RU2625412C2 - Обнаружение и отслеживание повреждения вентилятора авиационного двигателя или столкновения с ним постороннего предмета - Google Patents
Обнаружение и отслеживание повреждения вентилятора авиационного двигателя или столкновения с ним постороннего предмета Download PDFInfo
- Publication number
- RU2625412C2 RU2625412C2 RU2014142035A RU2014142035A RU2625412C2 RU 2625412 C2 RU2625412 C2 RU 2625412C2 RU 2014142035 A RU2014142035 A RU 2014142035A RU 2014142035 A RU2014142035 A RU 2014142035A RU 2625412 C2 RU2625412 C2 RU 2625412C2
- Authority
- RU
- Russia
- Prior art keywords
- fan
- collision
- optical signal
- optical fiber
- blade
- Prior art date
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 12
- 239000013307 optical fiber Substances 0.000 claims abstract description 35
- 230000003287 optical effect Effects 0.000 claims abstract description 34
- 239000000835 fiber Substances 0.000 claims abstract description 21
- 239000002131 composite material Substances 0.000 claims abstract description 8
- 230000000694 effects Effects 0.000 claims abstract description 7
- 238000004458 analytical method Methods 0.000 claims description 22
- 230000007547 defect Effects 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 7
- 230000001360 synchronised effect Effects 0.000 claims description 6
- 238000004891 communication Methods 0.000 claims description 5
- 238000012423 maintenance Methods 0.000 claims description 5
- 238000013016 damping Methods 0.000 claims description 4
- 238000011161 development Methods 0.000 claims description 4
- 230000004044 response Effects 0.000 claims description 3
- 238000005562 fading Methods 0.000 claims 1
- 239000000126 substance Substances 0.000 abstract 1
- 230000005540 biological transmission Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 230000032798 delamination Effects 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 230000033001 locomotion Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000010006 flight Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 210000001991 scapula Anatomy 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000013517 stratification Methods 0.000 description 1
- 238000009941 weaving Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D27/00—Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
- F04D27/001—Testing thereof; Determination or simulation of flow characteristics; Stall or surge detection, e.g. condition monitoring
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D17/00—Regulating or controlling by varying flow
- F01D17/02—Arrangement of sensing elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D21/00—Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
- F01D21/003—Arrangements for testing or measuring
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/28—Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
- F01D5/282—Selecting composite materials, e.g. blades with reinforcing filaments
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D19/00—Axial-flow pumps
- F04D19/002—Axial flow fans
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/26—Rotors specially for elastic fluids
- F04D29/32—Rotors specially for elastic fluids for axial flow pumps
- F04D29/321—Rotors specially for elastic fluids for axial flow pumps for axial flow compressors
- F04D29/324—Blades
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/16—Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
- G01B11/18—Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge using photoelastic elements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/26—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
- G01D5/32—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
- G01D5/34—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
- G01D5/353—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M5/00—Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
- G01M5/0016—Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings of aircraft wings or blades
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M5/00—Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
- G01M5/0033—Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by determining damage, crack or wear
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M5/00—Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
- G01M5/0091—Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by using electromagnetic excitation or detection
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/80—Diagnostics
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2270/00—Control
- F05D2270/80—Devices generating input signals, e.g. transducers, sensors, cameras or strain gauges
- F05D2270/804—Optical devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2300/00—Materials; Properties thereof
- F05D2300/60—Properties or characteristics given to material by treatment or manufacturing
- F05D2300/603—Composites; e.g. fibre-reinforced
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T50/00—Aeronautics or air transport
- Y02T50/60—Efficient propulsion technologies, e.g. for aircraft
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Aviation & Aerospace Engineering (AREA)
- Materials Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Electromagnetism (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Control Of Positive-Displacement Air Blowers (AREA)
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Optical Couplings Of Light Guides (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
Вентилятор авиационного двигателя содержит ротор, имеющий множество лопаток из композитного материала, включающего тканые волокна, и систему для обнаружения деформации в результате столкновения тела с вентилятором. В каждой из лопаток по меньшей мере одно из волокон является оптоволокном, включающим в себя часть, образующую Брэгговскую решетку. С оптоволокном соединен приемопередатчик, подходящий для отправки оптического сигнала в оптоволокно и приема оптического сигнала в ответ из оптоволокна. С приемопередатчиком соединен модуль детектора, обеспечивающий обнаружение деформации упомянутого вентилятора, когда принятый оптический сигнал демонстрирует корреляцию с заданным профилем волны затухающего воздействия на лопатку при определенной частоте вращения. При обнаружении деформации, вызванной столкновением тела с вентилятором, отправляют оптический сигнал по меньшей мере в одно оптоволокно каждой из лопаток, принимают оптический сигнал, поступающий из оптоволокна, и обеспечивают обнаружение деформации вентилятора в случае, если принятый оптический сигнал демонстрирует корреляцию с заданным профилем волны затухающего воздействия на лопатку при определенной частоте вращения. Другое изобретение группы относится к авиационному двигателю, содержащему такой вентилятор. Группа изобретений позволяет упростить обнаружение повреждений композитных лопаток вентилятора, вызванных столкновением с посторонними предметами. 3 н. и 11 з.п. ф-лы, 2 ил.
