорная обмотка вентильного двигателя подключена к выходу фильтра низкой частоты, который соединен своим входом с выходом выпрямителя, вход которого подключен к источнику переменного тока. Выход датчика положения соединен с входом релейного элемента, выход которого подключен к выходу усилителя с регулируемым коэффициентом усиления. Выход задающего генератора частоты колебаний соединен с первым входом сумматора, второй вход которого подключен к выходу усилителя с регулируемым коэффициентом усиления. 2 ил.

Description

Изобретение относится к электротехнике, а именно электроприводам переменного тока периодического движения, и может быть использовано при создании вибрационных электроприводов для перемешивания сыпучих, пастообразных и жидких веществ, в автоматизированных электроприводах механизмов с колебательным движением рабочего органа, вибрационных установках в горной промышленности, строительстве, машиностроении или сельском хозяйстве.
Известен электропривод колебательного движения [RU 2401503 C1, МПК Н02Р 25/02 (2006.01), опубл. 10.10.2010], содержащий источник питания, установленный на опору статор трехфазного электродвигателя, укомплектованный ротором с одной парой явно выраженных полюсов, упругий элемент, жестко связанный с опорой с одной стороны и ротором электродвигателя с другой стороны, фиксирующий ротор со статором в начальном положении, при котором продольная ось симметрии ротора совпадает с продольной осью симметрии электромагнитного поля. Одна фазная статорная обмотка электродвигателя, задающая начальное положение ротора и упругого элемента, последовательно включена началом обмотки с положительным полюсом источника питания, снабженного трехфазным мостовым выпрямителем, а концом подключена к соединенным началами двум другим фазным статорным обмоткам, концы каждой из которых через последовательно включенные диоды подключены к анодам тиристоров, соединенные катоды которых подключены к отрицательному полюсу источника питания и общему выходу генератора импульсов. Управляющие электроды тиристоров подключены к сигнальным выходам генератора импульсов, а аноды тиристоров соединены конденсатором.
Недостатками этого вентильного электропривода являются невозможность получения энергетически выгодного резонансного режима работы электропривода во всем диапазоне регулирования частоты колебаний из-за фиксированного значения упругого элемента (торсиона) и дополнительные динамические потери, связанные с наличием в электромагнитном моменте двигателя пульсаций, вызванных дискретным переключением управляющих тиристоров.
Известен электропривод колебательного движения [RU 107426 U1, МПК Н02Р 6/02 (2006.01), Н02Р 27/04 (2006.01), Н02K 33/04 (2006.01), опубл. 10.08.2011], содержащий двухфазный электродвигатель, обмотка возбуждения которого имеет зажимы для подключения к источнику переменного тока, преобразователь частоты, входы которого предназначены для подключения к фазам источника переменного тока соответственно, инвертор, выход которого соединен с выводами обмотки управления электродвигателя, функциональный цифроаналоговый преобразователь, усилитель с регулируемым коэффициентом усиления, преобразователь разности частот в код, выход которого соединен с входом функционального цифроаналогового преобразователя, а первый вход связан с выходом преобразователя частоты. Фазосдвигающее звено подключено своим входом к фазам источника переменного тока, а выходом ко второму входу преобразователя разности частоты в код и к первому входу модулятора, второй вход которого подключен к выходу усилителя с регулируемым коэффициентом усиления, первый вход которого подключен к выходу датчика положения, механически соединенного с валом электродвигателя. Второй вход усилителя с регулируемым коэффициентом усиления подключен к выходу второго сумматора, первый вход которого подключен к выходу функционального цифроаналогового преобразователя. Второй вход второго сумматора подключен к задатчику позиционного усилия. Первый сумматор соединен своим выходом с входом инвертора, первым входом подключен к выходу преобразователя частоты, а вторым входом подключен к выходу модулятора. Упругий элемент соединен механически через датчик положения с валом электродвигателя. Этот электропривод выбран в качестве прототипа.
Однако, сам исполнительный двигатель (двухфазный электродвигатель) имеет при колебательном движении низкий кпд и работает при токах, значения которых соответствуют пусковым токам, что вызывает существенное нагревание обмоток двухфазного электродвигателя и, как следствие, к большим тепловым потерям и снижению общего кпд электропривода колебательного движения.
Задачей изобретения является улучшение энергетических показателей электропривода колебательного движения и обеспечение резонансного режима работы в широком частотном диапазоне регулирования частоты.
Поставленная задача решена за счет того, что вентильный электропривод колебательного движения, так же как в прототипе, содержит датчик положения, механически соединенный с валом двухфазного электродвигателя, усилитель с регулируемым коэффициентом усиления, источник переменного тока и сумматор, соединенный своим выходом с входом инвертора напряжения, выход которого подключен ко второй статорной обмотки двигателя.
Согласно изобретению в вентильный электропривод введены вентильный двигатель, выпрямитель, фильтр низкой частоты, задающий генератор и релейный элемент. Первая статорная обмотка вентильного двигателя подключена к выходу фильтра низкой частоты, который соединен своим входом с выходом выпрямителя, вход которого подключен к источнику переменного тока. Выход датчика положения соединен с входом релейного элемента, выход которого подключен к выходу усилителя с регулируемым коэффициентом усиления. Выход задающего генератора частоты колебаний соединен с первым входом сумматора, второй вход которого подключен к выходу усилителя с регулируемым коэффициентом усиления.
