RU2679121C1 - Способ получения костного имплантата на основе стерильного деминерализованного костного матрикса - Google Patents

Способ получения костного имплантата на основе стерильного деминерализованного костного матрикса Download PDF

Info

Publication number
RU2679121C1
RU2679121C1 RU2018141307A RU2018141307A RU2679121C1 RU 2679121 C1 RU2679121 C1 RU 2679121C1 RU 2018141307 A RU2018141307 A RU 2018141307A RU 2018141307 A RU2018141307 A RU 2018141307A RU 2679121 C1 RU2679121 C1 RU 2679121C1
Authority
RU
Russia
Prior art keywords
bone
bone matrix
solution
ozone
implants
Prior art date
Application number
RU2018141307A
Other languages
English (en)
Inventor
Юрий Юрьевич Литвинов
Валерий Алексеевич Быков
Николай Иванович Сидельников
Игорь Васильевич Матвейчук
Владимир Викторович Розанов
Виталий Викторович Краснов
Original Assignee
Федеральное государственное бюджетное научное учреждение Всероссийский научно-исследовательский институт лекарственных и ароматических растений (ФГБНУ ВИЛАР)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное научное учреждение Всероссийский научно-исследовательский институт лекарственных и ароматических растений (ФГБНУ ВИЛАР) filed Critical Федеральное государственное бюджетное научное учреждение Всероссийский научно-исследовательский институт лекарственных и ароматических растений (ФГБНУ ВИЛАР)
Priority to RU2018141307A priority Critical patent/RU2679121C1/ru
Application granted granted Critical
Publication of RU2679121C1 publication Critical patent/RU2679121C1/ru

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N1/00Preservation of bodies of humans or animals, or parts thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/32Bones; Osteocytes; Osteoblasts; Tendons; Tenocytes; Teeth; Odontoblasts; Cartilage; Chondrocytes; Synovial membrane
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/16Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Chemical & Material Sciences (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Wood Science & Technology (AREA)
  • Virology (AREA)
  • Immunology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Rheumatology (AREA)
  • Dentistry (AREA)
  • Medicinal Chemistry (AREA)
  • Environmental Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Materials For Medical Uses (AREA)

Abstract

Настоящее изобретение относится к способу получения костного имплантата на основе стерильного деминерализованного костного матрикса, включающий механическую обработку костной ткани, деминерализацию заготовки с последующей комбинированной стерилизацией озоновоздушной смесью с концентрацией озона 6-8 мг/л и продолжительностью 10-20 мин и радиационным облучением потоком быстрых электронов с величиной поглощенной дозы 11-15 кГр герметично упакованных образцов, причем механическую обработку костного матрикса проводят с учетом направления остеонных структур кости в стерильном охлажденном до 4°С растворе Рингера с содержанием сангвиритрина 0,01% в пересчете на активное вещество, и последующую инкубацию деминерализованного костного матрикса в 0,2% растворе сангвиритрина при температуре 37°С в течение 72-144 часов, после чего готовое средство сушат при 20°С и герметично упаковывают. Технический результат – создание инновационного метода получения костных имплантатов со 100% стерилизацией костных имплантатов при сохранении их остеоиндуктивных свойств, морфологической и биопластической сохранности при длительном хранении, с приданием имплантатам антимикробных, антивирусных и противомикотических свойств. 1 табл., 1 пр.

