RU2626204C1 - Способ фотохимического обезвреживания тиоцианатсодержащих сточных и оборотных вод - Google Patents
Способ фотохимического обезвреживания тиоцианатсодержащих сточных и оборотных вод Download PDFInfo
- Publication number
- RU2626204C1 RU2626204C1 RU2016134863A RU2016134863A RU2626204C1 RU 2626204 C1 RU2626204 C1 RU 2626204C1 RU 2016134863 A RU2016134863 A RU 2016134863A RU 2016134863 A RU2016134863 A RU 2016134863A RU 2626204 C1 RU2626204 C1 RU 2626204C1
- Authority
- RU
- Russia
- Prior art keywords
- radiation
- thiocyanate
- cyanide
- thiocyanates
- scn
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 56
- ZMZDMBWJUHKJPS-UHFFFAOYSA-N hydrogen thiocyanate Natural products SC#N ZMZDMBWJUHKJPS-UHFFFAOYSA-N 0.000 title claims abstract description 19
- ZMZDMBWJUHKJPS-UHFFFAOYSA-M Thiocyanate anion Chemical compound [S-]C#N ZMZDMBWJUHKJPS-UHFFFAOYSA-M 0.000 title claims abstract description 14
- 238000006386 neutralization reaction Methods 0.000 title claims description 16
- 239000002351 wastewater Substances 0.000 title abstract description 19
- 239000010865 sewage Substances 0.000 title abstract 2
- 230000005855 radiation Effects 0.000 claims abstract description 28
- 150000003567 thiocyanates Chemical class 0.000 claims abstract description 17
- JRKICGRDRMAZLK-UHFFFAOYSA-L peroxydisulfate Chemical compound [O-]S(=O)(=O)OOS([O-])(=O)=O JRKICGRDRMAZLK-UHFFFAOYSA-L 0.000 claims abstract description 8
- -1 iron (III) ions Chemical class 0.000 claims abstract description 7
- 238000006243 chemical reaction Methods 0.000 claims abstract description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 17
- 230000001699 photocatalysis Effects 0.000 claims description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 8
- 238000004065 wastewater treatment Methods 0.000 claims description 3
- 239000003643 water by type Substances 0.000 claims 1
- 238000000746 purification Methods 0.000 abstract description 12
- 238000012545 processing Methods 0.000 abstract description 10
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 abstract description 7
- 239000010931 gold Substances 0.000 abstract description 7
- 229910052737 gold Inorganic materials 0.000 abstract description 7
- 230000000694 effects Effects 0.000 abstract description 5
- 239000003344 environmental pollutant Substances 0.000 abstract description 5
- 239000000126 substance Substances 0.000 abstract description 5
- 238000005065 mining Methods 0.000 abstract description 4
- 230000003287 optical effect Effects 0.000 abstract description 4
- 231100000719 pollutant Toxicity 0.000 abstract description 4
- 238000009856 non-ferrous metallurgy Methods 0.000 abstract description 2
- 239000003795 chemical substances by application Substances 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 22
- XFXPMWWXUTWYJX-UHFFFAOYSA-N Cyanide Chemical compound N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 description 20
- 230000008569 process Effects 0.000 description 19
- 238000007254 oxidation reaction Methods 0.000 description 13
- 230000003647 oxidation Effects 0.000 description 11
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 10
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 10
- 150000002825 nitriles Chemical class 0.000 description 10
- 239000003054 catalyst Substances 0.000 description 9
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 7
- 230000006378 damage Effects 0.000 description 6
- 238000000354 decomposition reaction Methods 0.000 description 6
- 230000007613 environmental effect Effects 0.000 description 6
- 229910052742 iron Inorganic materials 0.000 description 6
- 239000007800 oxidant agent Substances 0.000 description 6
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 5
- 229910052753 mercury Inorganic materials 0.000 description 5
- 239000004408 titanium dioxide Substances 0.000 description 5
- 239000003153 chemical reaction reagent Substances 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 3
- 239000007791 liquid phase Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 239000008213 purified water Substances 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 231100000331 toxic Toxicity 0.000 description 3
- 230000002588 toxic effect Effects 0.000 description 3
- 239000010457 zeolite Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-M Formate Chemical compound [O-]C=O BDAGIHXWWSANSR-UHFFFAOYSA-M 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- 229910021536 Zeolite Inorganic materials 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000002848 electrochemical method Methods 0.000 description 2
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 2
- 238000002386 leaching Methods 0.000 description 2
