RU2629664C1 - Способ механической обработки костных образцов in vitro - Google Patents

Способ механической обработки костных образцов in vitro Download PDF

Info

Publication number
RU2629664C1
RU2629664C1 RU2016123348A RU2016123348A RU2629664C1 RU 2629664 C1 RU2629664 C1 RU 2629664C1 RU 2016123348 A RU2016123348 A RU 2016123348A RU 2016123348 A RU2016123348 A RU 2016123348A RU 2629664 C1 RU2629664 C1 RU 2629664C1
Authority
RU
Russia
Prior art keywords
bone
samples
machining
ozone
air mixture
Prior art date
Application number
RU2016123348A
Other languages
English (en)
Inventor
Павел Николаевич Ляшенко
Лидия Алексеевна Матвейчук
Игорь Васильевич Матвейчук
Владимир Викторович Розанов
Original Assignee
Павел Николаевич Ляшенко
Лидия Алексеевна Матвейчук
Игорь Васильевич Матвейчук
Владимир Викторович Розанов
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Павел Николаевич Ляшенко, Лидия Алексеевна Матвейчук, Игорь Васильевич Матвейчук, Владимир Викторович Розанов filed Critical Павел Николаевич Ляшенко
Priority to RU2016123348A priority Critical patent/RU2629664C1/ru
Application granted granted Critical
Publication of RU2629664C1 publication Critical patent/RU2629664C1/ru

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N1/00Preservation of bodies of humans or animals, or parts thereof

Landscapes

  • Prostheses (AREA)
  • Materials For Medical Uses (AREA)

Abstract

Изобретение относится к механической обработке костных образцов in vitro и может быть использовано в научных исследованиях в биологии и медицине при изготовлении биологических имплантатов с возможностью дальнейшего хранения в "тканевых банках". Способ механической обработки костного образца in vitro включает механическую обработку с использованием стерильной рабочей жидкости и последующую стерилизацию и консервацию полученных образцов. Сначала осуществляют стерилизацию костного образца озоновоздушной смесью с концентрацией озона 5÷10 мг/л в течение 10÷12 минут, затем механическую обработку проводят режущими инструментами в рабочей жидкости, в качестве которой используют стерильный, охлажденный до температуры +(4÷6)°С раствор Рингера с содержанием сангвиритрина в концентрации 0,01% в пересчете на активное вещество. После этого полученные образцы повторно стерилизуют озоновоздушной смесью аналогичным образом. Предлагаемый способ механической обработки костных образцов обеспечивает достижение 100% стерилизации костных образцов при сохранении их остеоиндуктивных свойств после механической обработки, сохранность морфологических и биопластических свойств стерилизуемых объектов, сокращение трудоемкости и времени подготовки имплантатов к их клиническому использованию и образцов для различных физико-химических исследований. 2 ил., 2 табл., 7 пр.

