RU2627319C1 - Электролит для осаждения цинк-никелевых покрытий - Google Patents

Электролит для осаждения цинк-никелевых покрытий Download PDF

Info

Publication number
RU2627319C1
RU2627319C1 RU2016141639A RU2016141639A RU2627319C1 RU 2627319 C1 RU2627319 C1 RU 2627319C1 RU 2016141639 A RU2016141639 A RU 2016141639A RU 2016141639 A RU2016141639 A RU 2016141639A RU 2627319 C1 RU2627319 C1 RU 2627319C1
Authority
RU
Russia
Prior art keywords
nickel
zinc
electrolyte
triethanolamine
water
Prior art date
Application number
RU2016141639A
Other languages
English (en)
Inventor
Елена Викторовна Беляева
Виктор Михайлович Никольский
Сергей Николаевич Гридчин
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Тверской государственный университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Тверской государственный университет" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Тверской государственный университет"
Priority to RU2016141639A priority Critical patent/RU2627319C1/ru
Application granted granted Critical
Publication of RU2627319C1 publication Critical patent/RU2627319C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys

Landscapes

  • Electroplating And Plating Baths Therefor (AREA)

Abstract

Изобретение относится к области гальванотехники и может быть использовано в машиностроении, приборостроении и автомобилестроении для защиты от коррозии стальных изделий. Электролит для электроосаждения цинк-никелевых покрытий содержит оксид цинка, едкий натр, никель сернокислый, триэтаноламин, диглицин и воду, а также дополнительно включает этилендиаминдиянтарную кислоту (ЭДДЯК) при следующем соотношении компонентов, г/л: оксид цинка 12; едкий натр 100; никель сернокислый 7; триэтаноламин 20; ЭДДЯК 0,5; диглицин 2; вода до 1 литра. Техническим результатом изобретения является снижение скорости коррозии гальванического покрытия с применением экологически безопасного процесса осуществления гальванического покрытия. 3 табл., 4 пр.