Использование вентильного двигателя, выпрямителя, фильтра низкой частоты, задающего генератора и релейного элемента позволяет создать колебательный режим работы вентильного электропривода с регулируемыми выходными параметрами и поддерживать резонансный режим работы за счет регулирования собственной частоты, обеспечивая высокие энергетические показатели электропривода в целом.
На фиг. 1 представлена блок-схема вентильного электропривода колебательного движения.
На фиг. 2 представлены временные диаграммы изменения координаты подвижного элемента вентильного двигателя χ(t) электромагнитного момента Мэм(t) и токов i1(t), i2(t) при запуске на частоту колебаний Ω предложенного вентильного электропривода.
Вентильный электропривод колебательного движения (фиг. 1) состоит из вентильного двигателя 1 со статорными обмотками 2 и 3, источника переменного тока 4 (ИПТ) частоты ω, выпрямителя 5 (В), фильтра низкой частоты 6 (ФНЧ), задающего генератора частоты колебаний 7 (ЗГ), сумматора 8 (СМ), усилителя с регулируемым коэффициентом усиления 9 (У), инвертора напряжения 10 (ИН), датчика положения 11 (ДП) и релейного элемента 12 (РЭ).
Статорная обмотка 2 вентильного двигателя 1 подключена к выходу фильтра низкой частоты 6 (ФНЧ), а статорная обмотка 3 - к выходу инвертора напряжения 10 (ИН), вход которого соединен с выходом сумматора 8 (СМ). Первый вход сумматора 8 (СМ) соединен с выходом задающего генератора частоты колебаний 7 (ЗГ), а второй - с выходом усилителя с регулируемым коэффициентом усиления 9 (У), вход которого подключен к выходу релейного элемента 12 (РЭ), вход которого связан с выходом датчика положения 11 (ДП). Датчик положения 11 (ДП) механически соединен с выходным валом вентильного двигателя 1. Вход фильтра низкой частоты 6 (ФНЧ) подключен к выходу выпрямителя 5 (В), вход которого соединен с источником переменного тока 4 (ИПТ).
При технической реализации макетного образца заявляемого устройства задающий генератор частоты колебаний 7 (ЗГ) и сумматор 8 (СМ) реализованы на операционных усилителях серии 140 УД8. Выпрямитель 5 (В) выполнен по двухполупериодной схеме выпрямления на полупроводниковых диодах. Фильтр низкой частоты 6 (ФНЧ) выполнен по схеме Г-образного LC фильтра. В качестве инвертора напряжения 10 (ИН) использовался мостовой инвертор с транзисторными ключами. Релейный элемент 12 (РЭ) выполнен по схеме компаратора на операционном усилителе К140УД6. Усилитель с регулируемым коэффициентом усиления 9 (У) реализован на дифференциальном усилителе с токопитающим каскадом на базе микросхемы К1УТ981.
Вентильный электропривод колебательного движения работает следующим образом. Напряжение с выхода источника переменного тока 4 (ИПТ) частоты ω
U4=Um1sin(ω⋅t),
где Um1 - амплитуда напряжения источника переменного тока частоты ω;
t - текущее значение времени,
поступает на вход двухполупериодного выпрямителя 5 (В), где оно сначала выпрямляется
Figure 00000001
,
а затем после сглаживания пульсаций на фильтре низкой частоты 6 (ФНЧ)
U6=k6U5,
где k6 - коэффициент передачи фильтра,
запитывает статорную обмотку 2 двухфазного вентильного двигателя 1.
Одновременно напряжение с выхода задающего генератора частоты колебаний 7 (ЗГ)
U7=Um2sin(Ω⋅t),
где Um2 - амплитуда напряжения источника переменного тока:
Ω - частота выходного напряжения задающего генератора,
поступает на первый вход сумматора 8 (СМ).
Датчик положения 11 (ДП) вырабатывает сигнал, пропорциональный закону движения подвижного элемента вентильного двигателя 1
χ=χmsin(Ω⋅t+α),
где χm - амплитуда колебаний подвижного элемента вентильного двигателя; α - начальная фаза колебаний,
который поступает на релейный элемент 12 (РЭ). В результате, на выходе релейного элемента 12 (РЭ) формируется напряжение
U12=k12sign(χ),
где k12 - коэффициент передачи релейного элемента 12 (РЭ).
Напряжение с выхода релейного элемента 12 (РЭ) подается на вход усилителя с регулируемым коэффициентом усиления 9 (У), сформированное на выходе которого напряжение
U9=k9sign(χ),
где k9 - коэффициент передачи усилителя с учетом коэффициента передачи релейного элемента k12,
поступает на второй вход сумматора 8 (СМ). В результате на выходе сумматора 8 (СМ) формируется напряжение
U8=Um2sin(Ω⋅t)-k9sign(χ).
Разностное напряжение с выхода сумматора 8 (СМ) поступает на управляющий вход инвертора напряжения 10 (ИН).
Инвертор напряжения 10 (ИН) усиливает входной сигнал по мощности и запитывает статорную обмотку 3 вентильного двигателя 1 напряжением
U10=k10[Um2sin(Ω⋅t)-k9sign(χ)],
где k10 - коэффициент передачи инвертора напряжения.
В результате взаимодействия напряжений U6 и U10 в воздушном зазоре двигателя создается качающееся электромагнитное поле, и подвижный элемент вентильного двигателя начинает совершать колебательное движение.
Причем взаимодействие напряжений U6 и U10 '=kl0[Um2sin(Ω⋅t)] формирует колебательную составляющую электромагнитного поля, а взаимодействие напряжений U6 и U10 ''=-k10[k9sign(χ)] формирует позиционное электромагнитное усилие.
Изменяя коэффициент передачи усилителя с регулируемым коэффициентом усиления 9 (У), регулируют величину позиционного электромагнитного усилия, тем самым настраивая для заданной частоты колебаний Ω резонансный режим работы, обеспечивая высокие энергетические показатели вентильного электропривода.
На фиг. 2 представлены временные диаграммы, иллюстрирующие, согласно предложенному устройству, законы изменения момента M(t), координаты χ(t) подвижного элемента вентильного двигателя 1 и токов обмоток 2 и 3 статора i1 и i2. Значения последних в установившемся режиме не превышают своих номинальных значений, что характеризует работу вентильного двигателя 1 с максимальным кпд.
Точность задания и поддержания частоты колебаний Ω определяются стабильностью задающего генератора частоты колебаний 7 (ЗГ). Регулирование амплитуды колебаний χm осуществляется за счет изменения амплитуды выходного напряжения Um2 инвертора напряжения 10 (ИН).
Кроме того, большинство выпускаемых промышленностью вентильных двигателей имеет в своей конструкции уже встроенные датчики положения, что существенно упрощает техническую реализацию вентильного электропривода колебательного движения по сравнению с прототипом.