Description

Изобретение относится к механической обработке костных образцов in vitro и может быть использовано в научных исследованиях в биологии и медицине при изготовлении биологических имплантатов с возможностью дальнейшего хранения в "тканевых банках" для обеспечения костнопластическим материалом учреждений здравоохранения.
Для достижения наилучшего клинического результата при изготовлении костного образца необходимо сохранить активность костных морфогенетических белков, не разрушить при механическом воздействии поверхность образца и одновременно добиться его стерильности, которая влияет на продолжительность его хранения.
Высокая степень стерильности необходима в биоимплантологии, в частности, на завершающих стадиях изготовления костного имплантата. При их использовании должна быть исключена возможность инфицирования реципиентов бактериальными, грибковыми и вирусными инфекциями. Поэтому технологический процесс изготовления костных образцов биологической природы должен завершаться надежной и адекватной стерилизацией с максимально возможным сохранением пластических свойств ткани. Отбор донорского материала, выбор технологии изготовления биологических имплантатов в мировой практике регулируется соответствующими стандартами и сопровождается серологическими исследованиями, которые не обладают 100% специфичностью и чувствительностью при диагностике инфекционных заболеваний.
На эндо- и экзопатогенную флору, присутствующую в донорских костных тканях, могут влиять различные факторы - температура, химическое и механическое воздействие, что не исключает денатурацию белковых структур, сведение к минимуму или полному исчезновению комплекса пластических свойств образца при его изготовлении.
Механической обработке кости уделяется недостаточное внимание. Среди методов, применяемых при изготовлении костных образцов, следует выделить традиционные - точение, фрезерование. Известно применение гидродинамической струи, ручной обработки. Необходимым условием при механической обработке кости является применение охлаждения ввиду ее специфических теплофизических свойств и композиционного состава. В качестве охлаждающих сред используются водопроводная, дистиллированная вода, физиологический раствор, глицериновая эмульсия. Это способствует созданию влажностных условий, близких к реальным, в которых кость находится в организме. Применение жидких сред позволяет получать образцы с высоким качеством поверхности.
Регистрируемая в зоне резания температура может достигать (+40÷60)°С при точении, при шлифовании - до +40°С. Непродолжительное действие указанных температур может оказывать отрицательное термическое воздействие на кость. Это подтверждается результатами макро - и микроскопических исследований, проведенных авторами предлагаемого изобретения, свидетельствующих о существенных структурных изменениях, обусловленных механической обработкой.
С учетом решаемых задач существуют различные технологии изготовления костных фрагментов для биоимплантологии и образцов для различных видов структурно-функционального анализа.
Так известен способ изготовления аллотрансплантата, включающий механическую обработку полученной от донора заготовки из костной ткани, последующую промывку ее холодной водой, деминерализацию в 1,2-3,6 н. растворе соляной кислоты, промывку деминерализованной заготовки в дистилляте и в физиологическом растворе, стерилизацию и консервацию заготовки путем помещения и выдерживания ее в соответствующей герметичной таре (упаковке), залитой раствором формальдегида с добавкой антибиотика (Сборник научных трудов ЛНИИТО им Р.Р. Вредена. Заготовка и пересадка деминерализованной костной ткани в эксперименте и клинике. Л.: НИИТО, 1983, с. 3-12). Данный способ позволяет за счет деминерализации костной ткани получать аллотрансплантаты с высокой остеоиндуктивностью. Однако существенным недостатком полученных по этому способу аллотрансплантатов является использование формальдегида в качестве консерванта и стерилизатора, что создает ряд проблем, обусловленных токсичностью формальдегида, необходимостью отмывки приготовленного трансплантата перед клиническим использованием, неудобством хранения и транспортировки трансплантата, погруженного в раствор, ограниченным временем хранения трансплантата (не более 6 месяцев).
Известен способ получения отверстия в кости с применением фрезы (пат. РФ 2558451). При этом к месту механической обработки постоянно подается физиологический солевой раствор (возможна подача под давлением). Такое высверливание в кости отверстия требуется, например, в хирургической стоматологии при выполнении синус-лифтинга. При этом качество внутренней поверхности отверстия является достаточным с учетом возможностей данного вида механической обработки. С помощью физиологического раствора осуществляется удаление костной крошки и частичная стерилизация подготовленного ложа. Данный способ применим только для подготовки ложа для установки импланта.