- 231100000053 low toxicity Toxicity 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000003472 neutralizing effect Effects 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- DHCDFWKWKRSZHF-UHFFFAOYSA-L thiosulfate(2-) Chemical compound [O-]S([S-])(=O)=O DHCDFWKWKRSZHF-UHFFFAOYSA-L 0.000 description 2
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 239000004912 1,5-cyclooctadiene Substances 0.000 description 1
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- 239000005749 Copper compound Substances 0.000 description 1
- 239000004267 EU approved acidity regulator Substances 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical class [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- 206010070834 Sensitisation Diseases 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000006065 biodegradation reaction Methods 0.000 description 1
- 239000007844 bleaching agent Substances 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000003889 chemical engineering Methods 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 238000005352 clarification Methods 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000004939 coking Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 150000001880 copper compounds Chemical class 0.000 description 1
- 150000001913 cyanates Chemical class 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003256 environmental substance Substances 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000000383 hazardous chemical Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- WQYVRQLZKVEZGA-UHFFFAOYSA-N hypochlorite Chemical class Cl[O-] WQYVRQLZKVEZGA-UHFFFAOYSA-N 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 150000002506 iron compounds Chemical class 0.000 description 1
- 235000014413 iron hydroxide Nutrition 0.000 description 1
- NCNCGGDMXMBVIA-UHFFFAOYSA-L iron(ii) hydroxide Chemical group [OH-].[OH-].[Fe+2] NCNCGGDMXMBVIA-UHFFFAOYSA-L 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 229920003240 metallophthalocyanine polymer Polymers 0.000 description 1
- 238000005555 metalworking Methods 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 238000010525 oxidative degradation reaction Methods 0.000 description 1
- FHHJDRFHHWUPDG-UHFFFAOYSA-N peroxysulfuric acid Chemical compound OOS(O)(=O)=O FHHJDRFHHWUPDG-UHFFFAOYSA-N 0.000 description 1
- 230000002186 photoactivation Effects 0.000 description 1
- 238000007146 photocatalysis Methods 0.000 description 1
- 238000001782 photodegradation Methods 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 229940082569 selenite Drugs 0.000 description 1
- MCAHWIHFGHIESP-UHFFFAOYSA-L selenite(2-) Chemical compound [O-][Se]([O-])=O MCAHWIHFGHIESP-UHFFFAOYSA-L 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000008313 sensitization Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- MWNQXXOSWHCCOZ-UHFFFAOYSA-L sodium;oxido carbonate Chemical compound [Na+].[O-]OC([O-])=O MWNQXXOSWHCCOZ-UHFFFAOYSA-L 0.000 description 1
- 239000002594 sorbent Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 150000004764 thiosulfuric acid derivatives Chemical class 0.000 description 1
- 231100001234 toxic pollutant Toxicity 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 238000002211 ultraviolet spectrum Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/30—Treatment of water, waste water, or sewage by irradiation
- C02F1/32—Treatment of water, waste water, or sewage by irradiation with ultraviolet light
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/16—Nitrogen compounds, e.g. ammonia
- C02F2101/18—Cyanides
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/16—Nature of the water, waste water, sewage or sludge to be treated from metallurgical processes, i.e. from the production, refining or treatment of metals, e.g. galvanic wastes
Landscapes
- Physical Water Treatments (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
Abstract
Изобретение относится к очистке сточных вод и оборотных вод, содержащих тиоцианаты (SCN-), и может быть использовано на предприятиях цветной металлургии, химической и золотодобывающей промышленности. Тиоцианатсодержащие сточные воды одновременно подвергают воздействию ультрафиолетового (УФ) излучения и обработке персульфатом (S2O8 2-) в присутствии ионов железа (III) при мольном соотношении [S2O8 2-]:[SCN-] 5:1. Способ позволяет обеспечить высокую степень очистки сточной воды в широком диапазоне рН среды и концентраций указанного загрязнителя за короткий промежуток времени при использовании различных источников УФ-излучения, излучающих как в узкой, так и широкой полосе оптического диапазона, а также уменьшить эксплуатационные расходы и снизить себестоимость очистки. Кроме того, предлагаемый способ не требует введения каких-либо регуляторов рН среды в реакционную зону, улучшает санитарные условия за счет малотоксичных, удобных в обращении и транспортировке реагентов. 1 з.п. ф-лы, 2 табл.