Description
УРОВЕНЬ ТЕХНИКИ
Настоящее изобретение относится к области авиационных двигателей. Настоящее изобретение относится, в частности, к обнаружению деформации лопаток вентилятора, например, в результате засасывания турбореактивным двигателем самолета предмета во время полета.
Во время полета посторонние тела или части, которые отделились от турбореактивного двигателя, могут быть втянуты турбореактивным двигателем и привести к повреждениям внутри него. Производственные дефекты также могут привести с течением времени к расслоению лопастей. И самое главное, предмет, сталкивающийся с лопаткой вентилятора, может повредить его.
Для повреждения из-за засасывания турбореактивным двигателем посторонних тел (например, птиц) используется термин «повреждение посторонним предметом» (FOD). Для повреждения из-за засасывания турбореактивным двигателем отделившихся частей (например, заклепок, болтов и т.д.), используется термин «повреждение внутренним предметом» (DOD).
Засасывание посторонних тел (FOD) является главной причиной задержки или отмены полетов, так как, как правило, воздействие не замечается пилотом во время полета, а замечается оно на лопатке только при осмотре самолета непосредственно перед его повторным вылетом.
Известны различные решения для обнаружения наличия FOD или DOD. Эти решения направлены на прогнозирование того, когда следует выполнять осмотр и операции по техническому обслуживанию для улучшения состояния эксплуатационной готовности самолета.
Одно известное решение для обнаружения FOD описано в патенте FR 2937079, принадлежащем заявителю настоящей заявки. Этот патент основан на установке на постоянной основе на двигателе акселерометров и на распознавании характерного профиля волны столкновения с вентилятором в форме волны изменяющихся со временем сигналов, поступающих от таких акселерометров.
РАСКРЫТИЕ ИЗОБРЕТЕНИЯ
Настоящее изобретение направлено на улучшение обнаружения деформации, возникающей вследствие повреждения или столкновений с лопатками вентилятора авиационного двигателя.
Для этого настоящее изобретение обеспечивает систему для обнаружения деформации вентилятора для авиационного двигателя, причем вентилятор содержит ротор, имеющий множество лопаток, выполненных из композитного материала, включающего в себя тканые волокна.
Эта система примечательна тем, что по меньшей мере одно из упомянутых волокон в каждой из упомянутых лопаток является оптоволокном, включающим в себя по меньшей мере одну часть, образующую Брэгговскую решетку, причем система дополнительно содержит приемопередатчик, соединенный с упомянутым оптоволокном и подходящий для отправки оптического сигнала в упомянутое оптоволокно и для приема оптического сигнала из упомянутого оптоволокна, и модуль детектора, который соединен с упомянутым приемопередатчиком, для обнаружения деформации упомянутого вентилятора, когда упомянутый принятый оптический сигнал демонстрирует корреляцию с заданным профилем волны затухающего воздействия на лопатку при определенной частоте вращения.
С помощью этих характеристик можно обнаружить деформацию в результате внутреннего повреждения или в результате столкновения с вентилятором и обнаружить массу постороннего предмета путем анализа сигнала, принятого из оптоволокна. Нет никакой необходимости использовать акселерометры, или емкостные, или оптические, или микроволновые датчики для анализа с помощью так называемого метода хронометража по кончику (tip-timing).
В оптимальном варианте выполнения множество упомянутых волокон по меньшей мере в одной из упомянутых лопаток являются оптоволокнами.
Другими словами, каждая из лопаток имеет множество оптоволокон. В этом случае анализ сигналов, принятых из различных оптоволокон лопатки, позволяет определить место, где произошло столкновение с лопаткой, что, таким образом, позволяет прогнозировать операции по техническому обслуживанию.
В одном варианте выполнения модуль детектора может быть встроен в электронный блок. В этом случае электронный блок может включать в себя упомянутый приемопередатчик, система дополнительно включает в себя оптический соединитель статора с ротором для соединения упомянутого приемопередатчика с упомянутым оптоволокном.
В варианте упомянутый приемопередатчик может быть установлен на роторе, модуль детектора может использоваться для осуществления связи с упомянутым приемопередатчиком с помощью беспроводного соединения через блок связи.
В этом варианте нет необходимости в оптическом соединителе статора с ротором.
Модуль детектора предпочтительно встроен в электронный блок, который может использоваться для хранения информации, относящейся к обнаруженной деформации, для идентификации лопатки и для передачи упомянутой информации о деформации и идентификации системе технического обслуживания.
Предпочтительно обеспечено средство приема для приема упомянутой информации о деформации и идентификации и средство анализа для модального анализа или анализа резонансов, синхронных с частотой вращения двигателя, упомянутой информации о деформации для идентификации модальных параметров, относящихся к каждой лопатке, и для отслеживания изменения упомянутых параметров для обнаружения появления дефектов и их развития на лопатках упомянутого вентилятора.
Изобретение также обеспечивает авиационный двигатель, включающий в себя систему в соответствии с изобретением.
Изобретение также обеспечивает способ контроля вентилятора авиационного двигателя, причем вентилятор содержит ротор, имеющий множество лопаток, выполненных из композитного материала, включающего в себя тканые волокна.