Description

Изобретение относится к медицине, а именно: к травматологии, ортопедии, гнойной хирургии и остеологии, к другим отраслям восстановительной хирургии для репарации соединительной ткани в инфицированных ранах, может быть применено в работе «костных банков» для обеспечения костными имплантатами, а также в целях репродукции тканей и биопротезирования.
Известны различные технологии получения трансплантатов и имплантатов в зависимости от поставленных задач.
Так, известен способ насыщения трансплантатов костной губчатой ткани медикаментами путем помещения их в раствор лекарственных средств (пат. РФ №2170016). На отмытую губчатую ткань в виде крошки, залитую раствором лекарственного средства, воздействуют низкочастотным ультразвуком частотой 24,5-28,5 кГц средней интенсивности. Способ позволяет повысить качество насыщения костных трансплантатов и ускорить процесс насыщения. Однако, недостатком предложенного способа является то, что трансплантат изготавливается в виде крошки и отсутствует возможность придания ему необходимых форм и размеров с учетом ориентации остеонных структур костной ткани.
Известней способ получения биоактивного костно-пластического материала «Депротекс» (пат. РФ №2232585). Для получения материала депротеинизированную кость измельчают до размера частиц 0,1-0,5 мм, полученную костную муку соединяют с 9% желатином с добавлением антибактериального препарата, консервируют и стерилизуют. Данный метод кроме плюсов имеет и определенные недостатки: в результате удаления органической фазы, материал освобождают от морфогенетических белков, которые стимулируют остеогенез в костной ткани.
Известней способ получения биоактивного костно-пластического материала «Костма» (пат. РФ №2211708). Для получения биоактивного костно-пластического материала костную муку соединяют в пропорции 2:1 с 9% раствором желатина при 38-40°C с добавлением антибактериальных препаратов. Недостатком метода является то, что в качестве основного компонента используется нативная аллокостная мука, в которой костные морфогенетические белки находятся в связанном с минеральным компонентом состоянии, затрудняющем формирование очагов регенерации и проявление остеоиндуктивных свойств получаемого материала.
Известней способ получения биоактивного костно-пластического материала «Оргамакс» (пат. РФ №2344826). Деминерализованную кость измельчают до костной муки с размером частиц 0,1-0,5 мм и смешивают в соотношении 1:1 с приготовленным 20% коллагенсодержащим раствором. Для создания тканеинженерных композиций стерилизованный материал обогащают факторами роста или культурой клеток непосредственно перед операцией. Данный метод кроме очевидных плюсов имеет и определенные недостатки - костно-пластический материал не имеет антимикробных, противовирусных и противомикотических свойств.
Известен способ лечения оскольчатых переломов длинных трубчатых костей (пат РФ №2253393) с помощью аллопластического препарата «КоллапАн», который содержит синтетический гидроксиапатит, коллаген и антибиотик для профилактики гнойно-воспалительных дефектов. Известным недостатком этого метода являются возможные аллергические реакции на антибиотики, входящие в состав препарата (гентамицин, линкомицин, метронидазол, клафоран, рифампицин, диоксидин, изониазид). Кроме того, искусственная гидроксиапатитная керамика, входящая в состав препарата не содержит клеточных элементов и морфогенетического белка, который в норме содержится в костной ткани.
Кроме того, все вышеперечисленные известные методы получения костно-пластического материала, имеют один общий недостаток - в материале нарушена микроструктура каналов костной ткани, что затрудняет миграцию клеток в процессе остеосинтеза.
Известен способ изготовления костного имплантата (пат. РФ 2526429), включающий механическую обработку гидродинамической струей фрагмента костной ткани, деминерализацию заготовки в растворе неорганической кислоты, нейтрализацию остатков кислоты, промывку заготовки из костного материала, ее стерилизацию и консервацию. Стерилизацию имплантата осуществляют озоно-воздушной смесью с концентрацией озона 5-50 мг/м3 в течение 7-10 мин перед механической обработкой и аналогичную окончательную стерилизацию после завершения технологического процесса изготовления имплантата.
Известен способ получения костного трансплантата (пат РФ №2223104) путем депротеинизации фрагментов в 0,01% растворе химопсина, затем в 10% растворе перекиси водорода в течение 48 часов, обработку жидким эфиром, высушивание и обработку 10% раствором хлористого лития в течение 16 часов и стерилизацию целевого продукта. При этом фрагменты длинных трубчатых костей депротеинизируют в растворе химопсина в течение 96 часов, а при обработке 10% раствором перекиси водорода их помещают в переменное магнитное поле при 45°С. Очевидным недостатком этого метода является то, что в процессе удаления органической фазы, материал освобождают от морфогенетических белков, которые стимулируют остеогенез в костной ткани. Кроме того, трансплантату не придают антимикробных свойств, что затрудняет его применение в гнойной остеологии при репарации инфицированных ран.
Известен комбинированный способ стерилизации костного имплантата (пат РФ №2630464), выбранный в качестве прототипа, включающий начальную обработку образцов озоно-воздушной смесью и повторную аналогичную обработку озоно-воздушной смесью перед хранением образцов. Обработку образцов осуществляют озоно-воздушной смесью с концентрацией озона 6-8 мг/л и продолжительностью 10-20 мин с последующим окончательным радиационным облучением потоком быстрых электронов с величиной поглощенной дозы 11-15 кГр герметично упакованных образцов.
Технический результат изобретения состоит в технологии получения имплантатов с использованием инновационных методов изготовления со 100% стерилизацией костных имплантатов при сохранении их остеоиндуктивных свойств, морфологической и биопластической сохранности, с приданием имплантатам антимикробных, антивирусных и противомикотических свойств за счет иммобилизации лекарственного средства.
Достижение технического результата возможно при использовании способа получения костного имплантата на основе стерильного деминерализованного костного матрикса, включающего механическую обработку костной ткани, деминерализацию заготовки с последующей комбинированной стерилизацией озоно-воздушной смесью с концентрацией озона 6-8 мг/л и продолжительностью 10-20 мин и радиационным облучением потоком быстрых электронов с величиной поглощенной дозы 11-15 кГр герметично упакованных образцов. При этом механическую обработку костного матрикса проводят с учетом направления остеонных структур кости в стерильном охлажденном до 4°С растворе Рингера с содержанием сангвиритрина 0,01% в пересчете на активное вещество, и дополнительно осуществляют инкубацию деминерализованного костного матрикса в 0,2% растворе сангвиритрина при температуре 37°С в течении 72-144 часов, после чего готовое средство сушат при 20°С и упаковывают.
Препарат Сангвиритрин является природным фитоантисептиком, Производитель: ПЭЗ ВИЛАР ГУП (Россия). Сангвиритрин (ВФС 42-948-80 от 26.02.1980) представляет собой сумму бисульфатов природных алкалоидов сангвинарина и хелеритрина (близкие по структуре и свойствам четвертичные бензофенантридиновые алкалоиды), получаемых из травы маклейи сердцевидной (Macleya cordata Willd. R. Br.) и маклейи мелкоплодной (Macleya microcarpa Maxim. Fedde) семейства Papaveraceae. Это кристаллический порошок от светло-желтого до темно-оранжевого цвета, без запаха, горького вкуса, хорошо растворим в воде при нагревании до 50°С. Сангвиритрин обладает широким спектром антимикробной активности, ингибирует рост патогенных и условно патогенных микроорганизмов рода Staphylococcus, Streptococcus, Enterococcus, Shigella, Escherichia, Salmonella, Proteus, Acinetobacter, Citrobacter, Pseudomonas, Serratia, Klebsiella, Antracoides, Cryptococcus, патогенных грибов рода Microsporum, Trichophyton, Nocardia, Aspergillus, дрожжеподобных грибов рода Candida и др., а также Actinomyces и паразитических простейших рода Trichomonas и Entamoeba. Сангвиритрин активен в отношении моно- и полирезистентных штаммов микроорганизмов, в том числе рода Staphylococcus и Candida. Важной особенностью сангвиритрина является отсутствие возникновения устойчивости к нему микроорганизмов.
Изобретение иллюстрируется следующим примером.
Пример 1 Получение костного имплантата
С эндостальной и периостальной поверхностей кортикальной костной ткани из фрагмента диафиза бедренной кости быка удаляют мягкие ткани и костный мозг. Затем заготовки помещают в 3% раствор перекиси водорода на 1 час для удаления компонентов крови из компактного слоя и проводят первичную стерилизацию костных образцов методом озоновой стерилизации - обработкой в проточном режиме струей озоно-кислородной смеси с концентрацией 6-8 мг/л в течение 7-10 минут. Затем фрагмент кости механически обрабатывают в стерильном охлажденном до 4°С растворе Рингера с содержанием сангвиритрина 0,01% в пересчете на активное вещество с помощью полых цилиндрических фрез для получения необходимого количества цилиндрических образцов 5×7,5 мм и 5×12,5 мм, а также с использованием прецизионного отрезного станка и фрез с алмазным напылением для придания им требуемой формы с учетом направления остеонных структур кости. На заранее подготовленных контрольных образцах костной ткани осуществляют контроль качества костной ткани (механические испытания: на сжатие, микротвердость; микроскопические исследования: фрактографический 3D-анализ, исследование морфологии ткани с помощью световой и сканирующей микроскопии). Для улучшения сорбционной способности, прошедшие контроль заготовки подвергают деминерализации с помощью соляной кислоты 0,8 моль/дм3 (0,8 н) в течение 72 часов. Для контроля степени деминерализации производят контроль с помощью световой микроскопии и элементный анализ контрольных деминерализованных образцов с помощью энергодисперсионной рентгеновской спектроскопии. На основе полученных деминерализованных костных заготовок проводят иммобилизацию сангвиритрина, путем инкубации заготовок в 0,2% раствор сангвиритрина при 37°С на срок от 72 до 144 часов. При указанной температуре не наблюдается выпадения сангвиритрина в осадок.
Производят спектрофотометрический контроль времени высвобождения сангвиритрина в физиологический раствор (натрия хлорид) и проверку высвобожденного сангвиритрина на подлинность с помощью реактива Майера. Полученные образцы высушивают при 20°С и герметично упаковывают в инертной стерилизующей среде - озоно-воздушной смеси с последующим радиационным облучением с величиной поглощенной дозы 10-15 кГр, что обеспечивает 100% стерилизацию. После проведения окончательной стерилизации комбинированным способом - озоно-воздушной смесью и радиационным воздействием, проводят повторные механические испытания контрольных образцов.
Подлинность высвобожденного после отмывки образцов сангвиритрина в физиологический раствор проверяли в соответствии с фармакопейной статьей ФС42-3572-98 (Раствор сангвиритрина 0,2%). К 5 мл физиологического раствора с высвобожденным из образцов сангвиритрином прибавляли 3 капли реактива Майера. 5 мл раствора дали характерную реакцию на сульфаты, в растворе образовался осадок желто-оранжевого цвета (алкалоиды), что свидетельствует о подлинности высвобожденного из образцов сангвиритрина и отсутствии химического взаимодействия между коллагеном деминерализованного костного матрикса и сангвиритрином. Следовательно, высвобожденный в физраствор сангвиритрин обладает антимикробной и терапевтической активностью.
Результаты контрольных испытаний костного имплантаи до и после стерилизующего физико-химического воздействия соответствуют разработанным критериям качества (см. таблица 1) для производства костного импланта на основе деминерализованной кортикальной кости диафиза бедренной кости быка и сангвиритрина.
Испытания подтвердили состоятельность предложенного способа по практическому использованию для выполнения хирургической операции, репарации соединительной ткани в инфицированных ранах и гнойной остеологии и может храниться при температуре 18-20°С до 5 лет.
Комбинированная стерилизация и антимикробные, антивирусные и противомикотические свойства за счет иммобилизации лекарственного средства растительного происхождения - сангвиритрин гарантируют стерильность с одновременным сохранением биопластических и остеоиндуктивных свойств материала при длительном хранении.
Figure 00000001

Claims (1)

  1. Способ получения костного имплантата на основе стерильного деминерализованного костного матрикса, включающий механическую обработку костной ткани, деминерализацию заготовки с последующей комбинированной стерилизацией озоновоздушной смесью с концентрацией озона 6-8 мг/л и продолжительностью 10-20 мин и радиационным облучением потоком быстрых электронов с величиной поглощенной дозы 11-15 кГр герметично упакованных образцов, отличающийся тем, что механическую обработку костного матрикса проводят с учетом направления остеонных структур кости в стерильном охлажденном до 4°С растворе Рингера с содержанием сангвиритрина 0,01% в пересчете на активное вещество, и последующую инкубацию деминерализованного костного матрикса в 0,2% растворе сангвиритрина при температуре 37°С в течение 72-144 часов, после чего готовое средство сушат при 20°С и герметично упаковывают.
RU2018141307A 2018-11-23 2018-11-23 Способ получения костного имплантата на основе стерильного деминерализованного костного матрикса RU2679121C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018141307A RU2679121C1 (ru) 2018-11-23 2018-11-23 Способ получения костного имплантата на основе стерильного деминерализованного костного матрикса

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018141307A RU2679121C1 (ru) 2018-11-23 2018-11-23 Способ получения костного имплантата на основе стерильного деминерализованного костного матрикса

Publications (1)

Publication Number Publication Date
RU2679121C1 true RU2679121C1 (ru) 2019-02-06

Family

ID=65273605

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018141307A RU2679121C1 (ru) 2018-11-23 2018-11-23 Способ получения костного имплантата на основе стерильного деминерализованного костного матрикса

Country Status (1)

Country Link
RU (1) RU2679121C1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2708235C1 (ru) * 2019-09-18 2019-12-05 Федеральное государственное бюджетное научное учреждение Всероссийский научно-исследовательский институт лекарственных и ароматических растений (ФГБНУ ВИЛАР) Способ получения биоимплантата на основе стерильного деорганифицированного костного матрикса
RU2732427C1 (ru) * 2019-12-06 2020-09-16 Федеральное государственное бюджетное научное учреждение Всероссийский научно-исследовательский институт лекарственных и ароматических растений (ФГБНУ ВИЛАР) Способ получения костного имплантата с деминерализованным поверхностным слоем
RU2756246C1 (ru) * 2021-03-16 2021-09-28 Федеральное государственное бюджетное научное учреждение Всероссийский научно-исследовательский институт лекарственных и ароматических растений (ФГБНУ ВИЛАР) Способ получения костного имплантата на основе стерильного костного матрикса
RU2801471C1 (ru) * 2022-10-13 2023-08-09 Федеральное государственное бюджетное учреждение "Новосибирский научно-исследовательский институт травматологии и ортопедии им. Я.Л. Цивьяна" Министерства здравоохранения Российской Федерации (ФГБУ "ННИИТО им. Я.Л. Цивьяна" Минздрава России) Способ создания тканеинженерной конструкции для стимуляции регенерации кости

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5513662A (en) * 1991-12-31 1996-05-07 Osteotech, Inc. Preparation of bone for transplantation
RU2147800C1 (ru) * 1999-02-17 2000-04-27 Центральный научно-исследовательский институт травматологии и ортопедии им.Н.Н.Приорова Способ изготовления костного аллотрансплантата
RU2223104C2 (ru) * 2001-09-28 2004-02-10 Новосибирский научно-исследовательский институт травматологии и ортопедии Способ получения костного трансплантата
RU2232585C2 (ru) * 2001-03-01 2004-07-20 Новосибирский научно-исследовательский институт травматологии и ортопедии Способ приготовления биоактивного костно-пластического материала "депротекс"
RU2268060C1 (ru) * 2004-06-18 2006-01-20 Научно-исследовательский и учебно-методический центр биомедицинских технологий ВИЛАР Способ изготовления костных имплантатов
RU2524618C1 (ru) * 2013-07-04 2014-07-27 Государственное бюджетное учреждение здравоохранения города Москвы Научно-исследовательский институт скорой помощи имени Н.В. Склифосовского Департамента здравоохранения г. Москвы Комбинированный костный аллотрансплантат и способ его получения
RU2526429C1 (ru) * 2013-04-11 2014-08-20 Государственное научное учреждение Всероссийский научно-исследовательский институт лекарственных и ароматических растений Россельхозакадемии (ГНУ ВИЛАР Россельхозакадемии) Способ изготовления костных имплантов
RU2629664C1 (ru) * 2016-06-14 2017-08-31 Павел Николаевич Ляшенко Способ механической обработки костных образцов in vitro
RU2630464C1 (ru) * 2016-07-29 2017-09-08 Федеральное государственное бюджетное научное учреждение Всероссийский научно-исследовательский институт лекарственных и ароматических растений (ФГБНУ ВИЛАР) Комбинированный способ стерилизации костных имплантатов

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5513662A (en) * 1991-12-31 1996-05-07 Osteotech, Inc. Preparation of bone for transplantation
RU2147800C1 (ru) * 1999-02-17 2000-04-27 Центральный научно-исследовательский институт травматологии и ортопедии им.Н.Н.Приорова Способ изготовления костного аллотрансплантата
RU2232585C2 (ru) * 2001-03-01 2004-07-20 Новосибирский научно-исследовательский институт травматологии и ортопедии Способ приготовления биоактивного костно-пластического материала "депротекс"
RU2223104C2 (ru) * 2001-09-28 2004-02-10 Новосибирский научно-исследовательский институт травматологии и ортопедии Способ получения костного трансплантата
RU2268060C1 (ru) * 2004-06-18 2006-01-20 Научно-исследовательский и учебно-методический центр биомедицинских технологий ВИЛАР Способ изготовления костных имплантатов
RU2526429C1 (ru) * 2013-04-11 2014-08-20 Государственное научное учреждение Всероссийский научно-исследовательский институт лекарственных и ароматических растений Россельхозакадемии (ГНУ ВИЛАР Россельхозакадемии) Способ изготовления костных имплантов
RU2524618C1 (ru) * 2013-07-04 2014-07-27 Государственное бюджетное учреждение здравоохранения города Москвы Научно-исследовательский институт скорой помощи имени Н.В. Склифосовского Департамента здравоохранения г. Москвы Комбинированный костный аллотрансплантат и способ его получения
RU2629664C1 (ru) * 2016-06-14 2017-08-31 Павел Николаевич Ляшенко Способ механической обработки костных образцов in vitro
RU2630464C1 (ru) * 2016-07-29 2017-09-08 Федеральное государственное бюджетное научное учреждение Всероссийский научно-исследовательский институт лекарственных и ароматических растений (ФГБНУ ВИЛАР) Комбинированный способ стерилизации костных имплантатов

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2708235C1 (ru) * 2019-09-18 2019-12-05 Федеральное государственное бюджетное научное учреждение Всероссийский научно-исследовательский институт лекарственных и ароматических растений (ФГБНУ ВИЛАР) Способ получения биоимплантата на основе стерильного деорганифицированного костного матрикса
RU2732427C1 (ru) * 2019-12-06 2020-09-16 Федеральное государственное бюджетное научное учреждение Всероссийский научно-исследовательский институт лекарственных и ароматических растений (ФГБНУ ВИЛАР) Способ получения костного имплантата с деминерализованным поверхностным слоем
RU2756246C1 (ru) * 2021-03-16 2021-09-28 Федеральное государственное бюджетное научное учреждение Всероссийский научно-исследовательский институт лекарственных и ароматических растений (ФГБНУ ВИЛАР) Способ получения костного имплантата на основе стерильного костного матрикса
RU2801471C1 (ru) * 2022-10-13 2023-08-09 Федеральное государственное бюджетное учреждение "Новосибирский научно-исследовательский институт травматологии и ортопедии им. Я.Л. Цивьяна" Министерства здравоохранения Российской Федерации (ФГБУ "ННИИТО им. Я.Л. Цивьяна" Минздрава России) Способ создания тканеинженерной конструкции для стимуляции регенерации кости

Similar Documents

Publication Publication Date Title
RU2679121C1 (ru) Способ получения костного имплантата на основе стерильного деминерализованного костного матрикса
Ripamonti et al. Osteogenin, a bone morphogenetic protein, adsorbed on porous hydroxyapatite substrata, induces rapid bone differentiation in calvarial defects of adult primates
Katthagen Bone regeneration with bone substitutes: an animal study
US5573771A (en) Medicinal bone mineral products
RU2104703C1 (ru) Способ получения материала для остеопластики и полученный этим способом материал
Adams Jr et al. The rate of warping in irradiated and nonirradiated homograft rib cartilage: a controlled comparison and clinical implications
CA1142430A (en) Bone substitute material and its use
DeVRIES et al. Radiation sterilization of homogenous-bone transplants utilizing radioactive cobalt: preliminary report
US20120195971A1 (en) Method for Preparing Mechanically Macerated Demineralized Bone Materials and Compositions Comprising the same
US7758895B2 (en) Methods for purifying insoluble bone gelatin
JPH03170156A (ja) アログラフト骨及び組織の無菌処理法
RU2524618C1 (ru) Комбинированный костный аллотрансплантат и способ его получения
RU2629664C1 (ru) Способ механической обработки костных образцов in vitro
RU2147800C1 (ru) Способ изготовления костного аллотрансплантата
RU2732427C1 (ru) Способ получения костного имплантата с деминерализованным поверхностным слоем
RU2268060C1 (ru) Способ изготовления костных имплантатов
EP0347496B1 (en) Method for treating material for implantation and implant
RU2722266C1 (ru) Лиофилизированный биологический биодеградируемый минерализованный костнопластический материал и способ его изготовления
Litvinov et al. Optimization of technologies for manufacture of demineralized bone implants for drug release
RU2756246C1 (ru) Способ получения костного имплантата на основе стерильного костного матрикса
US20130225669A1 (en) Sterilization of proteinaceous biomaterials and tissues with genipin
RU2708235C1 (ru) Способ получения биоимплантата на основе стерильного деорганифицированного костного матрикса
WO2019168428A1 (ru) Способ очистки костного и кожного матриксов с использованием сверхкритического флюида
RU2356582C1 (ru) Способ кислотной деминерализации костной ткани для трансплантации
KR20220059907A (ko) 골 이식재 및 이의 제조방법