RU2625173C1 - Способ эксплуатации литий-ионной аккумуляторной батареи в составе космического аппарата негерметичного исполнения - Google Patents

Способ эксплуатации литий-ионной аккумуляторной батареи в составе космического аппарата негерметичного исполнения Download PDF

Info

Publication number
RU2625173C1
RU2625173C1 RU2016101706A RU2016101706A RU2625173C1 RU 2625173 C1 RU2625173 C1 RU 2625173C1 RU 2016101706 A RU2016101706 A RU 2016101706A RU 2016101706 A RU2016101706 A RU 2016101706A RU 2625173 C1 RU2625173 C1 RU 2625173C1
Authority
RU
Russia
Prior art keywords
temperature
battery
batteries
sensors
lithium
Prior art date
Application number
RU2016101706A
Other languages
English (en)
Inventor
Дмитрий Сергеевич Карплюк
Николай Васильевич Стадухин
Марсиля Вахитовна Порпылева
Original Assignee
Акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнёва"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнёва" filed Critical Акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнёва"
Priority to RU2016101706A priority Critical patent/RU2625173C1/ru
Application granted granted Critical
Publication of RU2625173C1 publication Critical patent/RU2625173C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/627Stationary installations, e.g. power plant buffering or backup power supplies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

Изобретение относится к энергообеспечению космических аппаратов, преимущественно геостационарных спутников с трехосной ориентацией. Способ включает зарядку-разрядку и хранение аккумуляторов в заряженном состоянии. На аккумуляторах установлены аналоговые датчики температуры в количестве не менее двух, а также локальные нагреватели. В процессе эксплуатации определяют текущее значение температуры АБ, при этом если температура одного из датчиков достигла предельного порога отключения, то происходит отключение обогревателя, и в случае если температура одного из датчиков достигла минимального порога включения, происходит включение обогревателя, при этом в случае, если температура одного датчика достигла порога отключения, при этом одновременно другой датчик достиг порога включения, то приоритет делается на отключение обогревателя. Повышение эффективности использования литий-ионных аккумуляторных батарей и ресурсных характеристик космического аппарата негерметичного исполнения является техническим результатом изобретения. Аналоговые датчики температуры через устройство контроля связаны с системой терморегулирования и бортовой вычислительной машиной, которая снабжена программой, корректирующей работу (включение/отключение) локальных нагревателей в зависимости от температуры АБ. 2 ил.