Этот способ контроля примечателен тем, что он содержит этапы, на которых отправляют оптический сигнал по меньшей мере в одно из упомянутых волокон в каждой из упомянутых лопаток, при этом волокно является оптоволокном, принимают оптический сигнал, поступающий из упомянутого оптоволокна, и коррелируют упомянутый принятый оптический сигнал и заданным профилем волны для затухающего воздействия на лопатку при определенной частоте вращения для обнаружения деформации упомянутого вентилятора.
В оптимальном варианте выполнения способ может также включать в себя определение массы упомянутого постороннего предмета и места упомянутого столкновения упомянутого постороннего предмета с упомянутым вентилятором путем анализа упомянутого принятого оптического сигнала. Он может также включать в себя этап, на котором выполняют модальный анализ или анализ резонансов, синхронных с частотой вращения двигателя, каждого из упомянутых сигналов для идентификации модальных параметров, относящихся к каждой лопатке, и для отслеживания изменений упомянутых модальных параметров для обнаружения появления дефектов и их развития на упомянутых лопатках.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Другие характеристики и преимущества настоящего изобретения становятся понятны из нижеследующего описания со ссылками на прилагаемые чертежи, которые показывают вариант выполнения, не имеющий ограничительного характера.
На чертежах:
фиг. 1 является схемой системы в первом варианте выполнения изобретения; и
фиг. 2 является схемой системы во втором варианте выполнения изобретения.
ОСУЩЕСТВЛЕНИЕ ИЗОБРЕТЕНИЯ
Фиг. 1 является схемой системы, включающей в себя вентилятор 1 для авиационного двигателя в первом варианте выполнения изобретения.
Вентилятор 1 содержит ротор 2, имеющий лопатки 3.
В качестве примера, двигатель является турбореактивным двигателем, содержащим вентилятор 1, компрессор низкого давления, компрессор высокого давления, камеру сгорания, турбину высокого давления и турбину низкого давления. В варианте выполнения вентилятор 1 является бестуннельным вентилятором (также известным как винтовентилятор).
Лопатки (лопасти) 3 выполнены из тканого композитного материала. Поэтому они включают в себя тканые волокна. Специалисту в данной области техники известно, как выполнить такую лопатку (лопасть), поэтому создание лопатки (лопасти) подробно здесь не описано. Кроме того, специалисту в данной области техники известны методы, позволяющие встроить оптоволокно во время плетения, чтобы позволить контролировать температуру композитного материала во время его введения в пресс-форму. Поэтому в вентиляторе 1 лопатки 3 включают в себя оптоволокно 4.
Система также включает в себя электронный блок 5, в свою очередь содержащий приемопередатчик 6 и модуль 7 детектора. Система предпочтительно взаимодействует с процессорным блоком 10 на земле с помощью передачи типа SATCOM или GSM, используя систему передачи данных воздушного судна.
Приемопередатчик 6 соединен с оптоволокном 4 лопаток 3 через оптоволокно 9 и соединитель 8 для обеспечения передачи между ротором и статором. Приемопередатчик 6 обычно содержит лазерный излучатель и фотодиодный приемник и может использоваться для отправки оптического сигнала в оптоволокно 4 и для приема оптического сигнала из оптоволокна 4 через соединитель 8 и оптоволокно 9.
Число, расположение и тип соединения с оптоволокном 4 в лопатке 3 могут быть выбраны при проектировании лопатки 3 в зависимости от зон, которые должны контролироваться. Например, в хвостовиках лопаток оптоволокно 4 может быть мультиплексировано.
Модуль 7 детектора является подходящим для отправки оптических сигналов посредством приемопередатчика 6 и для анализа оптических сигналов, принятых приемопередатчиком 6.
В качестве примера, анализ сигналов может быть основан на использовании Брэгговских решеток в качестве детектора движения. Не давая точное определение Брэгговской решетки, далее следует интуитивная идея принципа использования этой технологии. Брэгговская решетка является нанесенной с помощью светового излучения решеткой в оптоволокне, и, говоря проще, часть оптоволокна была подвергнута модификации для придания ей новых свойств. Влияние физического явления, которое должно быть измерено (здесь внутреннее повреждение лопатки из-за расслоения или движение, вызванное столкновением), изменяет свойства решетки и, таким образом, изменяет спектр сигнала.
Так как столкновение с посторонним предметом приводит по меньшей мере к временному перемещению или деформации лопаток 3, можно понять, что анализ принятых оптических сигналов позволяет обнаружить такое столкновение. То же самое верно для внутреннего повреждения, приводящего к другому деформационному отклику. Точнее говоря, анализ принятых оптических сигналов позволяет:
- идентифицировать лопатку(ки) 3, которая(ые) являются поврежденными/были повреждены или с которыми было столкновение;
- определить место столкновения и повреждения на лопатке 3;
- оценить массу постороннего предмета, с которым произошло столкновение; и
- идентифицировать лопатку (на практике пару лопаток) для замены.