Description

Изобретение относится к области гальванотехники и может быть использовано в машиностроении, приборостроении и автомобилестроении для защиты от коррозии стальных изделий.
Для осаждения на сталь покрытий из сплава цинк-никель перспективно использование составов, содержащих, наряду с солями цинка и никеля, комплексообразующие добавки, что обеспечивает получение прочных мелкокристаллических осадков.
Известен электролит для осаждения равномерных мелкокристаллических цинк-никелевых осадков, включающий в качестве комплексообразователя аминоуксусную кислоту (а.с. СССР №524866, опубл. 15.08.1976 г.).
Недостатком указанного электролита является низкое (9-10%) содержание никеля в покрытии, что не обеспечивает эффективной защиты стали от коррозии. Этот недостаток объясняется низкой устойчивостью самих комплексов никеля и цинка с аминоуксусной кислотой (lgKNiL=5,7; lgKZnL=5,2 [Неудачина Л.К., Лакиза Н.В. Физико-химические основы применения координационных соединений, Екатеринбург, изд. Уральский федеральный университет, 2014, с. 73]; По другому источнику lgKNiL=5,76 [Хазель М.Ю., Селеменев В.Ф., Слепцова О.В., Соцкая Н.В. Процессы комплексообразования в фазе полиамфолитов при сорбции ионов никеля из сложных многокомпонентных растворов // Вестник ВГУ. Серия: химия, биология, фармация, 2008, №1, с. 55-63]), так и небольшой разницей в устойчивости комплексов-конкурентов lgKNiL-lgKZnL=5,7-5,2=0,5.
Известен электролит для осаждения никель-цинкового сплава, где в качестке комплексообразователя используется триэтаноламин [Chandrasekar M.S., S. Srinivasan, M. Pushpavanam Properties of Zink alloy electrodeposits produced from acid and alkaline electrolytes // J. Solid State Electrochem (2009). 13.Р.782].
Недостатком этого аналога также является низкое содержание никеля в сплаве (10-11%), что сказывается на относительно слабой коррозионной устойчивости. Причиной этого является малая устойчивость комплексов триэтаноламина с никелем и цинком (lgKNiL=lgβ1 NiL+lgβ2 NiL=2,85+2,99=5,84 и lgKZnL=lgβ1 ZnL+lgβ2 ZnL=2,05+3,28=5,33 [http://www.nsu.ru/xmlui/bitstrearn/handle/nsu/1808/spr_5.pdf, стр. 69]), а также небольшая разница в устойчивости комплексов никеля и цинка (lgKNjL-lgKZnL=5,84-5,33=0,51). Содержание в составе электролита 8,5-12%) триэтаноламина создает трудности экологического плана в связи с необходимостью утилизации сточных вод, содержащих триэтаноамин.
Наиболее близким к заявленному техническому решению является щелочной электролит для электроосаждения цинк-никелевых покрытий, содержащий в качестве комплексообразователей 40-60 г/л триэтаноамина и 0,5-2 г/л гексаметилендиаминтетрауксусной кислоты (RU №2511727, опубл. 10.04.2014 г). Осаждение цинк-никелевого сплава из такого электролита обеспечивает защитное цинковое покрытие с содержанием 15-16% никеля.
Недостатками прототипа являются:
- минимальное содержание никеля в покрытии, что обеспечивает удовлетворительные антикоррозионные характеристики покрытия, но не более [Догадкина Е.В., Румянцева К.Е., Шеханов Р.Ф., Семенов А.О. Электроосаждение цинк-никелевых сплавов// Известия ВУЗов. Химия и химическая технология, 2011, т. 54, №1, с. 95];
- большое присутствие в рецептуре триэтаноламина, требующего строгого контроля и обязательной очистки сточных вод гальванического производства;
- заметная скорость коррозии покрытия от 0,061 г/м2 до 0,080 г/м2, что объясняется малой разницей в устойчивости комплексов никеля и цинка с ГМДТА, аналогичной обоими представленными выше аналогами (lgKNiL-lgKZnL=10,8-10,3=0,5 [Дятлова H.М., Темкина В.Я., Колпакова И. Д. Комплексоны. М.: Химия, 1970. - С. 397]).
Задачей изобретения является снижение скорости коррозии цинк-никелевого покрытия, обеспечение экологической безопасности процесса осаждения.
Данная задача решается за счет того, что электролит для электроосаждения цинк-никелевых покрытий содержит оксид цинка, едкий натр, никель сернокислый, триэтаноламин, диглицин и воду, а также дополнительно включает этилендиаминдиянтарную кислоту при следующем соотношении компонентов, г/л: оксид цинка 12; едкий натр 100; никель сернокислый 7; триэтаноламин 20; ЭДДЯК 0,5; диглицин 2; вода до 1 литра.
Техническим результатом данного изобретения является снижение скорости коррозии гальванического покрытия с применением экологически безопасного процесса осуществления гальванического покрытия.
Поставленная задача решается путем создания электролита для осаждения цинк-никелевого покрытия с пониженным содержанием триэтаноламина (комплексообразователя) за счет введения микроколичеств сильного экологически безопасного комплексообразователя - этилендиаминдиянтарной кислоты.
Электролит содержит, г/л: оксид цинка 12, едкий натр 100, никель сернокислый 7, триэтаноламин 20, этилендиаминдиянтарную кислоту 0,5, диглицин 2, воду до 1 л. Технический результат - увеличение коррозионной стойкости цинк-никелевых покрытий, снижение экологической нагрузки на очистку сточных вод путем использования пониженного количества триэтаноламина и более сильного экологически безопасного комплексообразователя - этилендиаминдиянтарной кислоты
Предлагаемый в новой рецептуре комплексон является экологически безопасным, т.к. в условиях природных сбросов разлагается на составляющие аминокислоты и не загрязняет окружающую среду (Sirpa Metsarinne, Tuula Tuhkanen, Reijo Aksela. Photodegradation of hylenediaminetetraacetic acid (EDTA) and ethylenediamine disuccinic acid (EDDS) within natural UV radiation range. Chemosphere, 45. 2001. P. 949-955).
В состав электролита входят компоненты, г/л:
- оксид цинка 12-15;
- едкий натр 100;
- никель сернокислый 7-17;
- триэтаноламин 20;
- этилендиаминдиянтарная кислота 0,5;
- диглицин 2;
- вода до 1 л;
- рН 13-14;
- температура, °С 20;
- катодная плотность тока, А/дм2 0,5
Катодная плотность тока 0,5 А/дм2, выход по току 82%, аноды никелевые.
Заявляемый электролит отличается от прототипа двойным уменьшением содержания триэтаноамина и введением микроколичеств сильного комплексообразователя, экологически безопасного комплексона ЭДДЯК. Этот комплексон образует устойчивые комплексы с никелем и цинком (lgKNiL=16,80; lgKZnL=13,21 [Самсонов А.П., Горелов И.П. Исследование комплексообразования Ni(II) с комплексонами, производными дикарбоновых кислот // Журнал неорганической химии, 1972, №8, с. 2204-2207]), а разница в устойчивости комплексов конкурентов (никеля и цинка) ΔlgK=16,80-13,21=3,59.
Figure 00000001
Figure 00000002
Возможность осуществления изобретения подтверждается примерами рецептуры, сведенными в табл. 2, где представлены и условия проведения эксперимента.
Пример 1: Для приготовления 1 л электролита в 0,4 л воды растворяют 100 г NaOH. При перемешивании добавляют небольшими порциями 12 г оксида цинка в раствор щелочи до полного растворения. Растворяют в отдельной емкости сернокислый никель в количестве 7 г в 0,3 л воды и вводят в этот раствор триэтаноламин при перемешивании в количестве 20 мл. Добавляют в этот раствор предварительно растворенные в 100 мл воды 0,5 г ЭДДЯК и 2 г диглицина. После этого сливают вместе цинковый и никелевый растворы. После введения в электролит всех компонентов его объем доводят водой до 1 л.
Приготовленный электролит имеет следующий состав, г/л:
- оксид цинка 12;
- едкий натр 100;
- никель сернокислый 7;
- триэтаноламин 20;
- этилендиаминдиянтарная кислота 0,5;
- диглицин 2;
- вода до 1 л;
-рН 13;
- температура, °С 20;
- катодная плотность тока, А/дм2 0,5
Примеры с другими значениями заявляемого электролита приведены в таблице 2.
Из приготовленных электролитов осаждали цинк-никелевые покрытия.
Полученные образцы испытывали с целью определения скорости коррозии в 3% NaCl. Вначале определяли ток коррозии Zn-Ni покрытие-сталь и пересчитывали на массовый показатель коррозии. При определении диапазона рабочей плотности тока устанавливали верхнюю и нижнюю границы катодной плотности тока. Для их определения на образцы из стали наносили цинк-никелевое покрытие толщиной 6 мкм. Полученные покрытия по внешнему виду соответствуют требованиям ГОСТа 9.301-86, а по сцеплению с основным металлом - ГОСТу 9.302-88.
При всех испытаниях характеристик получаемого покрытия проводили не менее 4-5 параллельных опытов и брали среднеарифметические значения величин. Результаты испытаний представлены в табл.3.
Из табл. 3 видно, что предлагаемый электролит позволяет получать цинк-никелевые покрытия с содержанием никеля 20% и пониженной скоростью коррозии (в 1.1-1,42 раза меньшей в отличие от прототипа).
Самую высокую стойкость к коррозии имеют покрытия, полученные по рецептуре 1 (0,061/0,043=1,42).
Другим преимуществом заявляемого электролита является то, что в электролите снижены концентрации основных компонентов, поэтому он имеет более низкую стоимость, а сильный комплексообразователь - ЭДДЯК, является экологически безопасным комплексоном и его использование с экологической точки зрения более рационально.
Figure 00000003
Figure 00000004