Description

Заявляемое изобретение относится к электротехнической промышленности и может быть использовано при разработке и эксплуатации литий-ионных аккумуляторных батарей преимущественно в автономных системах электропитания искусственных спутников Земли (ИСЗ).
К числу систем современных космических аппаратов (КА), по сути определяющих срок активного существования КА, относится в первую очередь система электропитания, у которой наиболее критичным звеном являются аккумуляторные батареи (АБ).
Для обеспечения длительного срока службы (ресурса) АБ очень важно обеспечивать, в процессе их эксплуатации, комфортные температурные режимы, при этом особенно важно поддерживать температуру в сравнительно узком диапазоне. Оптимальный диапазон рабочих температур для никель-водородных АБ, предназначенных для установки на связных КА и характеризующихся сравнительно высокими токами заряда и разряда, составляет (5-15)°С. (см. S.W. Donley and D.C. Verrier. Study of Nickel - Hydrogen Battery discharge Performance after charge and stand at warm temperatyre. TRW Space and Technology Groyp. Proc. 27-th Intersoc. Energy Convers. Eng. Conf. "Technol. Energy. Effic. 21-st Century", San Diego, Calif., aug. 3-7, 1992. (С.В. Донли, Д.С. Верьер. Исследование разрядных характеристик никель-водородной батареи после заряда и выдержки при повышенной температуре, [2])).
Известен способ эксплуатации никель-водородной аккумуляторной батареи в составе КА (патент №2164881, B64G 1/00, B64G 1/22, B64G 1/42, 2001), содержащий отсек с целевой аппаратурой, герметичный приборный отсек, агрегатный отсек с комплексной двигательной установкой, систему терморегулирования с гидравлическими контурами и приборами для отбора, подвода и сброса тепла, в том числе выполненными в виде термоплат со штатными и технологическими гидравлическими каналами, систему электропитания, состоящую из солнечной батареи, установленного в приборном отсеке комплекса автоматики и стабилизации напряжения, размещенных в агрегатном отсеке никель-водородных аккумуляторных батарей, установленных внутри каждой батареи датчиков давления, чувствительных к изменению текущей электрической емкости батарей, а также бортовой комплекс управления с бортовой вычислительной машиной, причем указанные датчики давления через устройства преобразования сигнала включены в канал обмена информацией между указанными комплексом автоматики и стабилизации напряжения и бортовой вычислительной машиной, которая снабжена программой, корректирующей режим работы аппарата в зависимости от глубины разряда аккумуляторных батарей и определяющей суммарную глубину разряда.
Недостатком известного способа и КА является то, что в нем не учитывается текущее тепловыделение аккумуляторных батарей, а теплосъем с них не регулируется, что приводит к расширению температурного диапазона эксплуатации и соответственно не обеспечивается эффективное использование аккумуляторных батарей.
Наиболее близким по технической сущности заявляемому КА является КА (патент №2371361, B64G 1/42, B64G 1/50, 2006). Так поставленная задача достигается тем, что определяют текущее тепловыделение аккумуляторной батареи, а тепловыделение нагревателей регулируют, исходя из соотношения:
Figure 00000001
где Qнагр - текущее интегральное тепловыделение нагревателей;
Qаб - текущее тепловыделение аккумуляторной батареи;
Qpo - теплоотдача посредством радиационного охлаждения;
Const - установленное значение разницы расчетного тепловыделения и теплоотдачи.
При этом при запуске космического аппарата величина Const равна нулю, а в процессе эксплуатации космического аппарата (автоматически либо по командам с Земли) ее корректируют в большую или меньшую сторону исходя из условия нахождения температуры аккумуляторной батареи в пределах установленных граничных значений.
Этот способ принят за прототип заявляемому изобретению.
Эффективность такого метода терморегулирования недостаточно высока. Так в современных КА широко применяются литий-ионные аккумуляторные батареи, которые значительно чувствительнее к температуре нежели никель водородные АБ. Опыт эксплуатации литий-ионных АБ показал, что данный метод достаточно неэффективен. Так в данном методе приоритет стоит на достижение разности тепловыделений, при этом не оговорено в каком случае «отключать» обогреватели АБ. Исходя из формулы (1) можно сделать вывод, что отключение обогревателей АБ будет происходить после достижения величины температуры, при котором выполняется равенство формулы (1). Однако в этом случае включение и отключение обогревателей будет происходить с высокой частотой, так как значение разности тепловыделений будет довольно быстро уходить за пределы заданного значения Const, что в свою очередь приведет к снижению ресурса коммутаторов включения/отключения обогревателей АБ. Это приведет к снижению надежности контура управления обогрева, что является критичным для литий-ионной АБ. Кроме того, текущее тепловыделение АБ (Qaб) меняется в зависимости от режима эксплуатации АБ, тогда как интегральное тепловыделение нагревателей (Qнагр) и теплоотдача посредством радиационного охлаждения (Qpo) величины значительно более прогнозируемы. Так в режиме хранения и в режиме заряда/разряда АБ тепловыделения АБ сильно разнятся. Например, в режиме хранения литий-ионная АБ практически не выделяет тепла, тогда как в режиме заряда/разряда АБ отдает тепло, причем это значение не постоянно, а зависит от уровня снимаемой мощности с АБ. Кроме того, в ходе эксплуатации на состояние АБ также влияют дополнительные внешние факторы, такие так затенение конструкцией КА отдельных элементов или всей АБ. Все это приводит к тому, что температура АБ будет изменяться и ее сложно точно спрогнозировать. Следовательно, проанализировав формулу (1), можно сделать вывод, что величина Const должна постоянно корректироваться исходя из текущего режима работы АБ. На заводе-изготовителе путем анализа теоретически возможно предусмотреть предварительное влияние внешних факторов, однако оценку их реального влияния на изменение температуры АБ можно будет сделать после двух, а то и трех лет эксплуатации. Все это приводит к тому, что на начальном этапе эксплуатации необходимо регулярно проводить анализ текущей температуры АБ и при необходимости корректировать значение разности тепловыделения, что в свою очередь снижает автономность КА и усложняет работу персонала обслуживающего КА.