Обнаружение столкновения или повреждения данной лопатки основано на автоматическом распознавании характерной формы волны сигнала собственных колебаний в результате затухающего воздействия, поступающего от Брэгговской решетки в этой лопатке. Модуль 7 детектора принимает информацию и о частоте вращения двигателя (например, традиционно, с помощью хронометража по кончику), а также сигналы деформации лопатки, если таковые имеются, вытекающие просто из модификации оптических свойств оптоволокна(он), присутствующих в лопатке, под действием столкновения или повреждения. Для выполнения обнаружения модуль детектора включает в себя корреляционное средство для корреляции этих сигналов деформации с ранее сохраненным заранее определенным профилем волны затухающего воздействия на лопатку, вращающуюся с рассматриваемой частотой. Как раскрыто, например, в патенте FR 2937079, заданный профиль волны состоит из псевдо-вейвлета, имеющего осциллирующую форму волны и амплитуду, которая начинается с нуля, которая увеличивается в течение короткого промежутка времени до максимальной амплитуды, и затем уменьшается, постепенно возвращаясь к нулю. Таким образом, любой сигнал, показывающий корреляцию между сигналом деформации и профилем волны столкновения, является показателем столкновения с вентилятором, независимо от того, почувствовал ли столкновение пилот. Местоположение лопатки, затронутой столкновением или повреждением, определяется просто путем идентификации Брэгговской решетки, которая показывает сигнал, возникающий в результате деформации.
Когда лопатка имеет множество оптоволокон, как упоминалось выше, определяется местоположение зоны столкновения или повреждения на самой лопатке путем идентификации, на какое волокно было оказано воздействие.
Масса оценивается на основании энергии столкновения и скорости постороннего предмета, который столкнулся с лопаткой. Энергия столкновения получается путем вывода с помощью предварительной модели упомянутой энергии как функции максимальной деформации лопатки (соответствующий вышеупомянутой максимальной амплитуде затухающего сигнала столкновения), а скорость предмета относительно лопатки получается с помощью скорости воздушного судна и частоты вращения двигателя (полагая, что скорость предмета относительно лопатки равна скорости воздушного судна, что верно в первом приближении).
Наконец, лопатка для проверки идентифицируется просто путем применения порогового значения к ранее обнаруженным сигналам, чтобы оставить только те, которые являются действительно значимыми и которые являются результатом столкновения, которое может привести к поломке двигателя. Это делается потому, что лопатка, с которой произошло столкновение, необязательно повреждена и поэтому должна быть заменена. В противоположность этому, если лопатка демонстрирует появление трещины или повреждение, которое может привести к отслоению, которое увеличивается с увеличением числом оборотов, эта лопатка, естественно, должна быть снята (для утилизации или для ремонта) и заменена как часть пары, то есть вместе с противоположной лопаткой, потому что их статические моменты очень близки.
Вышеупомянутая информация сохраняется электронным блоком 5, который может быть встроен в конкретный блок, или же, так как обработка на борту ограничена сигналами, возникающими в результате деформаций, может быть частью существующего блока, такого как блок контроля технического состояния двигателя (EMU), и затем передается на землю системе технического обслуживания или процессорному блоку 10 для дополнительной обработки.
Процессорный блок 10 включает в себя средство 100 приема, средство 102 анализа и средство 104 хранения типа базы данных. Средство приема выполнено с возможностью принимать сигналы, возникающие в результате деформаций, отправленные бортовым модулем 7 детектора электронного блока 5, поэтому этот блок, естественно, должен быть обеспечен соответствующим средством передачи. После приема сигналов средство анализа применяет модальный анализ к каждому из сигналов для идентификации модальных параметров, относящихся к каждой лопатке, с которой было столкновение. Модальный анализ (обычно типа Прони или эквивалентного типа) используется для определения резонансной частоты и затухания для каждой деформации. Средство анализа затем переходит к проверке модальных параметров, идентифицированных для каждой лопатки перед сохранением их в базе данных, относящихся к вентилятору 1. Средство анализа также выполнено с возможностью отслеживать изменения в модальных параметрах, следующих из столкновения (псевдорезонансные частоты) или из реакции лопатки на гармоническое возбуждение (резонансные частоты, синхронизированные на величине, кратной частоте вращения двигателя) для обнаружения возможных изменений (например, смещения частоты), которые свидетельствуют о развивающемся повреждении в лопатках вентилятора. В частности это средство анализа сравнивает модальные параметры с базой данных исправных лопаток для оценки затухания и/или сдвигов частоты. Это сравнение предпочтительно выполняется от столкновения к столкновению для псевдорезонансных частот, или от цикла к циклу двигателя для синхронных резонансов (например, используя алгоритм контроля тенденций) для анализа изменений в модальных параметрах, числа столкновений и, возможно, других характеристик, относящихся к столкновениям. Таким образом, сдвиг, который является небольшим и прогрессирующим, свидетельствует о том, что дефект изменяется, в то время как внезапное изменение относительно опорного исправного состояния свидетельствует о внезапном появлении дефекта. Когда дефект обнаружен, средство 102 анализа генерируют служебное сообщение или предупреждение для двигателя, которое включает в себя данные, идентифицирующие дефектную лопатку(ки).
В качестве примера, электронный блок 5 представляет собой аппаратную архитектуру компьютера и содержит, в частности, микропроцессор, энергонезависимую память и энергозависимую память. В этом случае модуль 7 детектора может соответствовать микропроцессору, выполняющему компьютерную программу, сохраненную в энергонезависимой памяти, используя энергозависимую память.
Электронный блок 5 может предназначаться специально для контроля лопаток 3 и обнаружения их деградации, если таковая имеется. В одном варианте электронный блок 5 может выполнять другие функции отслеживания и/или управления для двигателя.
Фиг. 2 показывает систему, включающую в себя вентилятор 11 для авиационного двигателя во втором варианте выполнения изобретения. Элементы, которые идентичны или аналогичны элементам системы по фиг. 1, обозначены теми же самыми номерами ссылочных позиций плюс 10, и они не будут вновь описаны подробно.
Таким образом, вентилятор 11 содержит ротор 12, имеющий лопатки 13, включающие в себя оптоволокно 14, и система включает в себя электронный блок 15, включающий в себя модуль 17 детектора.
Система также включает в себя вспомогательный электронный блок 20, установленный на роторе 12. Электронный блок 20 включает в себя приемопередатчик 16, соединенный с оптоволокном 14, и блок 21 связи, который может использоваться для осуществления связи по беспроводному соединению (например, линии радиосвязи) с блоком 22 связи электронного блока 15. Блок 22 связи может также обеспечивать соединение с удаленным блоком 23 процессора на земле, имеющим функцию выполнения модального анализа и отслеживания модальных параметров, которые следуют из него, для обнаружения отклонений в их изменении, что выявляет дефекты в лопатках вентилятора, для выдачи служебного предупреждения для двигателя.
По сравнению с вариантом выполнения по фиг. 1 система по фиг. 2 не требует оптического соединителя статора с ротором, так как приемопередатчик 16 установлен на роторе.
Claims (14)
1. Вентилятор (1, 11) для авиационного двигателя, содержащий ротор (2, 12), имеющий множество лопаток (3, 13), выполненных из композитного материала, включающего в себя тканые волокна, и систему для обнаружения деформации в результате столкновения тела с упомянутым вентилятором, причем вентилятор отличается тем, что по меньшей мере одно из упомянутых волокон в каждой из упомянутых лопаток (3, 13) является оптоволокном (4, 14), включающим в себя по меньшей мере одну часть, образующую Брэгговскую решетку, причем вентилятор дополнительно содержит приемопередатчик (6, 16), соединенный с упомянутым оптоволокном (4, 14) и подходящий для отправки оптического сигнала в упомянутое оптоволокно (4, 14) и для приема оптического сигнала в ответ из упомянутого оптоволокна (4, 14), и модуль (7, 17) детектора, соединенный с упомянутым приемопередатчиком, для обнаружения деформации упомянутого вентилятора (1, 11), когда упомянутый принятый оптический сигнал демонстрирует корреляцию с заданным профилем волны затухающего воздействия на лопатку при определенной частоте вращения.
2. Вентилятор по п. 1, в котором столкновение упомянутого тела с упомянутым вентилятором является повреждением посторонним предметом (FOD) или повреждением внутренним предметом (DOD).
3. Вентилятор по п. 2, в котором упомянутый модуль детектора является подходящим для определения массы упомянутого тела путем анализа принятого оптического сигнала.
4. Вентилятор по п. 3, в котором множество упомянутых волокон в каждой из упомянутых лопаток (3, 13) являются оптоволокнами (4, 14).
5. Вентилятор по п. 4, в котором упомянутый модуль детектора является подходящим для определения места столкновения с упомянутым телом путем анализа принятого оптического сигнала.
6. Вентилятор по п. 1, дополнительно включающий в себя оптический соединитель (8) статора с ротором, соединяющий упомянутый приемопередатчик (6) с упомянутым оптоволокном (4).
7. Вентилятор по п. 1, в котором упомянутый приемопередатчик (16) установлен на роторе (12), причем модуль (17) детектора является подходящим для осуществления связи с упомянутым приемопередатчиком (16) посредством беспроводного соединения через блок (22) связи.
8. Вентилятор по п. 1, в котором модуль (7, 17) детектора встроен в электронный блок (5, 15), который является подходящим для хранения информации, относящейся к обнаруженной деформации, для идентификации лопатки и для передачи упомянутой информации о деформации и идентификации системе технического обслуживания.
9. Вентилятор по п. 8, дополнительно включающий в себя средство (100) приема для приема упомянутой информации о деформации и идентификации и средство (102, 104) анализа для применения модального анализа или анализа резонансов, синхронных с частотой вращения двигателя, к упомянутой информации о деформации для идентификации модальных параметров, относящихся к каждой лопатке, и для отслеживания изменений упомянутых параметров для обнаружения появления дефектов и их развития на лопатках упомянутого вентилятора.
10. Авиационный двигатель, включающий в себя вентилятор по п. 1.
11. Способ обнаружения деформации, вызванной столкновением тела с вентилятором (1, 11) авиационного двигателя, причем вентилятор содержит ротор (2, 12), имеющий множество лопаток (3, 13), выполненных из композитного материала, включающего в себя тканые волокна, и систему для обнаружения деформации, причем способ отличается тем, что он содержит этапы, на которых отправляют оптический сигнал по меньшей мере в одно из упомянутых волокон в каждой из упомянутых лопаток (3, 13), при этом волокно является оптоволокном (4, 14), принимают оптический сигнал, поступающий из упомянутого оптоволокна (4, 14), и коррелируют упомянутый принятый оптический сигнал и заданный профиль волны для затухающего воздействия на лопатку при определенной частоте вращения для обнаружения деформации упомянутого вентилятора (1, 11).
12. Способ обнаружения по п. 11, в котором столкновение упомянутого тела с упомянутым вентилятором является FOD или DOD.
13. Способ обнаружения по п. 12, дополнительно включающий в себя этап, на котором определяют массу упомянутого тела и места упомянутого столкновения упомянутого тела с упомянутым вентилятором путем анализа упомянутого принятого оптического сигнала.
14. Способ обнаружения по п. 11, дополнительно включающий в себя этап, на котором выполняют модальный анализ или анализ резонансов, синхронных с частотой вращения двигателя, для каждого из упомянутых сигналов для идентификации модальных параметров, относящихся к каждой лопатке, и для отслеживания изменений упомянутых модальных параметров для обнаружения появления дефектов и их развития на упомянутых лопатках.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1252489A FR2988444B1 (fr) | 2012-03-20 | 2012-03-20 | Detection d'un impact d'objet etranger a l'entree d'un moteur d'aeronef |
FR1252489 | 2012-03-20 | ||
PCT/FR2013/050581 WO2013140085A1 (fr) | 2012-03-20 | 2013-03-19 | Detection et suivi d'un endommagement ou d'un impact d'objet etranger sur une soufflante d'un moteur d'aeronef |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2014142035A RU2014142035A (ru) | 2016-05-20 |
RU2625412C2 true RU2625412C2 (ru) | 2017-07-13 |
Family
ID=48237061
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2014142035A RU2625412C2 (ru) | 2012-03-20 | 2013-03-19 | Обнаружение и отслеживание повреждения вентилятора авиационного двигателя или столкновения с ним постороннего предмета |
Country Status (9)
Country | Link |
---|---|
US (1) | US9926937B2 (ru) |
EP (2) | EP3287600B1 (ru) |
JP (1) | JP6203811B2 (ru) |
CN (1) | CN104204414B (ru) |
BR (1) | BR112014023360B1 (ru) |
CA (1) | CA2867831C (ru) |
FR (1) | FR2988444B1 (ru) |
RU (1) | RU2625412C2 (ru) |
WO (1) | WO2013140085A1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2800105C2 (ru) * | 2018-12-07 | 2023-07-18 | Сафран Эркрафт Энджинз | Система вычислительного окружения для мониторинга двигателей летательных аппаратов |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2986269B1 (fr) * | 2012-01-30 | 2015-08-07 | Snecma | Systeme de detection d'un impact sur une roue aubagee de moteur d'aeronef |
WO2014085292A1 (en) * | 2012-11-28 | 2014-06-05 | United Technologies Corporation | Turbofan with optical diagnostic capabilities |
US10780988B2 (en) * | 2014-08-11 | 2020-09-22 | Amazon Technologies, Inc. | Propeller safety for automated aerial vehicles |
US10671094B2 (en) | 2014-08-11 | 2020-06-02 | Amazon Technologies, Inc. | Virtual safety shrouds for aerial vehicles |
CN105973448B (zh) * | 2016-02-02 | 2019-02-26 | 南京航空航天大学 | 一种旋转叶片振动测量方法与系统 |
CN109313069B (zh) * | 2016-04-26 | 2021-08-03 | 比勒陀利亚大学 | 一种使用叶尖定时(btt)监测涡轮机转子叶片的方法和系统 |
US10416004B2 (en) * | 2016-05-02 | 2019-09-17 | Mitsubishi Electric Corporation | Resin impregnation detection device, coil for rotating machine, and method for impregnating and molding resin of coil for rotating machine |
EP3485161A4 (en) * | 2016-07-15 | 2020-04-08 | Sikorsky Aircraft Corporation | SENSOR SYSTEM FOR ROTOR BLADE DEFLECTION |
CN108267264B (zh) * | 2016-12-31 | 2019-12-13 | 北京金风科创风电设备有限公司 | 用于标定风机叶片的光纤光栅传感器的方法、装置和设备 |
KR101999432B1 (ko) | 2017-04-04 | 2019-07-11 | 두산중공업 주식회사 | 터빈 블레이드의 플러터 측정을 위한 자기장 통신 시스템 및 방법 |
FR3066273B1 (fr) * | 2017-05-15 | 2019-05-03 | Safran Aircraft Engines | Systeme a fibre optique pour la detection des avaries affectant un moyeu d'helice |
FR3070965B1 (fr) * | 2017-09-13 | 2019-08-23 | Safran Aircraft Engines | Moyeu d'helice de soufflante non carenee a zone d'amorce de rupture pour la detection et la prevention des avaries |
CN108168805A (zh) * | 2017-12-01 | 2018-06-15 | 中国直升机设计研究所 | 一种直升机桨叶鸟撞性能试验验证方法 |
US10246183B1 (en) | 2017-12-07 | 2019-04-02 | Kitty Hawk Corporation | Propeller impact detection and force reduction |
CN108443204B (zh) * | 2018-03-06 | 2019-08-13 | 程柏元 | 电风扇 |
EP3557214B1 (en) | 2018-04-20 | 2022-08-24 | Hamilton Sundstrand Corporation | A blade for a propeller with blade composite structure and an extrinsic fabry-perot interferometric sensor embedded in the blade composite structure |