Description
Изобретение может быть использовано на предприятиях цветной металлургии, химической и золотодобывающей промышленности для обезвреживания сточных и оборотных вод, содержащих тиоцианаты (SCN-).
Тиоцианатсодержащие водные растворы в больших количествах образуются в процессе цианистого выщелачивания благородных металлов из сульфидных руд и концентратов. Среди приоритетных техногенных экотоксикантов жидкой фазы хвостов золотоизвлекательных фабрик (ЗИФ), цианиды и некоторые серосодержащие соединения, такие как тиосульфат, легко подвергаются окислению, в то время как тиоцианаты являются устойчивыми к разложению, и скорость деструкции SCN- является лимитирующей стадией и определяет эффективность всего процесса обезвреживания цианидсодержащих растворов.
Существует ряд методов обезвреживания, одни из которых широко применяются на золотоизвлекательных фабриках, другие находятся либо в стадии разработки, либо только внедряются в производство. Среди методов окисления и разрушения токсичных цианистых соединений до сих пор широко применяются «экологически грязные» реагенты в качестве окислителей, например, соединения хлора (гипохлориты, хлорная известь, жидкий хлор и т.д.). Жесткие требования экологического и экономического характера диктуют настоятельную необходимость создания новых малоотходных и безотходных технологий, дающих наибольший экологический эффект.
В последнее время интенсивно развиваются и начинают применяться альтернативные методы - биодеструкция, электрохимические методы обработки, метод термоокислительного жидкофазного разложения и, наконец, окисление токсичных цианидов и тиоцианатов с помощью экологически безопасных реагентов (озоном, пероксидом водорода, кислотой Каро, перкарбонатом). К недостаткам биологических методов очистки относятся значительная продолжительность обработки, необходимость постоянного поддержания условий среды (кислородного режима, температуры среды и величины рН). К недостаткам жидкофазного окисления следует отнести сложное аппаратурное оформление процесса: насосы и компрессоры высокого давления, необходимость применения дорогостоящих конструкционных материалов и высоколегированных сталей по всему тракту высокого давления, образование накипи на теплопередающих поверхностях. Основными недостатками электрохимических методов очистки сточных вод являются значительные энергетические затраты металла, необходимость очистки поверхности электродов и межэлектродного пространства от механических примесей.
Наиболее привлекательными являются фотохимические методы с использованием экологически безопасных окислителей и/или катализаторов. Использование ультрафиолетового (УФ) облучения получает все большее распространение для деструкции токсичных загрязнителей различной природы, в том числе и для обезвреживания цианистых соединений. Для проведения фотохимических процессов применяют различные источники, излучающие в определенной области оптического диапазона (от коротковолновой УФ до инфракрасной области).
Известен способ обезвреживания цианистых растворов, включающий добавление в очищаемую воду соединений железа (II) и обработку электроимпульсами высокого напряжения с удельным расходом энергии, не превышающим 100 кДж/дм3 [Лобанов В.Г., Кузас Е.А., Набиуллин Ф.М. и др. Способ обезвреживания цианистых растворов // Патент РФ №2526069, опубл. 20.08.2014, Бюл. №23]. При импульсах высоковольтного разряда образуется дуга с температурой более 5000°С, сопровождаемая УФ-излучением, в результате чего происходит разложение воды с образованием газообразного кислорода (О2) и озона (О3). При этом достигается эффективное разложение простых цианидов и других загрязнителей в стоках золотоизвлекательных фабрик. В присутствии катионов железа скорость обезвреживания цианистых растворов резко возрастает. Существенными недостатками данного способа являются высокая энергоемкость процесса обезвреживания и сложность аппаратурного оформления.
Известен способ очистки цианидсодержащих сточных вод, согласно которому процесс обезвреживания достигается за счет воздействия УФ-излучением и катализированной металлофталоцианинами реакции окисления цианистых соединений кислородом воздуха [Frame R.R., Kalnes Т.N., Moser М.D. Oxidative removal of cyanide from aqueous streams abetted by ultraviolet irradiation // US Pat. №5238581, Aug. 24, 1993.]. Источником УФ излучения служит ртутная лампа высокого давления мощностью 550 Вт. Наиболее эффективными катализаторами являются фталоцианины железа, кобальта или ванадия в концентрационном диапазоне от 50 до 5000 мг/дм3. Для повышения каталитической активности металлофталоцианины наносят на углеграфитовые носители, цеолиты, глины, нерастворимые оксиды алюминия, кремния, циркония и т.д. Процесс очистки цианидсодержащих растворов проводят в щелочной среде при рН 9-12. Повышение значений температуры от 20 до 150°С и давления от 1 до 10 атм позволяет ускорить процесс окисления, но приводит к дополнительным энергетическим затратам. Кроме того, к недостаткам указанного способа относятся необходимость предварительной подготовки катализатора путем модификации сорбентов.
Известен способ деструкции свободных и комплексных цианидов, включающий следующие основные стадии: вначале проводят предварительное окисление озоном, далее подвергают комбинированной обработке озоном и УФ-облучению [Garrison R.L., Prengle H.W., Mauk S.E. Method of destroying cyanides // US Pat. №3920547, Nov. 18, 1975]. Процесс обезвреживания цианистых растворов проводят в диапазоне рН 5-9, расход озона составляет 1.8-4.7 мг на 1 мг цианидов. Для повышения эффективности процесса обезвреживания цианидсодержащих сточных вод предлагается увеличить температуру обрабатываемого раствора до 70°С, что требует дополнительных эксплуатационных затрат. Несмотря на отсутствие вторичного загрязнения сточных вод продуктами восстановления этого окислителя, чистый озон токсичен и взрывоопасен, т.к. при его разложении высвобождается значительное количество тепла. Кроме того, озон получают электрохимическим методом, что приводит к высоким капитальным и эксплуатационным затратам. Известен способ очистки цианидсодержащих технологических растворов, включающий фотохимическую обработку с использованием окислительной системы {УФ/О3} и последующее пропускание через слой колонки, заполненной природным цеолитом, предварительно обработанным оксидом марганца [Hanela S., Duran J., Jacobo S. Removal of iron cyanide-complexes from wastewaters by combined UV-ozone and modified zeolite treatment // Journal of Environmental Chemical Engineering. - 2015. - Vol. 3. - P. 1794-1801]. Источник излучения представляет собой ртутную ультрафиолетовую лампу низкого давления (11.4 Вт), излучающую при длине волны 254 нм, размещенную внутри реактора. К недостаткам данного способа относятся (в дополнение к вышеуказанным) - проведение процесса в сильнощелочной среде (при рН≈13), необходимость в многоступенчатой и продолжительной подготовке цеолита (в течение 7 часов) с термической обработкой до 210°С.
Известен способ обезвреживания сточных вод золотодобывающих и металлообрабатывающих предприятий, содержащих свободные и комплексные цианиды, тиоцианаты, цианаты и др. соединения, заключающийся в обработке с помощью экологически безопасных окислителей - ферратов («super-iron batteries»: FeIV, FeV, FeVI) [Sharma V.K. Oxidation of inorganic contaminants by ferrates (VI, V, and IV) - kinetics and mechanisms: A review // Journal of Environmental Management. - 2011. -. Vol. 92. - P. 1051-1073]. Известен способ применения ферратов для очистки цианидсодержащих сточных вод в комбинировании с фотохимической системой с использованием диоксида титана в качестве катализатора [Wang Z.P., Huang L.Z., Su J.W., et al. Removal of cyanides in coking wastewater by ferrate pre-oxidization followed by photochemical process //Fresenius Environmental Bulletin. - 2008. - 17 (8). P. 1082-1087]. Для исследования процесса фотокаталитического окисления используют ртутную лампу высокого давления мощностью 250 Вт, с максимумом излучения при длине волны 365 нм. Основным недостатком окислительных методов на основе «ферратных» систем является дороговизна реагентов, для их получения применяют многоступенчатый синтез. Кроме того, сами ферраты щелочных металлов химически активны, при комнатной температуре термодинамически нестабильны, разлагаются на влажном воздухе.
Известен способ фотохимической очистки цианидсодержащих растворов, включающий удаление взвешенных веществ на начальной стадии, далее проводят обработку пероксидом водорода при мольном соотношении 5 моль Н2О2 на 1 моль цианид иона и УФ-облучением [Vuong D-G., Klock В.V. Cyanide and formate destruction with ultra violet light // US Pat. №7144514, Dec. 5, 2006]. Обезвреживание сточных вод осуществляли в УФ-реакторе производства «Solarchem» мощностью 1 кВт. Недостатками указанного способа являются применимость метода для низкоконцентрированных сточных вод (с содержанием цианидов до 50 мг/дм3) и большой расход дорогостоящего окислителя, превышающий стехиометрически необходимое количество в 5 раз. Известен способ фотохимической очистки цианидсодержащих растворов посредством их обработки УФ-облучением и пероксидом водорода в присутствии медного катализатора [Vuong D-G., Klock В.V. Cyanide and formate destruction with ultra violet light // US Pat. №7144514, Dec. 5, 2006; M. Sarla, M, Pandit, D.K. Tyagi, J.C. Kapoor. Oxidation of cyanide by chemical and photochemical process // Journal of hazardous materials. - 2004. - Vol. 116. - P. 449-56]. В примерах осуществления данного способа в качестве источника излучения использовалась УФ-лампа низкого давления (25 Вт), излучающая в диапазоне длин волн с максимум 254 нм. Оптимально установленный расход пероксида водорода 10-кратно превышает стехиометрически необходимое количество. Использование соединений меди в качестве катализатора приводит к удорожанию процесса обезвреживания. Кроме того, пероксид водорода производится в виде водного раствора с низкой активностью (около 35%), что вызывает определенные трудности в обращении и транспортировке.
Известен способ фотохимической очистки тиоцианатсодержащих сточных вод, включающий обработку технологических растворов с помощью фотокаталитической системы с использованием диоксида титана [Vohra M.S. Effect of co-pollutants thiosulfate and ammonia onto TiO2-mediated photocatalytic removal of thiocyanate from synthetic wastewater // Fresenius Environmental Bulletin. - 2013. - Vol. 22. - №2a. - P. 591-597; Vohra M.S. Removal of aqueous phase selenite and selenate using artificial and solar energized photocatalysis // US Pat. №9162902, Oct. 20, 2015]. Источник УФ-облучения представляет собой ультрафиолетовую лампу (F15T8-BLB 15 W, Japan), которая излучает преимущественно в ближней ультрафиолетовой области спектра (в диапазоне 315-400 нм) с максимумом излучения в области 352 нм. Эффективное обезвреживание тиоцианатсодержащих растворов, при исходной концентрации загрязнителя 10 и 20 мг/дм3, происходит при концентрации ТiО2 1 г/дм3 преимущественно в щелочной среде, при оптимальном значении рН 10-12.
Указанный способ по существу и достигаемому эффекту является наиболее близким к описываемому изобретению.
К недостаткам прототипа относятся необходимость в предварительном подщелачивании очищаемого раствора и значительная продолжительность обработки (от 4 до 6 часов). Фотокаталитическая система с использованием диоксида титана имеет серьезный недостаток: чувствительность катализатора ограничивается в ультрафиолетовом спектре диапазона УФ-А (315-390 нм). Для практического применения важно, чтобы фотокаталитическая система была способна проявлять активность в широком спектре УФ-диапазона, в том числе, в видимой части светового излучения. Существуют различные методы сенсибилизации диоксида титана, влекущие к дополнительным затратам. Кроме того, существует проблема вымывания диоксида титана в процессе эксплуатации и его отделения от очищенной воды.
Техническим результатом изобретения является устранение указанных недостатков при сохранении высокой эффективности процесса очистки тиоцианатсодержащих сточных вод, а также снижение затрат на его проведение.
Технический результат достигается тем, что сточные воды, содержащие тиоцианаты, подвергают одновременно воздействию УФ-излучения и обработке персульфатом (S2O8 2-) в присутствии ионов железа (III), при этом мольное соотношение [S2O8 2-]:[SCN-] составляет 5:1, без введения каких-либо регуляторов рН среды в реакционную зону.
Предлагаемый способ очистки тиоцианатсодержащих сточных вод обладает рядом преимуществ: эффективен в широком диапазоне рН среды и концентраций указанного загрязнителя, глубокая деструкция тиоцианатов достигается за короткий промежуток времени при использовании различных источников УФ-излучения. Кроме того, используемый окислитель обладает высокой стабильностью и активностью, хорошо растворим в водных средах, а также является малотоксичным, удобен в обращении и транспортировке. Соединения железа также относятся к экологически безопасным катализаторам («green есо-friendly»), поскольку его окислительно-восстановительные превращения широко распространены в природных экосистемах. Конечным продуктом является гидроксид железа, который выделяется в виде коллоидных агрегатов с очень развитой поверхностью и адсорбирует ионы тяжелых металлов, взвешенные вещества и органические соединения, обеспечивая, таким образом, дополнительную очистку путем коагуляции.
Способ подтверждается следующими примерами.
Пример 1. Для изучения процессов фотодеструкции тиоцианатов использовали источники моно- и полихроматического УФ-излучения с различными рабочими спектральными диапазонами: традиционно применяемые дуговые ртутные газоразрядные лампы низкого давления марки ДБ-30-1, с максимумом излучения в области 254 нм (УФ-254) и высокого давления марки ДРТ-400, с линейчатым спектром в видимой и УФ-областях с максимумом излучения в области 365 нм (УФ-Вид), а также современный источник УФ-излучения - KrCl-эксилампа барьерного разряда, излучающая в узкой спектральной полосе с максимумом 222 нм (УФ-222). Широкополосный источник излучения ртутная лампа ДРТ-400 использовалась для имитации УФ и видимой составляющей естественного солнечного излучения. Для концентрации светового потока фотореактор помещался в зеркальный параболоцилиндрический кожух-отражатель из алюминиевой фольги. Скорость циркуляции обрабатываемого раствора варьировали в диапазоне 30-75 дм3/час.
Модельный раствор тиоцианатов с исходной концентрацией 1.72 ммоль/дм3 (100 мг/дм3) без введения каких-либо регуляторов кислотности среды (при рН≈5.6) с термостатированием (22±2°С) подвергают обработке персульфатом без и в присутствии ионов железа (III) в проточном трубчатом фотореакторе с использованием различных источников УФ-излучения. Дозу персульфата рассчитывали из оптимального соотношения 5 мМ S2O8 2- на 1 мМ SCN-. В реакционную смесь одновременно дозируют раствор катализатора (Fe3+), взятого согласно мольному соотношению [S2O8 2-]:[Fe3+] равному 1:0.1.
При проведении обработки тиоцианатсодержащих растворов в соответствии с предлагаемым способом достигается быстрое и практически полное разложение тиоцианатов в течение 20-60 минут в зависимости от используемого источников УФ-излучения. Поскольку выбранные источники значительно отличались по характеристикам потребляемой электрической энергии, полученные результаты сведены в параметр удельной конверсии, равный отношению количества превращенного вещества к затраченной электрической энергии. Результаты фотохимического окисления тиоцианатов с использованием различных источников УФ излучения представлены в таблице 1.
При обработке тиоцианатов каталитической системой {Fe3+/S2O8 2-} с дополнительной фотоактивацией во всех случаях наблюдается значительное ускорение процесса окислительной деструкции, ведущее к существенному (в 1.7-5 раз) сокращению продолжительности обработки.
Пример 2. Модельный раствор тиоцианатов подвергают фотохимической обработке при повышенных значениях рН среды как в примере 1. Проведение очистки тиоцианатсодержащих растворов с помощью фотокаталитической системы {УФ/S2O8 2-/Fe3+} при значении рН 10, абсолютно не снижает эффективности процесса.
Пример 3. Технологическую оборотную воду золотоизвлекательной фабрики, содержащую 2.17 ммоль/дм3 (126.07 мг/дм3) тиоцианатов, подвергали одновременно УФ- облучению и обработке персульфатом, без и в присутствии ионов железа (III) при мольном соотношении [S2O8 2-]:[Fe3+], равном 1:0.2, без введения в реакционную зону каких-либо регуляторов рН среды. Фотохимическую обработку технологических растворов ЗИФ с добавлением персульфата проводили в проточном фотореакторе с производительностью 90 дм /час, оснащенном искусственным источником оптического излучения с квазисолнечным спектром (УФ-Вид).
При проведении обработки реальной воды ЗИФ в соответствии предлагаемым способом, время полного окисления тиоцианатов составляет 40 минут. Кроме того, в результате обезвреживания технологических растворов ЗИФ с использованием фотокаталитической системы {УФ/S2O8 2-/Fe3-} наблюдается значительное снижение содержания тиосульфатов, меди, железа, ХПК. Результаты обезвреживания тиоцианатсодержащих технологических растворов ЗИФ с использованием фотокаталитической системы {УФ/S2O8 2-/Fe3-} представлены в таблице 2.
После фотохимической обработки и последующей нейтрализации и осветления, очищенная вода может быть использована для технологических нужд ЗИФ или сброшена на поля фильтрации.
Предлагаемый способ очистки тиоцианатсодержащих сточных вод позволяет, добиться высокой степени удаления тиоцианатов и других сопутствующих соединений при использовании различных источников УФ-излучения, излучающих как в узкой, так и широкой полосе оптического диапазона. Кроме того, при проведении процесса не требуется введение каких-либо дополнительных регуляторов рН среды. В результате значительно сокращаются продолжительность процесса обезвреживания и эксплуатационные расходы, что приводит к снижению себестоимости очистки. Предлагаемый способ прост в аппаратурном оформлении и позволит улучшить санитарные условия за счет малотоксичных, удобных в обращении и транспортировке реагентов.
Claims (2)
1. Способ фотохимической очистки сточных вод от тиоцианатов, включающий их обработку персульфатом, отличающийся тем, что тиоцианатсодержащие воды одновременно подвергают воздействию ультрафиолетового (УФ) облучения и обрабатывают персульфатом в присутствии ионов железа (III).
2. Способ по п. 1, отличающийся тем, что обезвреживание тиоцианатсодержащих вод с использованием фотокаталитической системы {УФ/S2O8 2-/Fe3+} проводят при мольном соотношении [S2O8 2-]:[SCN-], равном 5:1, без введения каких-либо регуляторов pH среды в реакционную зону.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016134863A RU2626204C1 (ru) | 2016-08-25 | 2016-08-25 | Способ фотохимического обезвреживания тиоцианатсодержащих сточных и оборотных вод |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016134863A RU2626204C1 (ru) | 2016-08-25 | 2016-08-25 | Способ фотохимического обезвреживания тиоцианатсодержащих сточных и оборотных вод |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2626204C1 true RU2626204C1 (ru) | 2017-07-24 |
Family
ID=59495866
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2016134863A RU2626204C1 (ru) | 2016-08-25 | 2016-08-25 | Способ фотохимического обезвреживания тиоцианатсодержащих сточных и оборотных вод |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2626204C1 (ru) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5093007A (en) * | 1989-05-24 | 1992-03-03 | Nerco Minerals Company | Process for removal of inorganic and cyanide contaminants from wastewater |
US5482694A (en) * | 1994-08-19 | 1996-01-09 | Canadian Liquid Air Ltd.-Air Liquide Canada Ltee. | Regeneration of cyanide by oxidation of thiocyanate |
US20040256247A1 (en) * | 2001-10-22 | 2004-12-23 | Carson Roger W. | Mediated electrochemical oxidation of organic waste materials |
RU2245850C2 (ru) * | 2002-12-31 | 2005-02-10 | Институт микробиологии РАН (ИНМИ РАН) | Способ очистки промышленных стоков от цианидов и тиоцианатов |
RU2389695C1 (ru) * | 2008-12-11 | 2010-05-20 | Байкальский институт природопользования Сибирского отделения Российской академии наук (БИП СО РАН) | Способ очистки сточных вод от тиоцианатов |
CN104045191A (zh) * | 2014-07-12 | 2014-09-17 | 长春黄金研究院 | 一种含氰废水处理方法 |
US9162902B2 (en) * | 2014-02-04 | 2015-10-20 | King Fhad University Of Petroleum And Minerals | Removal of aqueous phase selenite and selenate using artifical and solar radiation energized photocatalysis |
RU2579450C1 (ru) * | 2014-12-29 | 2016-04-10 | Федеральное государственное бюджетное учреждение науки Байкальский институт природопользования Сибирского отделения Российской академии наук (БИП СО РАН) | Способ очистки сточных вод от тиоцианатов |
-
2016
- 2016-08-25 RU RU2016134863A patent/RU2626204C1/ru not_active IP Right Cessation
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5093007A (en) * | 1989-05-24 | 1992-03-03 | Nerco Minerals Company | Process for removal of inorganic and cyanide contaminants from wastewater |
US5482694A (en) * | 1994-08-19 | 1996-01-09 | Canadian Liquid Air Ltd.-Air Liquide Canada Ltee. | Regeneration of cyanide by oxidation of thiocyanate |
US20040256247A1 (en) * | 2001-10-22 | 2004-12-23 | Carson Roger W. | Mediated electrochemical oxidation of organic waste materials |
RU2245850C2 (ru) * | 2002-12-31 | 2005-02-10 | Институт микробиологии РАН (ИНМИ РАН) | Способ очистки промышленных стоков от цианидов и тиоцианатов |
RU2389695C1 (ru) * | 2008-12-11 | 2010-05-20 | Байкальский институт природопользования Сибирского отделения Российской академии наук (БИП СО РАН) | Способ очистки сточных вод от тиоцианатов |
US9162902B2 (en) * | 2014-02-04 | 2015-10-20 | King Fhad University Of Petroleum And Minerals | Removal of aqueous phase selenite and selenate using artifical and solar radiation energized photocatalysis |
CN104045191A (zh) * | 2014-07-12 | 2014-09-17 | 长春黄金研究院 | 一种含氰废水处理方法 |
RU2579450C1 (ru) * | 2014-12-29 | 2016-04-10 | Федеральное государственное бюджетное учреждение науки Байкальский институт природопользования Сибирского отделения Российской академии наук (БИП СО РАН) | Способ очистки сточных вод от тиоцианатов |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Glaze et al. | The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation | |
CN102225793B (zh) | 一种同步去除水中氨氮、硝酸盐氮和亚硝酸盐氮的方法 | |
CN103787448A (zh) | 一种脱氮药剂与紫外光联用的脱氮方法 | |
Betancourt-Buitrago et al. | Anoxic photocatalytic treatment of synthetic mining wastewater using TiO 2 and scavengers for complexed cyanide recovery | |
CN108217834B (zh) | 产活化过硫酸盐产碳酸根自由基去除含氨氮废水的方法 | |
Khader et al. | Recent Advances in Photocatalytic Advanced Oxidation Processes for Organic Compound Degradation: A Review | |
JP2008043898A (ja) | 水処理システム及び水処理方法 | |
CN109368764B (zh) | 一种强化过硫酸盐氧化的水处理方法 | |
CN104386799B (zh) | 一种去除水中微量有机污染物的方法 | |
JP2008302308A (ja) | 光触媒及びその製造方法、それを用いた水処理方法及び装置 | |
RU2626204C1 (ru) | Способ фотохимического обезвреживания тиоцианатсодержащих сточных и оборотных вод | |
JP2001259620A (ja) | マイクロ波および紫外線を併用した半導体光触媒による水処理装置 | |
RU2550189C1 (ru) | Способ обезвреживания циансодержащих растворов и пульп | |
JP4639309B2 (ja) | シアン含有廃水の処理方法 | |
KR100394180B1 (ko) | 광 펜톤산화처리용 금속산화물 촉매, 이의 제조방법 및이를 이용한 난분해성 유기물의 처리방법 | |
KR100495765B1 (ko) | 펜톤산화처리용 산화철 촉매의 제조방법 및 이에 의해제조된 산화철 촉매의 용도 | |
CN111620486A (zh) | 一种uv-led/o3联用处理环嗪酮农药废水的方法 | |
JP2603895B2 (ja) | めっき老化液中の次亜りん酸イオンの処理方法 | |
JP2006212552A (ja) | 有機ヒ素化合物の無機化方法 | |
JPH0194998A (ja) | 光化学的廃水処理方法 | |
JP2009011982A (ja) | 低濃度ポリ塩素化ビフェニルの処理装置および処理方法 | |
KR101076331B1 (ko) | 수용액으로부터 유기 질소, 및 유기 및 무기 오염물의 제거방법 | |
RU2659056C1 (ru) | Способ очистки сточных вод от устойчивых цианистых соединений | |
Tsybikova et al. | Photochemical oxidation of priority ecotoxicants of gold mill wastewater | |
Samira Molareza et al. | Photochemical oxidation of methyldiethanolamine (MDEA) in aqueous solution by UV/K 2 S 2 O 8 process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20180826 |