Поставленная задача достигается тем, что на каждый блок АБ устанавливают два и более датчика температуры, по которым определяется текущее значение температуры АБ. В программно-вычислительном контуре устанавливается диапазон, в котором должна эксплуатироваться АБ, согласно эксплуатационной документации на АБ. После чего управление обогревателями АБ осуществляется по следующему принципу: если температура одного из датчиков достигла верхней границы диапазона (порог отключения), то происходит отключение обогревателя, и в случае если температура одного из датчиков достигла минимального значения (порог включения), происходит включение обогревателя. При этом в случае если одновременно температура одного датчика достигла порога отключения, а температура другого датчика находится на уровне порога включения, то приоритет делается на отключение обогревателя, что позволяет исключить перегрева аккумуляторов, тем самым обеспечить безопасную работу АБ. Управлением обогревателями АБ с помощью описанного выше способа обеспечивается полная автономность КА, также снижается нагрузка на работу коммутаторов, с помощью которых осуществляется включение и отключение обогревателя АБ, тем самым увеличивая ресурс их работы.
Космический аппарат для реализации заявляемого способа содержит приборный блок, выполненный в виде прямоугольного параллелепипеда, устройства и приборы, установленные на внутренних сторонах параллелепипеда приборного блока, в том числе система терморегулирования для подвода и сброса тепла, содержащая локальные нагреватели и радиаторы-излучатели, система электропитания, состоящая из солнечной батареи, стабилизированного преобразователя напряжения, литий-ионных аккумуляторных батарей, с установленными на аккумуляторах аналоговыми и температуры, устройства контроля аккумуляторных батарей, а также бортовой комплекс управления с бортовой вычислительной машиной. При этом указанные аналоговые датчики давления и температуры через устройство контроля аккумуляторных батарей включены в канал обмена информацией между указанными стабилизированным преобразователем напряжения, системой терморегулирования и бортовой вычислительной машиной, которая снабжена программой, корректирующей работу локальных нагревателей аккумуляторных батарей системы терморегулирования, в зависимости от степени заряженности и режима работы аккумуляторных батарей и их температуры.
На фиг. 1 показано предлагаемое устройство КА для работы на геостационарной орбите.
При этом введены нижеследующие обозначения:
1 - приборный блок КА;
2 - солнечные батареи KA;
3 - радиатор-излучатель.
Приборный блок KA 1 выполнен в виде прямоугольного параллелепипеда, состоящего из "южной" и "северной" сотопанелей радиаторов и «восточной» и «западной», а также нижних и верхних торцевых панелей упрощенной конструкции.
Внутри приборного блока (на внутренней стороне сотопанелей и панелей упрощенной конструкции) установлены устройства и приборы КА, в том числе система терморегулирования для подвода и сброса тепла, выполненная в виде локальных нагревателей (локальные нагреватели могут устанавливаться непосредственно в какой-либо аппаратуре), и термоплат с тепловыми трубами и радиаторами-излучателями, система электропитания, состоящая из солнечной батареи, стабилизированного преобразователя напряжения, устройств контроля аккумуляторных батарей и литий-ионных аккумуляторных батарей, с установленными аналоговых температуры аккумуляторов, а также бортовой комплекс управления с бортовой вычислительной машиной, при этом указанные аналоговые температуры через устройства контроля аккумуляторных батарей включены в канал обмена информацией между указанными стабилизированным преобразователем напряжения, литий-ионными аккумуляторными батареями, системой терморегулирования и бортовой вычислительной машиной, которая снабжена программой, корректирующей работу локальных нагревателей аккумуляторных батарей системы терморегулирования, в зависимости от степени заряженности и режима работы аккумуляторных батарей и их температуры.
Солнечные батареи 2 установлены вдоль продольной оси Ζ KA, перпендикулярной плоскости орбиты КА, со стороны "южной" и "северной" сотопанелей радиаторов.
Радиатор-излучатель 3 установлен в плоскости "северной" или "южной" сотопанели радиатора.
Основная тепловыделяющая аппаратура размещается на "северных" и "южных" сотопанелях. При этом тепловыделяющая аппаратура имеет, как правило, обогреватели для подвода тепла к отдельным узлам и агрегатам для исключения их переохлаждения.
Корпуса наиболее тепловыделяющей аппаратуры теплоизолированы от окружающих приборов и элементов конструкции при помощи многослойной экранно-вакуумной теплоизоляции. Это позволяет исключить взаимовлияние и повысить точность поддержания нужного температурного режима.
Выделение отдельных теплонагруженных узлов и приборов из всей аппаратуры КА и помещение их специальным образом, с теплоизоляцией от соседних приборов, · позволяет создать для них "особые условия" работы, обеспечивающие повышенный теплоотвод, увеличить локально хладопроизводительность системы обеспечения теплового режима.
Заявляемое изобретение не касается конструкции теплоотводящих элементов (тепловых труб), поэтому пример конкретной реализации в этой части, подробно описанный в прототипе, в материалах настоящей заявки не рассматривается.
В заявляемом изобретении наибольший интерес представляет обеспечение теплового режима литий-ионных аккумуляторных батарей.
На фиг. 2 приведен пример функциональной схемы электрических и интерфейсных связей для реализации конкретной задачи заявляемого изобретения.
При этом дополнительно введены нижеследующие обозначения:
4 - стабилизированный преобразователь напряжения;
5 - устройства и приборы КА;
6 - система терморегулирования;
7 - бортовой комплекс управления с бортовой вычислительной машиной;
8 - устройство контроля аккумуляторной батареи;
9 - литий-ионная аккумуляторная батарея;
10 - аккумуляторы;
111, 112 - аналоговые датчики температуры;
12 - локальный (встроенный) нагреватель.
Для управления КА и выполнения других функций служит бортовой комплекс управления с бортовой вычислительной машиной 7. В качестве аккумуляторной батареи 9 используется никель-водородные АБ из последовательно соединенных аккумуляторов 10, которые оснащены датчиками температуры 111, 112.
Датчики температуры 111, 112 запитаны от устройства контроля аккумуляторной батареи 8, содержащего устройства контроля аккумуляторных батарей для передачи в бортовой комплекс управления с бортовой вычислительной машиной 7, в который поступает также информация о режиме работы аккумуляторной батареи 9 (заряд, разряд, хранение, величина токов заряда-разряда) из стабилизированного преобразователя напряжения 4. Бортовая вычислительная машина оснащена программой, формирующей управляющие команды в систему терморегулирования 6, и стабилизированным преобразователем напряжения 4.
Таким образом, использование предлагаемого устройства космического аппарата позволяет повысить эффективность использования аккумуляторных батарей и улучшить ресурсные характеристики СЭП и КА в целом при его штатной эксплуатации.