Известен способ изготовления костного имплантата (пат. РФ №2147800), заключающийся в последовательно проводимых при механической обработке операциях, как правило, в распиливании образцов вручную, промывке костного фрагмента, выполнении в нем сквозных отверстий диаметром 0,6-0,8 мм при плотности их расположения на поверхности заготовки 1-1,5 на см2, деминерализации в растворе соляной кислоты, нейтрализации остатков кислоты, консервации деминерализованной заготовки посредством лиофилизации, стерилизации после окончания сушки, осуществляемой путем облучения заготовки, помещаемой в герметичную упаковку, пучком ускоренных электронов. Однако существенным недостатком полученных по данному способу имплантатов является длительный цикл и сложность получения имплантатов. Кроме того, при механической обработке образца и выполнении в нем сквозных отверстий возможно повреждение как внешней поверхности, так и внутри отверстий от воздействия температуры, возможности распространения в толщу кости разрушений физико-химической природы. Отсутствуют указания о сохранении остеоиндуктивных свойств имплантата.
Наиболее близким прототипом к заявляемому техническому решению относится способ изготовления костного имплантата по пат. РФ №2268060, включающий механическую обработку гидродинамической струей, содержащей частицы углерод-минерального сорбента, доля которых составляет от 5 до 40% от объема применяемой жидкости струи, выполнение множественных сквозных отверстий с минимальным диаметром от 100 до 700 микрон по плоскостному шаблону, деминерализацию заготовки в 0,7-1,1 н. растворе ортофосфорной кислоты, нейтрализацию остатков кислоты, стерилизацию и консервацию заготовки. Недостатком стерилизации является невозможность получения 100% степени стерилизации от бактериальных, грибковых и вирусных инфекций. Такой образец можно изготовить только из костного фрагмента достаточных размеров, обеспечивающих возможность закрепления образца. Выполнение перфораций предусматривает изготовление специального шаблона. Для создания высокого давления гидродинамической струи (до 400 атм) требуется специальное технологическое оборудование и соблюдение особых требований безопасности.
Технической задачей предлагаемого изобретения является достижение 100% стерилизации костных образцов при сохранении их остеоиндуктивных свойств после механической обработки, обеспечение сохранности морфологических и биопластических свойств стерилизуемых объектов, сокращение трудоемкости и времени подготовки имплантатов к их клиническому использованию и образцов для различных физико-химических исследований.
Достижение технического результата возможно при использовании способа механической обработки костного образца in vitro, включающего механическую обработку с использованием стерильной рабочей жидкости и последующую стерилизацию и консервацию полученных образцов. При этом сначала осуществляют стерилизацию костного образца озоновоздушной смесью с концентрацией озона 5÷10 мг/л в течение 10÷12 минут, затем механическую обработку проводят режущими инструментами в рабочей жидкости, в качестве которой используют стерильный, охлажденный до температуры +(4÷6)°С раствор Рингера с содержанием сангвиритрина в концентрации 0,01% в пересчете на активное вещество, после этого полученные образцы повторно стерилизуют озоновоздушной смесью аналогичным образом.
Все костные образцы изготовлены с помощью полых цилиндрических и дисковых отрезных фрез, имеющих в рабочей зоне зубья или алмазное напыление.
Сангвиритрин, регистрационный номер Р N003835/01, торговое название Сангвиритрин. Представляет собой смесь кислых сульфатов двух бензо[с] фенантридиновых алкалоидов сангвинарина и хелеритрина, обладающего антимикробной активностью, обладает противомикробной активностью, действует на грамположительные и грамотрицательные бактерии. Фармакотерапевтическая группа: сильное противомикробное средство. Получают сангвиритрин из надземной части маклеи мелкоплодной. Лекарственная форма: раствор для наружного и местного применения [спиртовой]. Состав: сангвиритрина - 2 г, вспомогательных веществ: этанола 95% - 315 мл, воды очищенной - до получения 1000 мл препарата. Сангвиритрин относится к умеренно токсичным веществам, не обладает мутагенными, тератогенными, канцерогенными и кумулятивными эффектами.
Озон О3 - прекрасный стерилизатор, способный эффективно уничтожать все виды бактерий, вирусов, грибов и простейших. Преимущества стерилизации озоном - низкотемпературный режим, короткая экспозиция, глубокое проникновение в материал, возможность стерилизации термонеустойчивых изделий, создание больших объемов стерилизационной камеры, отсутствие токсичности, а также безопасность для окружающей среды. Согласно исследованиям озон обладает сильно выраженными фунгицидными, бактерицидными, вироцидными свойствами («Клинические аспекты озонотерапии» / Под ред. А.В. Змызговой и В.А. Максимова. М.: НПЦ Озонотерапии, 2003, 288 с.). Следует также отметить, что предложенный способ облегчает соблюдение техники безопасности, т.к. озон создают в непосредственной близости от обрабатываемого объекта, где он полностью разлагается на О* и O* 2, имеющие продолжительность "жизни" десятые и сотые доли секунды, не попадает в атмосферу и не скапливается в нижних слоях в недопустимом количестве.
Гистологическое изучение полученных костных образцов заявляемым способом показало, что шероховатость обработанной поверхности не превышала параметры естественных концентраторов напряжений, а механическое воздействие режущего инструмента не приводило к образованию дополнительных дефектов. Отсутствие структурных изменений в поверхностном слое свидетельствует об оптимальности конструктивных решений в использованном режущем инструменте, технологических мероприятий, обеспечивающих надежное охлаждение в зоне резания и не оказывающих термического влияния на кость.
С целью изучения сохранности структуры, отсутствия изменений физико-механических показателей кости, авторами проведено изучение влияния воды, раствора Рингера, раствора Рингера с добавлением сангвиритрина, с использованием озоновоздушной смеси и без ее применения, некоторых температурных режимов обработки на физико-механические свойства компактной кости.
Авторами предложена установка (см. рис. 1), включающая корпус (1) с крышкой (2). Корпус в верхней и нижней части снабжен штуцерами (3). В основании корпуса установлена шаровая опора (4) для обеспечения параллельности оси фрезы и обрабатываемого костного фрагмента в случае конической формы диафиза кости (отклонения ее от цилиндрической), закрепленная с помощью шпильки (5), в верхней части которой посредством гайки (6) закреплена специальная пластина (7), используемая для крепления образца (8) и его разметки на переднюю, заднюю, латеральную и медиальную зоны. Обработка образца производится режущим инструментом (9), например полой фрезой. После закрепления образца в установке при герметично закрытой крышке (2) в корпус подается через верхний штуцер (3) озоновоздушная смесь. Обдув объекта производят непрерывно в течение (10÷15) минут. Затем в корпус заливают предварительно подвергнутый стерилизации рабочий раствор и при открытой крышке проводят механическую обработку образца. После окончания механической обработки костного образца раствор сливается через нижний штуцер (3), закрывается крышка, и в камеру снова подается озоновоздушная смесь для окончательной стерилизации образца.
На рис. 2 в качестве примера представлена схема изготовления цилиндрических образцов различной ориентации с учетом анизотропии кости: а - продольные, б - радиальные, в - тангенциальные.
Изобретение иллюстрируется следующими примерами, в которых в качестве модельных использовали образцы компактного вещества бедренных бычьих костей.
Пример 1. Механическая обработка без физиологического раствора
Для разделения костной ткани использовали полые цилиндрические и отрезные дисковые фрезы. В данной серии экспериментов установлено, что разделение костной ткани сопровождается значительным ее нагревом, изменением структуры поверхностного слоя и значительным (более чем на 20%) повышением его микротвердости (упруго-пластических свойств) по сравнению с аналогичным параметром исходного нативного материала 350-370 МПа. Такие образцы не отвечают и микробиологическим требованиям.
Пример 2, 3. Механическая обработка в присутствии раствора Рингера
В устройство, в котором выполняется механическая обработка, осуществляли подачу раствора Рингера с температурой, равной комнатной +(20±2)°С, и охлажденного до +(4÷6)°С. Охлажденные растворы не приводили к повышению температуры в зоне резания, не вызывали структурно-функциональных изменений поверхностного слоя. Однако оба исследованных раствора не обеспечивали получение стерильных образцов.
Пример 4. Механическая обработка при стерилизации озоном
Озоновоздушную смесь, создаваемую генератором, подают в камеру стерилизации (см. рис. 1), в которую помещен исходный образец, не прошедший механическую обработку. Оптимальный рабочий диапазон концентраций озона составляет (5÷10) мг/л. Обдув костного фрагмента проводят непрерывно в течение (10÷12) минут при температуре +(20±2)°С. Осуществляют механическую обработку, после окончания которой повторно аналогично образец обдувают озоновоздушной смесью. Контроль полноты стерилизации костного образца осуществляли микробиологически с учетом эмпирически установленных значений экспозиции. Кратковременное воздействие обеспечивает получение 100% стерильности образцов, при этом отсутствуют изменения структуры костной ткани, но микротвердость поверхностного слоя толщиной (7-10) микрон может увеличиваться на (10-12)%.
Пример 5. Механическая обработка в растворе Рингера, содержащем сангвиритрин, без стерилизации озоном
В устройство, в котором помещен исходный образец, не прошедший механическую обработку, осуществляют подачу рабочего раствора с температурой +(4÷6)°С. В качестве рабочего раствора используют раствор Рингера с содержанием сангвиритрина в растворе 0,01% в пересчете на активное вещество. Осуществляют механическую обработку. После ее окончания и слива рабочего раствора образец исследуется микробиологически, морфологически и биомеханически. Морфологическое изучение структуры образцов методом световой и сканирующей микроскопии, а также сравнительная оценка величин микротвердости на поверхности и в глубине образца не выявила достоверных различий по сравнению с исходным контролем - нативными образцами. Это служит подтверждением того, что предложенный метод механической обработки кости не вызывает изменений структуры и не приводит к поверхностному упрочнению образцов минерализованного матрикса кости. Однако изготовленные с использованием предложенной технологии образцы имели стерильность, не превышающую 68%. Это указывает на необходимость использования окончательной стерилизации для обеспечения 100% стерильности образцов независимо от целей их применения.
Пример 6. Механическая обработка в растворе Рингера, содержащем сангвиритрин, и при стерилизации озоном
В эксперименте использовали в качестве рабочей жидкости раствор Рингера с содержанием сангвиритрина в концентрации 0,01% в пересчете на активное вещество.
Стерилизацию озоном проводили аналогично примеру 4.
Механическую обработку выполняли в установке (см. рис. 1) при температурах раствора +(4÷6)°С и указанном содержании сангвиритрина в растворе. Изготовленные с использованием предложенной технологии образцы имели 100% стерильность, а их структурно-функциональные характеристики не отличались от контрольных - нативных образцов (табл. 2).
Пример 7. Хранение готовых образцов
При хранении в течение 1 месяца в герметичной упаковке изготовленных образцов по примеру 6 сохранялась их стерильность, не выявлено изменений структуры, композитности. При этом выявлены основные тенденции изменений механических свойств поверхностного слоя кости, представленные в таблице 2, а именно наблюдаются незначительные изменения в связи с частичной дегидратацией.
Все результаты опытов 1-7 сведены в таблицы 1 и 2.
Предложенные согласно заявленному изобретению усовершенствования способа изготовления костных образцов являются результатом обобщения экспериментальных исследований по созданию и практическому использованию трансплантатов (образцов), изготовленных с использованием современных требований, новых по отношению к способу-прототипу действий, условий и параметров режимов их выполнения. Полученные результаты лабораторных испытаний подтверждают возможность решения поставленной в заявленном изобретении задачи.
Предложенные согласно заявленному изобретению усовершенствования способа изготовления костных образцов являются результатом обобщения экспериментальных исследований по созданию и практическому использованию трансплантатов (образцов), изготовленных с использованием современных требований, новых по отношению к способу-прототипу действий, условий и параметров режимов их выполнения. Полученные результаты лабораторных испытаний подтверждают возможность решения поставленной в заявленном изобретении задачи.
Создание нового метода изготовления образцов с применением полых цилиндрических, а также дисковых фрез, позволяет модернизировать существующие процессы механической обработки костных образцов. Существенным отличием от ранее известных способов является технологичность, высокое качество обработанных поверхностей, что достигается использованием универсальных устройств, приспособлений и режущего инструмента, обеспечивающих техническое оснащение всех стадий технологического процесса. Высокая производительность метода (до 50 образцов в час), низкая трудоемкость в сочетании с возможностью обеспечения заданных размеров позволяют использовать его для целей биоматериаловедения, инженерной и медицинской биомеханики, биоимплантологии, судебной медицины.
Предлагаемый способ обеспечивает 100% стерилизацию костных имплантатов при сохранении их остеопластических свойств.
Испытания подтвердили состоятельность предложенного способа по практическому его использованию в медицине для изготовления и стерилизации костных имплантатов.
Figure 00000001
Figure 00000002

Claims (1)

  1. Способ механической обработки костного образца in vitro, включающий механическую обработку с использованием стерильной рабочей жидкости и последующую стерилизацию и консервацию полученных образцов, отличающийся тем, что сначала осуществляют стерилизацию костного образца озоновоздушной смесью с концентрацией озона 5÷10 мг/л в течение 10÷42 минут, затем механическую обработку проводят режущими инструментами в рабочей жидкости, в качестве которой используют стерильный, охлажденный до температуры +(4÷6)°C раствор Рингера с содержанием сангвиритрина в концентрации 0,01% в пересчете на активное вещество, после этого полученные образцы повторно стерилизуют озоновоздушной смесью аналогичным образом.
RU2016123348A 2016-06-14 2016-06-14 Способ механической обработки костных образцов in vitro RU2629664C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016123348A RU2629664C1 (ru) 2016-06-14 2016-06-14 Способ механической обработки костных образцов in vitro

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016123348A RU2629664C1 (ru) 2016-06-14 2016-06-14 Способ механической обработки костных образцов in vitro

Publications (1)

Publication Number Publication Date
RU2629664C1 true RU2629664C1 (ru) 2017-08-31

Family

ID=59797427

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016123348A RU2629664C1 (ru) 2016-06-14 2016-06-14 Способ механической обработки костных образцов in vitro

Country Status (1)

Country Link
RU (1) RU2629664C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2679121C1 (ru) * 2018-11-23 2019-02-06 Федеральное государственное бюджетное научное учреждение Всероссийский научно-исследовательский институт лекарственных и ароматических растений (ФГБНУ ВИЛАР) Способ получения костного имплантата на основе стерильного деминерализованного костного матрикса
RU2732427C1 (ru) * 2019-12-06 2020-09-16 Федеральное государственное бюджетное научное учреждение Всероссийский научно-исследовательский институт лекарственных и ароматических растений (ФГБНУ ВИЛАР) Способ получения костного имплантата с деминерализованным поверхностным слоем
RU2763196C1 (ru) * 2021-04-20 2021-12-28 Государственное бюджетное учреждение "Академия наук Республики Саха (Якутии)" Способ длительного хранения мамонтовых бивней

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2147800C1 (ru) * 1999-02-17 2000-04-27 Центральный научно-исследовательский институт травматологии и ортопедии им.Н.Н.Приорова Способ изготовления костного аллотрансплантата
US20040037735A1 (en) * 2002-08-23 2004-02-26 Depaula Carl Alexander Allograft tissue purification process for cleaning bone
RU2268060C1 (ru) * 2004-06-18 2006-01-20 Научно-исследовательский и учебно-методический центр биомедицинских технологий ВИЛАР Способ изготовления костных имплантатов
RU2355344C2 (ru) * 2007-03-16 2009-05-20 Владимир Кузьмич Николенко Способ подготовки костных трансплантатов
US7608640B2 (en) * 1999-03-02 2009-10-27 Jallal Messadek Glycine betaine and its use

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2147800C1 (ru) * 1999-02-17 2000-04-27 Центральный научно-исследовательский институт травматологии и ортопедии им.Н.Н.Приорова Способ изготовления костного аллотрансплантата
US7608640B2 (en) * 1999-03-02 2009-10-27 Jallal Messadek Glycine betaine and its use
US20040037735A1 (en) * 2002-08-23 2004-02-26 Depaula Carl Alexander Allograft tissue purification process for cleaning bone
RU2268060C1 (ru) * 2004-06-18 2006-01-20 Научно-исследовательский и учебно-методический центр биомедицинских технологий ВИЛАР Способ изготовления костных имплантатов
RU2355344C2 (ru) * 2007-03-16 2009-05-20 Владимир Кузьмич Николенко Способ подготовки костных трансплантатов

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2679121C1 (ru) * 2018-11-23 2019-02-06 Федеральное государственное бюджетное научное учреждение Всероссийский научно-исследовательский институт лекарственных и ароматических растений (ФГБНУ ВИЛАР) Способ получения костного имплантата на основе стерильного деминерализованного костного матрикса
RU2732427C1 (ru) * 2019-12-06 2020-09-16 Федеральное государственное бюджетное научное учреждение Всероссийский научно-исследовательский институт лекарственных и ароматических растений (ФГБНУ ВИЛАР) Способ получения костного имплантата с деминерализованным поверхностным слоем
RU2763196C1 (ru) * 2021-04-20 2021-12-28 Государственное бюджетное учреждение "Академия наук Республики Саха (Якутии)" Способ длительного хранения мамонтовых бивней

Similar Documents

Publication Publication Date Title
US9888999B2 (en) Acellular dermal allografts and method of preparation
RU2629664C1 (ru) Способ механической обработки костных образцов in vitro
US20100291532A1 (en) Process for sterilizing acellular soft tissue with irradiation
DE112013007127T5 (de) Verfahren zur Herstellung von tierischen implantierbaren medizinischen Biomaterialien
Mrázová et al. Comparison of structural changes in skin and amnion tissue grafts for transplantation induced by gamma and electron beam irradiation for sterilization
Ab Hamid et al. Scanning electron microscopic assessment on surface morphology of preserved human amniotic membrane after gamma sterilisation
Russell et al. The effect of supercritical carbon dioxide sterilization on the anisotropy of bovine cortical bone
Rauh et al. Comparative biomechanical and microstructural analysis of native versus peracetic acid‐ethanol treated cancellous bone graft
RU2679121C1 (ru) Способ получения костного имплантата на основе стерильного деминерализованного костного матрикса
RU2526429C1 (ru) Способ изготовления костных имплантов
KR100331608B1 (ko) 동물 뼈를 이용한 골이식 대체재 및 그 제조 방법
CN105802252A (zh) 一种胶原蛋白改性方法及使用所述方法制得的改性胶原蛋白
Hernigou Bone transplantation and tissue engineering, part III: allografts, bone grafting and bone banking in the twentieth century
DE60130321T2 (de) Verfahren zum sterilisieren von gegenständen
EP1582224B1 (en) Method of treating biological tissue by microwave-irradiation
Lo Giudice et al. Steam sterilization of equine bone block: morphological and collagen analysis
Zhao et al. Use of polyvinylpyrrolidone-iodine solution for sterilisation and preservation improves mechanical properties and osteogenesis of allografts
RU2732427C1 (ru) Способ получения костного имплантата с деминерализованным поверхностным слоем
RU2756246C1 (ru) Способ получения костного имплантата на основе стерильного костного матрикса
RU2472516C1 (ru) Биоматериал для замещения костных дефектов
RU2708235C1 (ru) Способ получения биоимплантата на основе стерильного деорганифицированного костного матрикса
Litvinov et al. Optimization of technologies for manufacture of demineralized bone implants for drug release
RU2630464C1 (ru) Комбинированный способ стерилизации костных имплантатов
CN102755665A (zh) 一种异种骨移植材料的制备方法
US20130225669A1 (en) Sterilization of proteinaceous biomaterials and tissues with genipin

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190615