Claims (1)

  1. Вентильный электропривод колебательного движения, содержащий датчик положения, механически соединенный с валом двухфазного электродвигателя, усилитель с регулируемым коэффициентом усиления, источник переменного тока и сумматор, соединенный своим выходом с входом инвертора напряжения, выход которого подключен ко второй статорной обмотке двигателя, отличающийся тем, что первая статорная обмотка вентильного двигателя подключена к выходу фильтра низкой частоты, который соединен своим входом с выходом выпрямителя, вход которого подключен к источнику переменного тока, выход датчика положения соединен с входом релейного элемента, выход которого подключен к выходу усилителя с регулируемым коэффициентом усиления, выход задающего генератора частоты колебаний соединен с первым входом сумматора, второй вход которого подключен к выходу усилителя с регулируемым коэффициентом усиления.
RU2016108900A 2016-03-11 2016-03-11 Вентильный электропривод колебательного движения RU2629946C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016108900A RU2629946C1 (ru) 2016-03-11 2016-03-11 Вентильный электропривод колебательного движения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016108900A RU2629946C1 (ru) 2016-03-11 2016-03-11 Вентильный электропривод колебательного движения

Publications (1)

Publication Number Publication Date
RU2629946C1 true RU2629946C1 (ru) 2017-09-05

Family

ID=59797856

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016108900A RU2629946C1 (ru) 2016-03-11 2016-03-11 Вентильный электропривод колебательного движения

