RU2624776C2 - Способ получения трис(2-карбоксиэтил)фосфиновых октаэдрических халькогенидных кластерных комплексов рения (варианты) - Google Patents

Способ получения трис(2-карбоксиэтил)фосфиновых октаэдрических халькогенидных кластерных комплексов рения (варианты) Download PDF

Info

Publication number
RU2624776C2
RU2624776C2 RU2015146546A RU2015146546A RU2624776C2 RU 2624776 C2 RU2624776 C2 RU 2624776C2 RU 2015146546 A RU2015146546 A RU 2015146546A RU 2015146546 A RU2015146546 A RU 2015146546A RU 2624776 C2 RU2624776 C2 RU 2624776C2
Authority
RU
Russia
Prior art keywords
phosphine
rhenium
tris
carboxyethyl
cluster
Prior art date
Application number
RU2015146546A
Other languages
English (en)
Other versions
RU2015146546A (ru
Inventor
Юрий Владимирович Миронов
Михаил Александрович Шестопалов
Константин Александрович Брылев
Антон Андреевич Иванов
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт неорганической химии им. А.В. Николаева Сибирского отделения Российской академии наук
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт неорганической химии им. А.В. Николаева Сибирского отделения Российской академии наук filed Critical Федеральное государственное бюджетное учреждение науки Институт неорганической химии им. А.В. Николаева Сибирского отделения Российской академии наук
Priority to RU2015146546A priority Critical patent/RU2624776C2/ru
Publication of RU2015146546A publication Critical patent/RU2015146546A/ru
Application granted granted Critical
Publication of RU2624776C2 publication Critical patent/RU2624776C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/50Organo-phosphines
    • C07F9/5045Complexes or chelates of phosphines with metallic compounds or metals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/04X-ray contrast preparations
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F13/00Compounds containing elements of Groups 7 or 17 of the Periodic Table
    • C07F13/005Compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/50Organo-phosphines
    • C07F9/505Preparation; Separation; Purification; Stabilisation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2123/00Preparations for testing in vivo

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)

Abstract

Изобретение относиться способу получения трис(2-карбоксиэтил)фосфиновых октаэдрических халькогенидных кластерных комплексов рения состава Н16[{Re6Q8}(Р(СН2СН2СОО)3)6] (Q=S, Se). Способ включает взаимодействие неорганического кластерного комплекса рения состава K4[{Re6Q8}(OH)6]⋅8H2O, где Q=S или Se, с фосфинпроизводным лигандом трис(2-карбоксиэтил)фосфин гидрохлоридом или трис(2-цианоэтил)фосфином в водной среде при соотношении 1 моль кластерного комплекса рения на 8 моль фосфинпроизводного лиганда и температуре 120-130°С с последующей выдержкой. Затем реакционную смесь охлаждают, отделяют кристаллический продукт, оставшуюся реакционную смесь доводят до рН 4-5 раствором гидроксида калия и выделяют оставшийся целевой продукт. Также предложен вариант способа. Изобретение позволяет получить водорастворимые трис(2-карбоксиэтил) фосфиновые октаэдрические халькогенидные кластерные комплексы рения с высоким выходом и чистотой целевого продукта. Полученные соединения перспективны в качестве рентгеноконтрастных веществ. 2 н. и 1 з.п. ф-лы, 6 пр.