Claims (1)

  1. Способ эксплуатации литий-ионной аккумуляторной батареи в составе космического аппарата негерметичного исполнения с радиационным охлаждением, включающий проведение зарядов и разрядов, хранение в заряженном состоянии, контроль температуры аккумуляторов и обеспечение температурного режима аккумуляторной батареи (АБ), отличающийся тем, что в программно-вычислительном контуре устанавливают диапазон эксплуатации АБ, согласно эксплуатационной документации, после чего управление обогревателями АБ осуществляется по следующему принципу: если температура одного из датчиков достигла верхней границы диапазона (порог отключения), то происходит отключение обогревателя, и в случае если температура одного из датчиков достигла минимального значения (порог включения), происходит включение обогревателя, при этом в случае одновременного достижения порогов отключения и включения разных датчиков приоритет отдается на отключение обогревателя АБ.
RU2016101706A 2016-01-20 2016-01-20 Способ эксплуатации литий-ионной аккумуляторной батареи в составе космического аппарата негерметичного исполнения RU2625173C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016101706A RU2625173C1 (ru) 2016-01-20 2016-01-20 Способ эксплуатации литий-ионной аккумуляторной батареи в составе космического аппарата негерметичного исполнения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016101706A RU2625173C1 (ru) 2016-01-20 2016-01-20 Способ эксплуатации литий-ионной аккумуляторной батареи в составе космического аппарата негерметичного исполнения

Publications (1)

Publication Number Publication Date
RU2625173C1 true RU2625173C1 (ru) 2017-07-12

Family

ID=59495113

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016101706A RU2625173C1 (ru) 2016-01-20 2016-01-20 Способ эксплуатации литий-ионной аккумуляторной батареи в составе космического аппарата негерметичного исполнения

Country Status (1)