US11136888B2 (en) | 2018-10-18 | 2021-10-05 | Raytheon Technologies Corporation | Rotor assembly with active damping for gas turbine engines |
CN109540534B (zh) * | 2018-12-03 | 2019-11-08 | 东北大学 | 用于航空发动机叶片fod模型的连续弹体发射装置及方法 |
DE102018131948B4 (de) * | 2018-12-12 | 2023-10-26 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Verfahren und Vorrichtung zum Detektieren eines Schlagereignisses sowie ein Fahrzeug hierzu |
CN113508279A (zh) * | 2019-02-28 | 2021-10-15 | 日本电气株式会社 | 光纤传感系统 |
FR3101417B1 (fr) | 2019-09-30 | 2021-09-03 | Safran | Procédé et dispositif de mesure optique de déformées ou de températures en surface d’aubes de soufflante de turbomachine aéronautique |
CN110657906B (zh) * | 2019-10-23 | 2020-06-09 | 南京航空航天大学 | 一种基于光纤光栅传感器的冲击监测方法 |
WO2021113508A1 (en) * | 2019-12-05 | 2021-06-10 | Siemens Energy, Inc. | Turbine blade health monitoring system for identifying cracks |
US11480530B2 (en) | 2020-04-15 | 2022-10-25 | Rosemount Aerospace Inc. | Optical detection of foreign object debris ingested by aircraft engine |
FR3116229B1 (fr) * | 2020-11-17 | 2023-11-17 | Safran Aircraft Engines | Pièce composite, notamment pour une turbomachine d’aéronef |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1487621A1 (ru) * | 1987-03-12 | 1991-10-15 | Предприятие П/Я М-5147 | Устройство дл измерени деформаций турбинных лопаток |
WO2005071382A1 (en) * | 2004-01-23 | 2005-08-04 | Lm Glasfiber A/S | Device including a system adapted for use in temperature compensation of strain measurements in fibre-reinforced structures |
FR2937079A1 (fr) * | 2008-10-10 | 2010-04-16 | Snecma | Procede et systeme de surveillance d'un turboreacteur |
US20100247056A1 (en) * | 2007-11-20 | 2010-09-30 | Michael Willsch | Adjustment Device for Coupled Optics for Measuring Using Fiber-Optic Sensors on Rotating Parts |
EP2369292A1 (en) * | 2010-03-15 | 2011-09-28 | Rolls-Royce plc | A Strain Gauge Assembly and Method |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2937079A (en) | 1956-08-06 | 1960-05-17 | Phillips Petroleum Co | Apparatus for contacting and subsequently separating immiscible liquids |
JPH067049B2 (ja) * | 1984-08-13 | 1994-01-26 | ユナイテツド テクノロジ−ズ コ−ポレ−シヨン | 分散的,離間的に解析する光ファイバひずみ計 |
US5399854A (en) * | 1994-03-08 | 1995-03-21 | United Technologies Corporation | Embedded optical sensor capable of strain and temperature measurement using a single diffraction grating |
US5770155A (en) * | 1995-11-21 | 1998-06-23 | United Technologies Corporation | Composite structure resin cure monitoring apparatus using an optical fiber grating sensor |
US5844669A (en) * | 1996-07-22 | 1998-12-01 | General Electric Company | Detecting and minimizing fiber misalignment in a composite during manufacturing |
JP4286382B2 (ja) * | 1999-05-17 | 2009-06-24 | 株式会社フジクラ | 温度張力測定ファイバグレーティングセンサ |
JP2000329627A (ja) * | 1999-05-20 | 2000-11-30 | Fujikura Ltd | ファイバグレーティングセンサおよびこれを用いた張力測定装置 |
US6499350B1 (en) * | 2000-04-04 | 2002-12-31 | Swantech, L.L.C. | Turbine engine foreign object damage detection system |
JP2001343263A (ja) * | 2000-05-31 | 2001-12-14 | Mitsubishi Cable Ind Ltd | 光導波路グレーティングセンサ及び複数物理量の同時計測方法 |
US7095221B2 (en) * | 2004-05-27 | 2006-08-22 | Siemens Aktiengesellschaft | Doppler radar sensing system for monitoring turbine generator components |
US8818683B2 (en) * | 2006-04-21 | 2014-08-26 | General Electric Company | Method and apparatus for operating a gas turbine engine |
US7849752B2 (en) * | 2007-10-24 | 2010-12-14 | Argon St, Inc. | Method and system for passive wireless strain gauge |
DE102009004661A1 (de) * | 2009-01-12 | 2010-07-15 | Rolls-Royce Deutschland Ltd & Co Kg | Vorrichtung zur Reparatur der Schaufeln von BLISK-Trommeln mittels Laserstrahlauftragsschweißen |
FR2951222B1 (fr) * | 2009-10-09 | 2013-01-11 | Snecma | Amortissement d'une piece tournante par dispositif piezoelectrique dissipatif passif ou semi-passif. |
-
2012
- 2012-03-20 FR FR1252489A patent/FR2988444B1/fr active Active
-
2013
- 2013-03-19 CA CA2867831A patent/CA2867831C/fr active Active
- 2013-03-19 WO PCT/FR2013/050581 patent/WO2013140085A1/fr active Application Filing
- 2013-03-19 BR BR112014023360-8A patent/BR112014023360B1/pt active IP Right Grant
- 2013-03-19 EP EP17192223.0A patent/EP3287600B1/fr active Active
- 2013-03-19 US US14/386,393 patent/US9926937B2/en active Active
- 2013-03-19 EP EP13719899.0A patent/EP2828486B1/fr active Active
- 2013-03-19 CN CN201380015595.1A patent/CN104204414B/zh active Active
- 2013-03-19 RU RU2014142035A patent/RU2625412C2/ru active
- 2013-03-19 JP JP2015500968A patent/JP6203811B2/ja active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1487621A1 (ru) * | 1987-03-12 | 1991-10-15 | Предприятие П/Я М-5147 | Устройство дл измерени деформаций турбинных лопаток |
WO2005071382A1 (en) * | 2004-01-23 | 2005-08-04 | Lm Glasfiber A/S | Device including a system adapted for use in temperature compensation of strain measurements in fibre-reinforced structures |
US20100247056A1 (en) * | 2007-11-20 | 2010-09-30 | Michael Willsch | Adjustment Device for Coupled Optics for Measuring Using Fiber-Optic Sensors on Rotating Parts |
FR2937079A1 (fr) * | 2008-10-10 | 2010-04-16 | Snecma | Procede et systeme de surveillance d'un turboreacteur |
EP2369292A1 (en) * | 2010-03-15 | 2011-09-28 | Rolls-Royce plc | A Strain Gauge Assembly and Method |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2800105C2 (ru) * | 2018-12-07 | 2023-07-18 | Сафран Эркрафт Энджинз | Система вычислительного окружения для мониторинга двигателей летательных аппаратов |
Also Published As
Publication number | Publication date |
---|---|
EP3287600A1 (fr) | 2018-02-28 |
CA2867831C (fr) | 2020-11-24 |
EP2828486B1 (fr) | 2019-09-11 |
CN104204414B (zh) | 2016-08-31 |
BR112014023360A2 (ru) | 2017-06-20 |
FR2988444A1 (fr) | 2013-09-27 |
RU2014142035A (ru) | 2016-05-20 |
JP6203811B2 (ja) | 2017-09-27 |
BR112014023360A8 (pt) | 2019-01-29 |
JP2015518535A (ja) | 2015-07-02 |
EP3287600B1 (fr) | 2020-10-14 |
BR112014023360B1 (pt) | 2020-09-01 |
CA2867831A1 (fr) | 2013-09-26 |
WO2013140085A1 (fr) | 2013-09-26 |
US9926937B2 (en) | 2018-03-27 |
US20150098819A1 (en) | 2015-04-09 |
EP2828486A1 (fr) | 2015-01-28 |
CN104204414A (zh) | 2014-12-10 |
FR2988444B1 (fr) | 2016-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2625412C2 (ru) | Обнаружение и отслеживание повреждения вентилятора авиационного двигателя или столкновения с ним постороннего предмета | |
KR101665698B1 (ko) | 회전자 블레이드 상태를 모니터하는 시스템 및 방법 | |
CN103592053A (zh) | 用于涡轮发动机的蠕变寿命管理系统及操作其的方法 | |
CN103868994B (zh) | 用于检测复合材料结构上的撞击的检测装置及检测方法 | |
US10908050B2 (en) | Methods and systems for monitoring rotor blades in turbine engines | |
EP3220119B1 (en) | Structured light measuring method for assessing an aerodynamic profile | |
CN103998775A (zh) | 用于确定风能源设备的转子叶片的机械损坏的方法 | |
EP2469258A2 (en) | Method And System For Online Creep Monitoring | |
CN104697798A (zh) | 航空发动机叶尖间隙三维表征与光纤动态检测系统及方法 | |
US8958946B2 (en) | System for detecting defects on an aircraft engine impeller wheel | |
US10908049B2 (en) | Methods and systems for monitoring rotor blades in turbine engines | |
JP5568014B2 (ja) | 構成部品監視装置 | |
US11193388B2 (en) | Methods and systems for monitoring rotor blades in turbine engines | |
CN104297265A (zh) | 基于微波激励的复合材料内部积水缺陷损伤检测法及系统 | |
US20140053649A1 (en) | Monitoring unit and method for detecting structural defects which can occur in an aircraft nacelle during use | |
CN107977679B (zh) | 基于频响函数和运行响应特征诊断复杂装置早期故障的方法 | |
CN110155366A (zh) | 智能光纤复合结构的自感知、识别和修复一体化方法 | |
US20130298686A1 (en) | Device and method for monitoring a rotor | |
RU2499240C1 (ru) | Способ вибродиагностики газотурбинного двигателя | |
Khodaei et al. | Aerospace Requirements | |
US9766156B2 (en) | Focused optical configuration for NSMS probes | |
CN115901845A (zh) | 一种飞行器舱体用热防护结构失效测试系统 | |
Dempsey et al. | Comparison of test stand and helicopter oil cooler bearing condition indicators | |
CN111188742A (zh) | 基于光纤加速度传感器的风力发电机组叶片结冰检测方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PD4A | Correction of name of patent owner |