Country Status (1)

Country Link
RU (1) RU2629946C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2677682C1 (ru) * 2017-11-29 2019-01-21 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский политехнический университет" Вентильный электропривод колебательного движения

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2148293C1 (ru) * 1998-11-16 2000-04-27 Воронежский государственный технический университет Электропривод периодического движения
RU2401503C1 (ru) * 2009-04-06 2010-10-10 Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный горный институт имени Г.В. Плеханова (технический университет)" Электропривод колебательного движения
RU107426U1 (ru) * 2011-02-24 2011-08-10 Государственное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" Электропривод колебательного движения
EP2390999A2 (en) * 2010-05-31 2011-11-30 Canon Kabushiki Kaisha Method of controlling vibration motor
US20130234642A1 (en) * 2010-12-20 2013-09-12 Mitsubishi Electric Corporation Motor control device
RU145562U1 (ru) * 2014-04-10 2014-09-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" Устройство для управления двухфазным асинхронным двигателем в режиме прерывистого движения

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2148293C1 (ru) * 1998-11-16 2000-04-27 Воронежский государственный технический университет Электропривод периодического движения
RU2401503C1 (ru) * 2009-04-06 2010-10-10 Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный горный институт имени Г.В. Плеханова (технический университет)" Электропривод колебательного движения
EP2390999A2 (en) * 2010-05-31 2011-11-30 Canon Kabushiki Kaisha Method of controlling vibration motor
JP5791343B2 (ja) * 2010-05-31 2015-10-07 キヤノン株式会社 振動型モータの制御方法および振動型モータの駆動装置
US20130234642A1 (en) * 2010-12-20 2013-09-12 Mitsubishi Electric Corporation Motor control device
RU107426U1 (ru) * 2011-02-24 2011-08-10 Государственное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" Электропривод колебательного движения
RU145562U1 (ru) * 2014-04-10 2014-09-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" Устройство для управления двухфазным асинхронным двигателем в режиме прерывистого движения

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2677682C1 (ru) * 2017-11-29 2019-01-21 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский политехнический университет" Вентильный электропривод колебательного движения

Similar Documents

Publication Publication Date Title
JP2018121521A (ja) 制御装置
Abe et al. Source current harmonics and motor copper loss reduction control of electrolytic capacitor-less inverter for IPMSM drive
RU2629946C1 (ru) Вентильный электропривод колебательного движения
US10418928B2 (en) Adjustable circuit for personal electric cleaning care appliance
Ye et al. Comparative evaluation of power converters for 6/4 and 6/10 switched reluctance machines
RU133990U1 (ru) Устройство для управления двухфазным асинхронным двигателем в режиме пульсирующего движения
RU2669382C1 (ru) Способ генерации электрических квазигармонических колебаний в индуктивно-резистивной нагрузке
RU2462810C1 (ru) Устройство для управления двухфазным асинхронным двигателем в режиме пульсирующего движения
RU2587545C1 (ru) Устройство для управления двухфазным асинхронным двигателем в режиме пульсирующего движения
RU145562U1 (ru) Устройство для управления двухфазным асинхронным двигателем в режиме прерывистого движения
JP5046021B2 (ja) 電源回路
RU2677682C1 (ru) Вентильный электропривод колебательного движения
RU107426U1 (ru) Электропривод колебательного движения
RU2640352C1 (ru) Устройство для управления двухфазным асинхронным двигателем в режиме пульсирующего движения
RU131254U1 (ru) Устройство для управления двухфазным асинхронным двигателем в режиме прерывистого движения
RU2636806C2 (ru) Вентильный электропривод колебательного движения
RU2592080C1 (ru) Электропривод колебательно-вращательного движения
RU63994U1 (ru) Трехфазный инвертор тока
RU144840U1 (ru) Устройство для управления двухфазным асинхронным двигателем в режиме прерывистого движения
JP3034734B2 (ja) 振動型圧縮機の電源装置
RU121407U1 (ru) Устройство для управления двухфазным асинхронным двигателем в режиме пульсирующего движения
Isobe et al. Control of series compensated induction motor using magnetic energy recovery switch
RU130157U1 (ru) Устройство для управления двухфазным асинхронным двигателем в режиме пульсирующего движения
RU97882U1 (ru) Устройство для управления двухфазным асинхронным двигателем в режиме прерывистого движения
RU2725897C1 (ru) Способ возбуждения механических автоколебаний

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190312