Country Link
RU (1) RU2625173C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1014013A (ja) * 1996-06-14 1998-01-16 Fuji Photo Film Co Ltd 電気自動車及びその駆動電源装置
JP2004362949A (ja) * 2003-06-05 2004-12-24 Sony Corp 電池装置、電池加温方法、及び電動アシスト自転車
WO2005052713A1 (en) * 2003-11-26 2005-06-09 Motorola Inc Apparatus and method of computer component heating
RU2371361C2 (ru) * 2007-06-13 2009-10-27 Федеральное государственное унитарное предприятие "Научно-производственное объединение прикладной механики им. академика М.Ф. Решетнева" Способ эксплуатации никель-водородной аккумуляторной батареи в составе космического аппарата негерметичного исполнения с радиационным охлаждением и космический аппарат для его реализации
RU2461102C1 (ru) * 2011-04-01 2012-09-10 Открытое акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнёва" Способ эксплуатации литий-ионной аккумуляторной батареи в автономной системе электропитания

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1014013A (ja) * 1996-06-14 1998-01-16 Fuji Photo Film Co Ltd 電気自動車及びその駆動電源装置
JP2004362949A (ja) * 2003-06-05 2004-12-24 Sony Corp 電池装置、電池加温方法、及び電動アシスト自転車
WO2005052713A1 (en) * 2003-11-26 2005-06-09 Motorola Inc Apparatus and method of computer component heating
RU2371361C2 (ru) * 2007-06-13 2009-10-27 Федеральное государственное унитарное предприятие "Научно-производственное объединение прикладной механики им. академика М.Ф. Решетнева" Способ эксплуатации никель-водородной аккумуляторной батареи в составе космического аппарата негерметичного исполнения с радиационным охлаждением и космический аппарат для его реализации
RU2461102C1 (ru) * 2011-04-01 2012-09-10 Открытое акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнёва" Способ эксплуатации литий-ионной аккумуляторной батареи в автономной системе электропитания

Similar Documents

Publication Publication Date Title
US11848425B2 (en) Temperature control for energy storage system
RU2371361C2 (ru) Способ эксплуатации никель-водородной аккумуляторной батареи в составе космического аппарата негерметичного исполнения с радиационным охлаждением и космический аппарат для его реализации
US20170133731A1 (en) Battery system with selective thermal management
Lebrouhi et al. Low-cost numerical lumped modelling of lithium-ion battery pack with phase change material and liquid cooling thermal management system
CN104347911B (zh) 一种动力锂离子电池组冷热控制系统及控制方法
US20230130832A1 (en) Hot charging systems and methods
JP5184202B2 (ja) 自律システムの貯蔵要素を充電する方法
JP2008283853A (ja) 自律システムのバッテリを充電する方法
KR20140144802A (ko) 전기차용 배터리의 열관리 장치
RU2430860C1 (ru) Способ эксплуатации литий-ионной аккумуляторной батареи в составе космического аппарата негерметичного исполнения с радиационным охлаждением и космический аппарат для его реализации
KR102321029B1 (ko) 클러스터링을 이용한 이종의 전력 밸런싱을 수행하기 위한 시스템, 이를 위한 장치 및 이를 위한 방법
RU2313160C1 (ru) Способ подготовки никель-водородной аккумуляторной батареи к штатной эксплуатации в системе электропитания искусственного спутника земли
RU2637585C2 (ru) Способ эксплуатации литий-ионной аккумуляторной батареи в составе космического аппарата негерметичного исполнения
Hosseinzadeh et al. A comparative study on different cooling strategies for lithium-ion battery cells
Smith et al. PHEV battery trade-off study and standby thermal control (presentation)
RU2543487C2 (ru) Способ эксплуатации никель-водородных аккумуляторных батарей системы электропитания космического аппарата
RU2625173C1 (ru) Способ эксплуатации литий-ионной аккумуляторной батареи в составе космического аппарата негерметичного исполнения
RU2164881C1 (ru) Космический аппарат
RU2689887C1 (ru) Способ увеличения срока эксплуатации аккумуляторных батарей на космических аппаратах
JP2018113773A (ja) 太陽光発電システム
KR20150033126A (ko) 배터리 팩 온도 조절 장치
KR101550227B1 (ko) 외기 온도를 이용한 최대 전력점 추종을 제어하는 계통 연계형 전력 저장 시스템 및 방법
RU2730703C1 (ru) Способ эксплуатации многоблочной литий-ионной аккумуляторной батареи в составе космического аппарата
Müller et al. Power and thermal operations
RU2509691C2 (ru) Космический аппарат

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner