RU2626291C2 - Способ преобразования энергии - Google Patents

Способ преобразования энергии Download PDF

Info

Publication number
RU2626291C2
RU2626291C2 RU2015148800A RU2015148800A RU2626291C2 RU 2626291 C2 RU2626291 C2 RU 2626291C2 RU 2015148800 A RU2015148800 A RU 2015148800A RU 2015148800 A RU2015148800 A RU 2015148800A RU 2626291 C2 RU2626291 C2 RU 2626291C2
Authority
RU
Russia
Prior art keywords
steam
gas turbine
reactor
gas
hydrogen mixture
Prior art date
Application number
RU2015148800A
Other languages
English (en)
Other versions
RU2015148800A (ru
Inventor
Анатолий Яковлевич Столяревский
Original Assignee
Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" filed Critical Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт"
Priority to RU2015148800A priority Critical patent/RU2626291C2/ru
Publication of RU2015148800A publication Critical patent/RU2015148800A/ru
Application granted granted Critical
Publication of RU2626291C2 publication Critical patent/RU2626291C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/04Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/18Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use using the waste heat of gas-turbine plants outside the plants themselves, e.g. gas-turbine power heat plants

Landscapes

  • Catalysts (AREA)

Abstract

Изобретение относится преимущественно к способам преобразования энергии газообразного топлива (природный или синтез-газ, водород) в механическую. Способ преобразования энергии предусматривает подачу в камеру сгорания сжатого воздуха и парометановодородной смеси, расширение продуктов ее сгорания в газотурбинной установке; последующее их охлаждение в утилизаторе путем испарения с образованием водяного пара высокого давления, который смешивают с природным газом с получением метансодержащей парогазовой смеси, которую пропускают через каталитический реактор конверсии метана с образованием на выходе парометановодородной смеси, охлаждаемой затем до температуры, не превышающей температурный диапазон 200÷240°C, с одновременной частичной конденсацией водяного пара, содержащегося в парометановодородной смеси, подаваемой в охлажденном виде в камеру сгорания газотурбинной установки; получение из конденсата водяного пара низкого давления, направляемого в свободную силовую газовую турбину. В каталитический реактор реформирования метана подают поток сжатого воздуха, отбираемого из компрессора газотурбинной установки. Водяной пар из утилизатора делят на два потока: высокого и низкого давления, в поток водяного пара низкого давления добавляют пар, который получают из конденсата путем его испарения и перегрева за счет охлаждения парометановодородной смеси, выходящей из реактора. Изобретение позволяет повысить эффективность генерации энергии, снизить расход топлива, уменьшить потери, связанные с недостаточным расширением продуктов сгорания в турбине, повысить надежность работы газотурбинной установки. 7 з.п. ф-лы, 1 табл., 1 ил.

Description

Изобретение относится преимущественно к способам преобразования энергии газообразного топлива (природный или синтез-газ, водород) в механическую (электрическую), преимущественно к энергетическим и транспортным установкам и системам энергообеспечения на их основе и предназначено для стационарных и транспортных средств, снабженных газотурбинным приводом.
Известны способы преобразования тепловой преобразования энергии газообразного топлива (природный или синтез-газ, водород) в механическую (электрическую), в том числе в газотурбинных энергоустановках, преобразующих первичную энергию в электрическую. Предложен, в частности, способ и устройство генерации энергии, в котором с целью повышения эффективности окислитель (воздух) сжимают компрессором, нагревают, а затем направляют в камеру сгорания, в которую подают также часть топлива и нагретый регенеративно поток окислителя и из которой продукты сгорания направляют в газовую турбину, охлаждают входящим потоком окислителя и направляют в топливный элемент на электрохимическое окисление другой части топлива, продукты реакции которого охлаждают потоком окислителя, направляемого в камеру сгорания (патент US №7709118). Недостатком данного решения является низкая надежность и эффективность генерации энергии, что связано с увеличенными затратами топлива, а также относительно низким КПД газотурбинного преобразования.
Известен также способ производства электрической энергии из природного газа, с использованием топливного элемента на твердом оксиде, содержащий стадии электрохимического окисления природного газа, прошедшего предварительное расширение и нагрев природного газа выходящим из топливного элемента потоком (Патент РФ №2199172). Недостатком данного способа и устройства также является низкая температура на входе в турбину, что снижает КПД.
В частности, увеличением рабочего тела, производимого при утилизации сбросных газов ГТУ, определенное повышение КПД достигается в способе и устройстве парогазовой установки контактного типа (КПГУ), содержащей газотурбинную установку (ГТУ), паровой котел-утилизатор (КУ), сообщенный на выходе по пару с входом (входами) ГТУ по пару, на входе греющего теплоносителя (газа) - с выходом ГТУ по газу, и газоохладитель-конденсатор, сообщенный на выходе по конденсату со входом КУ по конденсату, отличающейся тем, что КПГУ содержит дожимной компрессор, сообщенный на входе по сжимаемому газу с выходом газоохладителя-конденсатора по газу, на выходе по газу - с внешней средой, и газовую турбину перерасширения, сообщенную на входе по газу с выходом КУ по газу, на выходе по газу - с входом газоохладителя-конденсатора по газу, при этом ротор газовой турбины перерасширения связан с роторами ГТУ и (или) дожимного компрессора (патент РФ на изобретение №2252325, опубл. 20.05.2005 Бюл. №14). Недостатком данного решения является невысокая степень расширения в ГТУ, связанная с понижением параметров на входе в турбину ГТУ.
Частично этот недостаток устранен в способе подготовки и сжигания топлива в камере сгорания газотурбинной установки (ГТУ), включающем подачу в камеру сгорания углеводородного топлива и воздуха из-за компрессора, при этом часть топлива до подачи его в камеру сгорания пропускают через катализатор, отличающемся тем, что топливо перед подачей на катализатор смешивают с воздухом, нагревают катализатор и с его помощью осуществляют автотермическую воздушную конверсию с получением газовой смеси, содержащей водород и окись углерода (патент РФ на изобретение №2212590, опубл. 20.09.2003 - аналог). Недостатком данного способа служит низкая степень утилизации сбросного тепла ГТУ и, как следствие, - относительно низкий КПД.
Дальнейшим развитием предложенной в аналоге концепции явился способ работы газотурбинной установки, предусматривающий подачу в камеру сгорания сжатого воздуха и парометановодородной смеси, расширение продуктов ее сгорания в газовой турбине, охлаждение путем испарения или перегрева водяного пара высокого давления, конденсацию водяного пара низкого давления, содержащегося в продуктах сгорания, испарение и перегрев конденсата с образованием водяного пара высокого давления, направляемого в газотурбинную установку, где поступающий природный газ смешивают с водяным паром высокого давления с получением метансодержащей парогазовой смеси, которую нагревают потоком указанных продуктов сгорания в теплообменнике, пропускают через каталитический реактор реформирования метана с образованием на выходе парометановодородной смеси, подаваемой в камеру сгорания газотурбинной установки, отличающийся тем, что повышают температуру теплообменных процессов газотурбинной установки путем дополнительного сжигания топлива в потоке продуктов сгорания парометановодородной смеси, отбираемом на выходе из дополнительной свободной силовой газовой турбины, а перед подачей в камеру сгорания парометановодородной смеси ее предварительно охлаждают до температуры, не превышающей температурный диапазон 200÷240°C, с одновременной частичной конденсацией водяного пара, конденсат отделяют, испаряют и расходуют при подготовке метансодержащей парогазовой смеси и водяного пара низкого давления, который пропускают через дополнительную свободную силовую газовую турбину (патент РФ на изобретение №2561755, опубл.: 10.09.2015. Бюл. №25 - прототип). Недостаток данного способа преобразования энергии в газотурбинной установке - недостаточно высокая эффективность генерации энергии, связанная с необходимостью дожигания топлива в потоке продуктов сгорания, а также потери, связанные с недостаточным расширением продуктов сгорания в турбине.