Claims (2)

  1. Электролит для электроосаждения цинк-никелевых покрытий, содержащий оксид цинка, едкий натр, никель сернокислый, триэтаноламин, диглицин и воду, отличающийся тем, что он включает этилендиаминдиянтарную кислоту при следующем соотношении компонентов, г/л:
  2. оксид цинка 12 едкий натр 100 никель сернокислый 7 триэтаноламин 20 ЭДДЯК 0,5 диглицин 2 вода до 1 л
RU2016141639A 2016-10-25 2016-10-25 Электролит для осаждения цинк-никелевых покрытий RU2627319C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016141639A RU2627319C1 (ru) 2016-10-25 2016-10-25 Электролит для осаждения цинк-никелевых покрытий

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016141639A RU2627319C1 (ru) 2016-10-25 2016-10-25 Электролит для осаждения цинк-никелевых покрытий

Publications (1)

Publication Number Publication Date
RU2627319C1 true RU2627319C1 (ru) 2017-08-07

Family

ID=59632796

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016141639A RU2627319C1 (ru) 2016-10-25 2016-10-25 Электролит для осаждения цинк-никелевых покрытий

Country Status (1)

Country Link
RU (1) RU2627319C1 (ru)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996034126A1 (fr) * 1995-04-24 1996-10-31 Nitto Chemical Industry Co., Ltd. Bain de depot sans apport de courant mettant en ×uvre un agent de chelation
RU2487967C1 (ru) * 2012-05-03 2013-07-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Пензенский государственный университет" (ФГБОУ ВПО "Пензенский государственный университет") Щавелевокислый электролит для осаждения сплава медь-олово
RU2511727C1 (ru) * 2013-01-09 2014-04-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ивановский государственный химико-технологический университет" (ИГХТУ) Щелочной электролит для электроосаждения цинк-никелевых покрытий

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996034126A1 (fr) * 1995-04-24 1996-10-31 Nitto Chemical Industry Co., Ltd. Bain de depot sans apport de courant mettant en ×uvre un agent de chelation
RU2487967C1 (ru) * 2012-05-03 2013-07-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Пензенский государственный университет" (ФГБОУ ВПО "Пензенский государственный университет") Щавелевокислый электролит для осаждения сплава медь-олово
RU2511727C1 (ru) * 2013-01-09 2014-04-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ивановский государственный химико-технологический университет" (ИГХТУ) Щелочной электролит для электроосаждения цинк-никелевых покрытий

Similar Documents

Publication Publication Date Title
JP6951465B2 (ja) 3価クロムメッキ液およびこれを用いたクロムメッキ方法
DE60023190T2 (de) Zink-nickel-elektroplattierung
JP2015165053A (ja) 電着浴、電着システム、及び電着方法
CN105040051A (zh) 一种微酸性体系电镀光亮锌镍合金镀液
RU2627319C1 (ru) Электролит для осаждения цинк-никелевых покрытий
Kasach et al. Electrodeposition of Cu-Sn alloy from oxalic acid electrolyte in the presence of amine-containing surfactants
RU2511727C1 (ru) Щелочной электролит для электроосаждения цинк-никелевых покрытий
US2773022A (en) Electrodeposition from copper electrolytes containing dithiocarbamate addition agents
GB2116588A (en) Electroplated zinc-cobalt alloy
Darken Recent progress in bright plating from zincate electrolytes
US3108933A (en) Process and composition for chromium plating
Valkova et al. Influence of glycine on the electrochemical deposition of Sn-Co alloy from gluconate electrolyte
RU2603526C1 (ru) Электролит для электроосаждения цинк-никелевых покрытий
RU2313621C1 (ru) Электролит низкоконцентрированный для нанесения полублестящего покрытия сплавом олово-цинк
KR20200144701A (ko) 전해 도금액
CN103726080B (zh) 一种用于氯化物镀锌工艺的钠钾盐及其用途
US3360445A (en) Electrodeposition of nickel from the sulfamate bath
SU1135816A1 (ru) Электролит дл осаждени покрытий сплавами цинка или кадми с титаном и цирконием
US2739933A (en) Electrodeposition of ternary alloys
US2802779A (en) Electrodeposition of nickel and nickel alloys
DE102006025847A1 (de) Verwendung von Phosphinsäure in der Galvanotechnik
RU2493296C1 (ru) Электролит для нанесения покрытия композиционного материала на основе сплава олово-цинк
RU2569618C1 (ru) Электролит для электроосаждения цинк-кобальтовых покрытий
RU2365683C1 (ru) Сульфосалицилатный электролит для осаждения сплава медь-никель
CN114108031B (zh) 一种环保无氰碱性镀铜细化剂及其制备方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20191026