Таким образом, возникает задача создания способа преобразования энергии в газотурбинной установке, способного обеспечивать высокую эффективность генерации энергии.
Задача изобретения - создать способ преобразования энергии в газотурбинной установке, позволяющий повысить эффективность генерации энергии, снизить расход топлива, уменьшить потери, связанные с недостаточным расширением продуктов сгорания в турбине, повысить надежность работы газотурбинной установки за счет дополнительных возможностей регулирования ее температурных и мощностных режимов вне зависимости от режима газовой турбины, улучшить экономические показатели энергоустановок и систем энергообеспечения.
Технический результат, достигаемый в способе преобразования энергии относительно его прототипа, выражается в улучшении эксплуатационных характеристик путем наиболее полного использования энергии отводимых продуктов сгорания, повышении мощности установки, сокращении расхода природного газа на 16%, а также в повышении эффективного КПД на 8% отн.
Поставленная задача в способе преобразования энергии предусматривает подачу в камеру сгорания сжатого воздуха и парометановодородной смеси, расширение продуктов ее сгорания в газотурбинной установке, последующее их охлаждение в утилизаторе путем испарения с образованием водяного пара высокого давления, который смешивают с природным газом с получением метансодержащей парогазовой смеси, которую пропускают через каталитический реактор конверсии метана с образованием на выходе парометановодородной смеси, охлаждаемой затем до температуры, не превышающей температурный диапазон 200÷240°C, с одновременной частичной конденсацией водяного пара, содержащегося в парометановодородной смеси, подаваемой в охлажденном виде в камеру сгорания газотурбинной установки, и получение из конденсата водяного пара низкого давления, направляемого в свободную силовую газовую турбину,
решается тем, что в каталитический реактор реформирования метана подают поток сжатого воздуха, отбираемого из компрессора газотурбинной установки.
Кроме того:
- водяной пар из утилизатора делят на два потока: высокого и низкого давления, в поток водяного пара низкого давления добавляют пар, который получают из конденсата путем его испарения и перегрева за счет охлаждения парометановодородной смеси, выходящей из реактора;
- парометановодородную смесь перед камерой сгорания смешивают с природным газом;
- температуру парометановодородной смеси на выходе из реактора поддерживают в диапазоне 500÷600°C;
- соотношение воздух/пар на входе в реактор поддерживают в диапазоне 0.5÷1.5;
- перед реактором осуществляют подогрев воздуха, водяного пара и природного газа за счет охлаждения парометановодородной смеси, выходящей из реактора;
- в качестве катализатора в реакторе используют металл, выбранный из ряда никель, рутений, родий, палладий, иридий, нанесенных на огнеупорные оксиды, такие как кордиерит, муллит, оксид хрома, титанат алюминия, шпинели, диоксид циркония и оксид алюминия;
- давление на входе в свободную силовую газовую турбину поддерживают в диапазоне 0.2÷0.4 МПа.
Примером реализации изобретения служит способ преобразования энергии в газотурбинной установке со свободной силовой газовой турбиной, описанный ниже.
В излагаемом примере осуществления изобретения в качестве топлива применяется природный газ, в качестве окислителя - воздух, что позволяет охарактеризовать особенности реализации изобретения применительно к процессам окисления природного газа и расширения продуктов сгорания природного газа в газовой турбине, в частности на транспортных или стационарных энергоустановках.
На фигуре дана схема реализации способа, где 1 - воздух, 2 - компрессор, 3 - сжатый воздух, 4 - камера сгорания, 5 - технологический воздух, 6 - парометановодородная смесь, 7 - продукты сгорания, 8 - турбина высокого давления, 9 - поток рабочего тела, 10 - силовая турбина, 11 - дымовые газы, 12 - утилизатор, 13 - питательная вода, 14 - сбросные газы, 15 - водяной пар, 16 - теплообменник, 17 - природный газ, 18 - реактор конверсии, 19 - конвертированный газ, 20 - охладитель, 21 - охлажденная парометановодородная смесь, 22 - природный газ, 23 - вывод конденсата, 24 - водяной пар низкого давления, 25 - пароперегреватель, 26 - подвод природного газа.
Способ осуществляется следующим образом.
Воздух низкого давления 1 сжимают в компрессоре 2. Затем сжатый воздух 3 подают в камеру сгорания 4, в которую подают также парометановодородную смесь 6 в качестве топлива. Продукты сгорания 7 подают из камеры сгорания 4 в турбину высокого давления 8, в которой проводят расширение продуктов сгорания 7, смешиваемых затем с водяным паром низкого давления 24 с образованием рабочего тела 9, приводящего в действие свободную силовую газовую турбину 10 газотурбинной установки. В камеру сгорания 4 газогенератора подают одновременно парометановодородную смесь 6, поступающую из каталитического реактора конверсии 18, природный газ 26 и сжатый компрессором 2 воздух 3.
Работа реактора конверсии 18 для получения парометановодородной смеси 6, подаваемой в камеру сгорания 4 газотурбинной установки, осуществляется при подаче в реактор конверсии 18 сжатого компрессором 2 воздуха 5, который служит окислителем парометановой смеси, подаваемой также в реактор конверсии 18.
Поток дымовых газов 11, отбираемых на выходе из свободной силовой газовой турбины 10, направляют на последующее их охлаждение в утилизаторе 12 путем испарения питательной воды 13 с образованием водяного пара 15, часть которого в виде пара высокого давления смешивают с природным газом 17 с получением парометановой смеси, которую пропускают через каталитический реактор конверсии 18 с образованием нагретой парометановодородной смеси 19. Температуру парометановодородной смеси на выходе из реактора конверсии 18 поддерживают в диапазоне 500÷600°C. Затем парометановодородную смесь 19 охлаждают в теплообменнике 16 и охладителе 20 до температуры, не превышающей температурный диапазон 200÷240°C. В охладителе 20 происходит охлаждение и частичная конденсация водяного пара, содержащегося в парометановодородной смеси 19, Полученный конденсат 23 испаряют и после нагрева в пароперегревателе 25 в виде перегретого водяного пара низкого давления 24 смешивают с потоком рабочего тела 9 и направляют в свободную силовую газовую турбину 10.
Охлажденные в утилизаторе 12 низкотемпературные сбросные газы 14 с пониженным содержанием оксидов азота сбрасывают в атмосферу.
В каталитическом реакторе конверсии 18 в результате процесса реформирования метана образуется парометановодородная смесь 19 с заданными техническими характеристиками, ниже представленными в таблице.
В таблице приведены составы и теплофизические характеристики извлекаемой из каталитического реактора конверсии 18 парометановодородной смеси (ПМВС) 19. Данные на 10000 м3/ч парометановодородной смеси 19.
Figure 00000001
В пересчете по сухому газу концентрация водорода, содержащегося в метановодородной смеси 19 на выходе из каталитического реактора 18, в процентном отношении составляет около 40%.
Величину давления в потоках парометановодородной смеси 19 и водяного пара высокого давления 15 поддерживают в диапазоне 2,0-8,0 МПа, максимально приближая ее к величине давления на входе в газовую турбину 8.
Каталитический реактор конверсии 18 может быть разделен на два реактора, при этом реформирование метана метансодержащей парогазовой смеси в первом и втором каталитических реакторах ведут поочередно, без подвода тепловой энергии и на однотипном катализаторе, в качестве которого в реакторе конверсии 18 используют металл, выбранный из ряда никель, рутений, родий, палладий, иридий, нанесенный на огнеупорные оксиды, такие как кордиерит, муллит, оксид хрома, титанат алюминия, шпинели, диоксид циркония и оксид алюминия.
Соотношение воздух/пар на входе в реактор конверсии 18 поддерживают в диапазоне 0.5÷1.5.
Перед реактором конверсии 18 осуществляют подогрев воздуха 5, водяного пара 15 и природного газа 17 за счет охлаждения парометановодородной смеси 19, выходящей из реактора конверсии 18.
Давление на входе в свободную силовую газовую турбину 10 поддерживают в диапазоне 0.2÷0.4 МПа.
Для повышения производительности и ресурса работы каталитического реактора конверсии 18 исходный природный газ 17 предварительно очищают от соединений серы.
В процессе реализации излагаемого способа генерации энергии могут использоваться возможности нагрева водяного пара низкого давления 24 с помощью внешнего подвода тепла, например высокотемпературного ядерного реактора (на фигуре не показан).
Таким образом, указанный способ позволит повысить возможности генерации энергии, снизить расход топлива, уменьшить потери, связанные с недостаточным расширением продуктов сгорания в турбине, повысить надежность работы газотурбинной установки за счет дополнительных возможностей утилизации тепловой энергии на различных температурных и мощностных режимах газовой турбины, улучшить экономические показатели энергоустановок и систем энергообеспечения - задача изобретения.

Claims (8)

1. Способ преобразования энергии в газотурбинной установке со свободной силовой газовой турбиной, предусматривающий подачу в камеру сгорания сжатого воздуха и парометановодородной смеси, расширение продуктов ее сгорания в газотурбинной установке, последующее их охлаждение в утилизаторе путем испарения с образованием водяного пара высокого давления, который смешивают с природным газом с получением метансодержащей парогазовой смеси, которую пропускают через каталитический реактор реформирования метана с образованием на выходе парометановодородной смеси, охлаждаемой затем до температуры, не превышающей температурный диапазон 200÷240°С, с одновременной частичной конденсацией водяного пара, содержащегося в парометановодородной смеси, подаваемой в охлажденном виде в камеру сгорания газотурбинной установки, и получение из конденсата водяного пара низкого давления, направляемого в свободную силовую газовую турбину, отличающийся тем, что в каталитический реактор реформирования метана подают поток сжатого воздуха, отбираемого из компрессора газотурбинной установки.
2. Способ по п. 1, отличающийся тем, что водяной пар из утилизатора делят на два потока: высокого и низкого давления, в поток водяного пара низкого давления добавляют пар, который получают из конденсата путем его испарения и перегрева за счет охлаждения парометановодородной смеси, выходящей из реактора.
3. Способ по п. 1, отличающийся тем, что парометановодородную смесь перед камерой сгорания смешивают с природным газом.
4. Способ по п. 1, отличающийся тем, что температуру парометановодородной смеси на выходе из реактора поддерживают в диапазоне 500÷600°С.
5. Способ по п. 1, отличающийся тем, что соотношение воздух/пар на входе в реактор поддерживают в диапазоне 0.5÷1.5.
6. Способ по п. 1, отличающийся тем, что перед реактором осуществляют подогрев воздуха, водяного пара и природного газа за счет охлаждения парометановодородной смеси, выходящей из реактора.
7. Способ по п. 1, отличающийся тем, что в качестве катализатора в реакторе используют металл, выбранный из ряда никель, рутений, родий, палладий, иридий, нанесенных на огнеупорные оксиды, такие как кордиерит, муллит, оксид хрома, титанат алюминия, шпинели, диоксид циркония и оксид алюминия.
8. Способ по п. 1, отличающийся тем, что давление на входе в свободную силовую газовую турбину поддерживают в диапазоне 0.2÷0.4 МПа.
RU2015148800A 2015-11-13 2015-11-13 Способ преобразования энергии RU2626291C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015148800A RU2626291C2 (ru) 2015-11-13 2015-11-13 Способ преобразования энергии

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015148800A RU2626291C2 (ru) 2015-11-13 2015-11-13 Способ преобразования энергии

Publications (2)

Publication Number Publication Date
RU2015148800A RU2015148800A (ru) 2017-05-23
RU2626291C2 true RU2626291C2 (ru) 2017-07-25

Family

ID=58877835

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015148800A RU2626291C2 (ru) 2015-11-13 2015-11-13 Способ преобразования энергии

Country Status (1)

Country Link
RU (1) RU2626291C2 (ru)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115341963A (zh) * 2022-07-18 2022-11-15 哈尔滨工业大学 一种氨氢甲烷多物质混合供热产电系统及其使用方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4628693A (en) * 1984-03-01 1986-12-16 Alsthom-Atlantique Casing for district heating turbine
RU2212590C2 (ru) * 2001-08-24 2003-09-20 Гончаров Владимир Гаврилович Способ подготовки и сжигания топлива в камере сгорания газотурбинной установки и устройство для его осуществления
RU2252325C1 (ru) * 2003-09-04 2005-05-20 Открытое акционерное общество "Энергомашкорпорация" Парогазовая установка контактного типа
EP1669572A1 (en) * 2004-12-08 2006-06-14 Vrije Universiteit Brussel Process and installation for producing electric power
RU2467187C2 (ru) * 2010-11-03 2012-11-20 ООО "Центр КОРТЭС" Способ работы газотурбинной установки
RU2561755C2 (ru) * 2013-11-07 2015-09-10 Открытое акционерное общество "Газпром" Способ работы и устройство газотурбинной установки

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4628693A (en) * 1984-03-01 1986-12-16 Alsthom-Atlantique Casing for district heating turbine
RU2212590C2 (ru) * 2001-08-24 2003-09-20 Гончаров Владимир Гаврилович Способ подготовки и сжигания топлива в камере сгорания газотурбинной установки и устройство для его осуществления
RU2252325C1 (ru) * 2003-09-04 2005-05-20 Открытое акционерное общество "Энергомашкорпорация" Парогазовая установка контактного типа
EP1669572A1 (en) * 2004-12-08 2006-06-14 Vrije Universiteit Brussel Process and installation for producing electric power
RU2467187C2 (ru) * 2010-11-03 2012-11-20 ООО "Центр КОРТЭС" Способ работы газотурбинной установки
RU2561755C2 (ru) * 2013-11-07 2015-09-10 Открытое акционерное общество "Газпром" Способ работы и устройство газотурбинной установки

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RU 2212590 С2, 20.09.2003, *

Also Published As

Publication number Publication date
RU2015148800A (ru) 2017-05-23

Similar Documents

Publication Publication Date Title
US9021814B2 (en) Process for co-producing synthesis gas and power
RU2561755C2 (ru) Способ работы и устройство газотурбинной установки
RU2467187C2 (ru) Способ работы газотурбинной установки
RU2447048C1 (ru) Комбинированный способ производства этилена и его производных и электроэнергии из природного газа
CN108439336B (zh) 一种零排放氢电联产系统
JPH1068329A (ja) 合成ガスおよびエネルギーを組み合わせて製造する方法
CN101540410B (zh) 天然气制氢与质子交换膜燃料电池集成发电的方法及装置
RU2008113706A (ru) Способ создания водородного энергохимического комплекса и устройство для его реализации
RU2648914C2 (ru) Способ получения водорода и генерирования энергии
EP2905433B1 (en) Method and system for producing liquid fuel and generating electric power
RU2639397C1 (ru) Способ работы газотурбинной установки на метаносодержащей парогазовой смеси и устройство для его осуществления
RU2626291C2 (ru) Способ преобразования энергии
RU2524317C1 (ru) Способ преобразования энергии с регенерацией энергоносителей в циклическом процессе теплового двигателя
RU2587736C1 (ru) Установка для утилизации низконапорного природного и попутного нефтяного газов и способ её применения
JPH04261130A (ja) 核熱を利用したメタノール製造方法
JPH04334729A (ja) 発電方法
RU2816114C1 (ru) Способ производства низкоуглеродного водорода и электрической энергии
RU2786069C1 (ru) Способ получения водорода из природного газа
JP2002050387A (ja) 固体有機物からのエネルギー発生装置
RU2244133C1 (ru) Способ генерирования пара при производстве аммиака
RU2170889C1 (ru) Способ утилизации тепла
RU2689483C2 (ru) Энергетическая установка с высокотемпературной парогазовой конденсационной турбиной
JP2706235B2 (ja) 複合原動装置
RU2206494C1 (ru) Способ комплексной энерготехнологической переработки углеводородных топливных газов
RU2244134C1 (ru) Способ генерирования пара при производстве аммиака