Description

Изобретение относиться к комплексным соединениям рения а также соединениям рения, содержащим элементы V группы, а именно соединения фосфора, и, в частности, к получению трис(2-карбоксиэтил)фосфиновых октаэдрических кластерных комплексов рения состава H16[{Re6Q8}(P(CH2CH2COO)3)6], где Q=S или Se. Водные растворы этих соединений являются перспективными в качестве рентгеноконтрастных препаратов, благодаря высокой водорастворимости, обусловленной большим количество карбоксо-групп в лигандном окружении, и высокой локальной концентрацией тяжелых атомов в кластерном ядре.
В настоящее время отсутствуют водорастворимые октаэдрические кластерные комплексы рения с органическими лигадами на основе фосфина. Можно выделить три основных метода синтеза октаэдрических кластерных комплексов рения с производными фосфина.
Первый метод заключается во взаимодействии гексагалогенидных кластерных комплексов состава (Bu4N)n[{Re6Q8}X6] (Q=S (n=4), Se (n=3), X=Cl-, Br-, I-, Bu=СН3СН2СН2СН2) с избытком триэтилфосфина в диметилформамиде. Так, в работах Z. Zheng, J.R. Long, R.H. Holm // J. Am. Chem. Soc., 1997, 119, 2163-2171 и M.W. Wilier, J.R. Long, C.C. McLauchlan, R.H. Holm // Inorg. Chem., 1998, 37, 328-333 описано получение комплексов с различным количеством триэтилфосфиновых лигандов. В данных работах авторы растворяли (Bu4N)n[{Re6Q8}X6] в диметилформамиде, добавляли избыток триэтилфосфина и выдерживали реакционную смесь без нагрева или с нагревом до 100°С в течение небольшого времени (1-4 часов). Затем растворитель отгоняли в вакууме и разделяли полученную смесь хроматографически на селикагеле. Недостатком данной работы является большое количество побочных продуктов и, следовательно, небольшие выходы конечного продукта. Также то, что в результате реакции получают смесь соединений и из них целевые продукты разделяют с помощью хроматографии, что уменьшает выход и является трудозатратой методикой выделения конечного продукта.
Авторами работы S. Perruchas, N. Avarvari, D. Rondeau, E. Levillain, P. Batail // Inorg. Chem., 2005, 44, 3459-3465 были получены комплексы с производными фосфина, содержащими тетрафульваленовые и ферроценовые фрагменты. В качестве исходного кластерного комплекса был выбран комплекс состава [{Re6Se8}(MeCN)6](SbF6)2, содержащий легкоуходящие ацетонитрил-лиганды. Раствор данного кластерного комплекса в хлорбензоле и 8-кратный избыток органического лиганда выдерживали в атмосфере аргона при 130°С в течение нескольких суток. В ходе реакции происходит осаждение конечного продукта, осадок промывали и высушивали. В ходе такой реакции образуются гексафосфиновые кластерные комплексы. Однако недостаток данной методики - это использование гексаацетонитрильного кластерного комплекса, который получают взаимодействием (Bu4N)n[{Re6Q8}X6] с AgSbF6, что увеличивает количество стадий получения конечного продукта, а также использование гексафтор стибата серебра (AgSbF6) увеличивает стоимость процесса.
К последнему методу получения комплексов с фосфинпроизводными лигандами можно отнести реакции в расплаве органического лиганда. Так, в работе А.А. Ivanov, М.А. Shestopalov, K.А. Brylev, V.K. Khlestkin, Y.V. Mironov // Polyhedron, 2014, 81, 634-638 описано получение trans-[{Re6Q8}(PPh3)4X2] исходя из Csn[{Re6Q8}X6]⋅2H2O. В данной работе авторы загружали кластерный комплекс и избыток трифенилфосфина (1:1 по массе) в стеклянную ампулу, ампулу запаивали и выдерживали в печи при температуре плавления лиганда в течение 1-2 суток. Затем реакционную смесь промывали диэтиловым эфиром от избытка лиганда, водой и этиловым спиртом от непрореагировавшего комплекса и от образовавшейся в ходе реакции соли цезия. Однако данный метод не подходит для неустойчивых при нагревании органических соединений, к которым относиться трис(2-карбоксиэтил)фосфин.
На данный момент не известно получение водорастворимых октаэдрических кластерныех комплексов рения с органическими лигадами на основе фосфина, а именно способа получения трис(2-карбоксиэтил)фосфиновых октаэдрических халькогенидных кластерных комплексов рения.
Задачей изобретения является получение водорастворимых трис(2-карбоксиэтил)фосфиновых октаэдрических халькогенидных кластерных комплексов рения в водных растворах при низкой температуре с техническим результатом - получение трис(2-карбоксиэтил)фосфиновых октаэдрических кластерных комплексов рения с высоким выходом и чистотой целевого продукта.
Задача решается тем, что в способе получения трис(2-карбоксиэтил)фосфиновых октаэдрических халькогенидных кластерных комплексов рения взаимодействие неорганического кластерного комплекса рения состава K4[{Re6Q8}(OH)6]⋅8H2O, где Q=S или Se, с фосфинпроизводным лигандом трис(2-карбоксиэтил)фосфин гидрохлоридом или трис(2-цианоэтил)фосфином ведут в водной среде при соотношении 1 моль кластерного комплекса рения на 8 моль фосфинпроизводного лиганда и температуре 120-130°С с последующей выдержкой и охлаждением реакционной смеси, отделением кристаллического продукта, оставшуюся реакционную смесь доводят до рН=4-5 раствором гидроксида калия и выделяют целевой продукт. По второму варианту взаимодействие неорганического кластерного комплекса рения состава Csn[{Re6Q8}X6]⋅2H2O, где Q=S или Se, X=Cl-, Br-, I-, n=3 или 4, с фосфинпроизводным лигандом трис(2-карбоксиэтил)фосфин гидрохлоридом ведут в водной среде с введением в реакционную смесь нитрата серебра при перемешивании и выдержке реакционной смеси, и соотношении 1 моль кластерного комплекса рения на 8 моль фосфинпроизводного лиганда и 1 моль кластерного комплекса рения на 14 моль нитрата серебра, отфильтрованную реакционную смесь доводят до рН=4-5 раствором гидроксида калия и выделяют целевой продукт, при этом реакцию ведут в изолированных от света условиях.
Отличительными признаками являются: использование неорганического кластерного комплекса рения состава K4[{Re6Q8}(OH)6]-8H2O, где Q=S или Se или Csп[{Re6Q8}X6]-2H2O, где Q=S или Se, X=Cl-, Br-, I-; n=3 или 4; взаимодействие с фосфинпроизводным лигандом трис(2-карбоксиэтил)фосфин гидрохлоридом или трис(2-цианоэтил)фосфином; условия их взаимодействия.
Способ заключается во взаимодействии октаэдрических кластерных комплексов рения состава K4[{Re6Q8}(OH)6]⋅8H2O, где Q=S или Se или Csn[{Re6Q8}X6]⋅2H2O, где Q=S или Se, X=Cl-, Br-, I-, n=3 или 4, с фосфинпроизводным лигандом (трис(2-карбоксиэтил)фосфин или трис(2-цианоэтил)фосфин) в водной среде, взятым с избытком к стехиометрическому количеству в расчете 8 моль фосфинпроизводного лиганда на 1 моль кластерного комплекса рения, по другому варианту взаимодействии октаэдрических кластерных комплексов рения Csn[{Re6Q8}X6]⋅2H2O, где Q=S или Se, X=Cl-, Br-, I-; n=3 или 4 идет с фосфинпроизводным лигандом трис(2-карбоксиэтил)фосфином с добавлением нитрата серебра в расчете 14 моль соли на 1 моль комплекса рения. Фосфинпроизводные лиганды и нитрата серебра берут с избытком для исключения неполного замещения кластерных комплексов рения, что сказывается на выходе и чистоте целевого продукта. Выдерживание реакционной смеси в заданном интервале температур (120-130°С) и времени определено экспериментально и является оптимальным для повышения выхода целевого продукта и чистоты целевого продукта (исключения образования побочных менее замещенных соединений). В случае использования трис(2-цианоэтил)фосфина требуется большее время для гидролиза нитрильных групп до карбоксильных с высоким выходом целевого продукта. Использование нитрата серебра позволяет связывать галоген-лиганды в нерастворимые соли AgX, освобождает координационные места у атома рения в кластерном ядре {Re6Q8}2+/3+, что позволяет проводить реакцию без нагревания. Реакцию ведут в изолированных от света условиях, поскольку на свету соль серебра разлагается. Во всех случаях используется доступный растворитель - вода, неконкурирующий (не образующий октаэдрические кластерные комплексы рения и не вступающий в реакцию с органическими лигандами) в реакциях лигандного замещения. Доведение реакционной смеси до рН=4-5 является оптимальным для осаждения целевого продукта без примесей.
Пример 1. 1 г кластерного комплекса рения K4[{Re6S8}(OH)6]⋅8H2O растворяют в 5 мл воды. Затем к раствору прибавляют трис{2-карбоксиэтил)фосфин гидрохлорид из расчета 8 моль фосфина на 1 моль кластерного комплекса (избыток фосфинпроизводного лиганда), после чего полученную смесь выдерживают в течение 24 часов при 120°С. Экспериментальные данные показали, что именно при 24 ч выдержке выход целевого продукта максимален. По окончании реакции при медленном охлаждении часть продукта кристаллизуется в реакционной смеси. Кристаллы целевого продукта отделяют от раствора и выделяют оставшийся продукт путем доведения реакционной смеси до рН=4 введением при перемешивании водного раствора едкого калия (KOH). Выход целевого продукта - 75%. Полученные монокристаллы охарактеризованы рентгеноструктрным анализом. ИК (инфракрасный) спектр содержит все колебания, характерные для координированного органического лиганда. По данным элементного анализа для Re6S8C54H88P6O36 теоретическое массовое содержание следующих элементов: С 22,53%, Н 3,08%; практическое массовое содержание следующих элементов: С 22,45%, Н 3,05%.
Пример 2. 1 г кластерного комплекса рения K4[{Re6Se8}(OH)6]⋅8H2O растворяют в 5 мл воды. Реакцию ведут аналогично примеру 1, полученную смесь выдерживают в течение 24 часов при 130°С. Реакционную смесь доводят до рН=5 при перемешивании водным раствором KOH. Выход целевого продукта - 75%. По данным элементного анализа для Re6Se8C54H88P6O36 теоретическое массовое содержание следующих элементов: С 19,88%, Н 2,72%; практическое массовое содержание следующих элементов: С 19,80%, Н 2,75%.
Пример 3. 1 г комплекса рения Cs4[{Re6S8}Cl6]⋅2H2O растворяют 10 мл воды. Затем к раствору прибавляют трис(2-карбоксиэтил)фосфин гидрохлорид из расчета 8 моль фосфинпроизводного лиганда на 1 моль кластерного комплекса рения и нитрат серебра из расчета 14 моль соли (избыток) на 1 моль кластерного комплекса рения. Затем реакционную смесь закрывают фольгой и перемешивают в течение 48 часов (для получения максимального выход целевого продукта). Раствор отфильтровывают от образовавшего в ходе реакции галогенида серебра и выделяют целевой продукт путем доведения реакционной смеси до рН=4 при перемешивании водным раствором KOH. Выход целевого продукта - 80%. ИК (инфракрасный) спектр содержит все колебания, характерные для координированного органического лиганда. По данным элементного анализа для Re6S8C54H88P6O36 теоретическое массовое содержание следующих элементов: С 22,53%, Н 3,08%; практическое массовое содержание следующих элементов: С 22,41%, Н 3,09%.
В случае использования в качестве исходного кластерного комплекса соединения состава Cs4[{Re6S8}X6]⋅2H2O, где X=(Br-, I-), синтез октаэдрического кластерного комплекса с трис(2-карбоксиэтил)фосфином проводят аналогично примеру 3. При pH в интервале 4-5 и заданных соотношениях. Данные элементного анализа и ИК (инфракрасным) спектры показали - получены целевые продукты. Выход целевого продукта составляет 80%.
Пример 4. 1 г комплекса рения Cs3[{Re6Se8}Cl6]⋅2H2O растворяют 10 мл воды. Затем к раствору прибавляют трис(2-карбоксиэтил)фосфин гидрохлорид из расчета 8 моль фосфинпроизводного лиганда на 1 моль кластерного комплекса рения и нитрат серебра из расчета 14 моль соли на 1 моль кластерного комплекса рения. Реакцию ведут аналогично примеру 3. Затем реакционную смесь закрывают фольгой и перемешивают в течение 48 часов. Целевой продукт выделяют доведением реакционной смеси до рН=5 при перемешивании водным раствором KOH. Выход целевого продукта - 80%. ИК (инфракрасный) спектр содержит все колебания, характерные для координированного органического лиганда. По данным элементного анализа для Re6Se8C54H88P6O36 теоретическое массовое содержание следующих элементов: С 19,88%, Н 2,72%; практическое массовое содержание следующих элементов: С 19,75%, Н 2,71%.
В случае использования в качестве исходного кластерного комплекса соединения состава Cs4[{Re6Se8}X6]⋅2H2O, где X=(Br-, I-), синтез октаэдрического кластерного комплекса с трис(2-карбоксиэтил)фосфином пооводят аналогично примеру 4. При pH в интервале 4-5 и заданных соотношениях. Данные элементного анализа и ИК (инфракрасным) спектры показали - получены целевые продукты. Выход целевого продукта составляет 77%.
Пример 5. 1 г K4[{Re6S8}(OH)6]⋅8H2O растворяют в 5 мл воды. Затем к раствору прибавляют трис(2-цианоэтил)фосфин из расчета 8 моль фосфинпроизводного лиганда на 1 моль комплекса рения, после чего полученную смесь выдерживают в течение 48 часов при 120°С. По окончании реакции при медленном охлаждении часть продукта кристаллизуется в реакционной смеси. Кристаллы целевого продукта отделяют от раствора и выделяют оставшийся продукт путем доведения реакционной смеси до рН=4 введением при перемешивании водного раствора KOH. Выход целевого продукта - 70%. Полученные монокристаллы охарактеризованы рентгеноструктрным анализом. ИК (инфракрасный) спектр содержит все колебания, характерные для координированного органического лиганда. По данным элементного анализа для Re6S8C54H88P6O36 теоретическое массовое содержание следующих элементов: С 22,53%, Н 3,08%; практическое массовое содержание следующих элементов: С 22,57%, Н 3,12%.
Пример 6. 1 г K4[{Re6Se8}(OH)6]⋅8H2O растворяют в 5 мл воды. Затем к раствору прибавляют трис(2-цианоэтил)фосфин. Реакцию ведут аналогично примеру 5, смесь выдерживают в течение 48 часов при 130°С и доведения реакционной смеси до рН=5. Выход целевого продукта: 70%. ИК (инфракрасный) спектр содержит все колебания, характерные для координированного органического лиганда. По данным элементного анализа для Re6Se8C54H88P6O36 теоретическое массовое содержание следующих элементов: С 19,88%, Н 2,72%; практическое массовое содержание следующих элементов: С 19,90%, Н 2,81%.

Claims (3)

1. Способ получения трис(2-карбоксиэтил)фосфиновых октаэдрических халькогенидных кластерных комплексов рения состава Н16[{Re6Q8}(Р(СН2СН2СОО)3)6] (Q=S, Se), характеризующийся тем, что взаимодействие неорганического кластерного комплекса рения состава K4[{Re6Q8}(OH)6]⋅8H2O, где Q=S или Se, с фосфинпроизводным лигандом трис(2-карбоксиэтил)фосфин гидрохлоридом или трис(2-цианоэтил)фосфином ведут в водной среде при соотношении 1 моль кластерного комплекса рения на 8 моль фосфинпроизводного лиганда и температуре 120-130°С с последующей выдержкой и охлаждением реакционной смеси, отделением кристаллического продукта, оставшуюся реакционную смесь доводят до рН 4-5 раствором гидроксида калия и выделяют оставшийся целевой продукт.
2. Способ получения трис(2-карбоксиэтил)фосфиновых октаэдрических халькогенидных кластерных комплексов рения состава Н16[{Re6Q8}(Р(СН2СН2СОО)3)6] (Q=S, Se), характеризующийся тем, что взаимодействие неорганического кластерного комплекса рения состава Csn[{Re6Q8}X6]⋅2H2O, где Q=S или Se, X=Cl-, Br-, I-; n=3 или 4, с фосфинпроизводным лигандом трис(2-карбоксиэтил)фосфин гидрохлоридом ведут в водной среде с введением в реакционную смесь нитрата серебра при перемешивании и выдержке реакционной смеси и соотношении 1 моль кластерного комплекса рения на 8 моль фосфинпроизводного лиганда и 1 моль кластерного комплекса рения на 14 моль нитрата серебра, отфильтрованную реакционную смесь доводят до рН 4-5 раствором гидроксида калия и выделяют целевой продукт.
3. Способ по п.2, отличающийся тем, что реакцию ведут в изолированных от света условиях.
RU2015146546A 2015-10-28 2015-10-28 Способ получения трис(2-карбоксиэтил)фосфиновых октаэдрических халькогенидных кластерных комплексов рения (варианты) RU2624776C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015146546A RU2624776C2 (ru) 2015-10-28 2015-10-28 Способ получения трис(2-карбоксиэтил)фосфиновых октаэдрических халькогенидных кластерных комплексов рения (варианты)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015146546A RU2624776C2 (ru) 2015-10-28 2015-10-28 Способ получения трис(2-карбоксиэтил)фосфиновых октаэдрических халькогенидных кластерных комплексов рения (варианты)

Publications (2)

Publication Number Publication Date
RU2015146546A RU2015146546A (ru) 2017-05-04
RU2624776C2 true RU2624776C2 (ru) 2017-07-10

Family

ID=58698026

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015146546A RU2624776C2 (ru) 2015-10-28 2015-10-28 Способ получения трис(2-карбоксиэтил)фосфиновых октаэдрических халькогенидных кластерных комплексов рения (варианты)

Country Status (1)

Country Link
RU (1) RU2624776C2 (ru)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997043293A1 (en) * 1996-05-14 1997-11-20 Nycomed Salutar, Inc. Contrast agents
RU2366434C1 (ru) * 2007-12-07 2009-09-10 Институт неорганической химии им. А.В. Николаева Сибирского отделения Российской Академии наук Гексаядерные кластерные комплексы рения на основе радиоактивных изотопов, обладающие противоопухолевыми свойствами

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997043293A1 (en) * 1996-05-14 1997-11-20 Nycomed Salutar, Inc. Contrast agents
RU2366434C1 (ru) * 2007-12-07 2009-09-10 Институт неорганической химии им. А.В. Николаева Сибирского отделения Российской Академии наук Гексаядерные кластерные комплексы рения на основе радиоактивных изотопов, обладающие противоопухолевыми свойствами

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
IVANOV A. et al, A family of octahedral rhenium cluster complexes trans-[{ Re 6 Q 8 } (PPh 3 ) 4 X 2 ] (Q=S or Se, X=Cl, Br or J): preparation and halide-dependent luminescence properties, Polyhedron, 2005, v. 81, p. 634-638. *
WILLER M.W. et al, Ligand Substitution Reactions of [Re 6 S 8 Br 6 ] 4- : A Basis Set of Re 6 S 8 Clusters for Building Multicluster Assemblies, Inorg. Chem., 1998, v. 37, p. 328-333. *
ZENG Z. et al, A Basis Set a Re 6 Se 8 Cluster Buiding Blocks and Demonstration of Their Linking Capability: Directed Synthesis of an Re 12 Se 16 Dicluster, J. Am. Chem. Soc., 1997, v. 119, p. 2163-2171. *
ZENG Z. et al, A Basis Set a Re 6 Se 8 Cluster Buiding Blocks and Demonstration of Their Linking Capability: Directed Synthesis of an Re 12 Se 16 Dicluster, J. Am. Chem. Soc., 1997, v. 119, p. 2163-2171. WILLER M.W. et al, Ligand Substitution Reactions of [Re 6 S 8 Br 6 ] 4- : A Basis Set of Re 6 S 8 Clusters for Building Multicluster Assemblies, Inorg. Chem., 1998, v. 37, p. 328-333. IVANOV A. et al, A family of octahedral rhenium cluster complexes trans-[{ Re 6 Q 8 } (PPh 3 ) 4 X 2 ] (Q=S or Se, X=Cl, Br or J): preparation and halide-dependent luminescence properties, Polyhedron, 2005, v. 81, p. 634-638. *

Also Published As

Publication number Publication date
RU2015146546A (ru) 2017-05-04

Similar Documents

Publication Publication Date Title
Maassarani et al. Reaction of cyclopalladated compounds Part 16. Stepwise insertion of one, two, and three alkyne molecules into the palladium-carbon bond of a six-membered palladocycle. One-pot synthesis of spirocyclic compounds
Roemer et al. Syntheses and purification of the versatile synthons iodoferrocene and 1, 1′-diiodoferrocene
UA71614C2 (en) Cis-platinum complex and a method for the preparation thereof
CN103467528B (zh) 一种洛铂的制备方法
Reger et al. Synthesis of the silver (i) complex of CH 2 [CH (pz 4Et) 2] 2 containing the unprecedented [Ag (NO 3) 4] 3− anion: A general method for the preparation of 4-(alkyl) pyrazoles
Fletcher et al. The isolation and purification of tris-2, 2′-bipyridine complexes of ruthenium (ii) containing unsymmetrical ligands
Rappoport et al. Nucleophilic attacks on carbon-carbon double bonds. 28. Complete and partial stereoconversion in the substitution of methyl (E)-and (Z)-. beta.-chloro-. alpha.-cyano-p-nitrocinnamates by nucleophiles
JP5833795B2 (ja) ホスファプラチン化合物の合成方法および精製方法ならびに該化合物の使用
Galkin et al. The synthesis and reactions of betaines formed in reactions of tertiary phosphines with unsaturated carboxylic acids and their derivatives
RU2624776C2 (ru) Способ получения трис(2-карбоксиэтил)фосфиновых октаэдрических халькогенидных кластерных комплексов рения (варианты)
Ajormal et al. Green catalytic synthesis of symmetric and non-symmetric β-hydroxy-1, 2, 3-triazoles by using epichlorohydrin in the presence of Cu (ii) coordination compounds containing oxazole ligands
Bakhtiyarova et al. Synthesis of carboxylate phosphabetaines from 3-(diphenylphosphino) propanoic acid and unsaturated monocarboxylic acids
CN107383105B (zh) 铱错合物及含氮三牙配基
Sindlinger et al. Syntheses, structures and flexible coordination of sterically demanding di-and “tri”-lithiated methandiides
US4045494A (en) Method for preparing triogranophosphines
Liu et al. pH–value-controlled assembly of photoluminescent zinc coordination polymers in the mixed-ligand system
JP2764100B2 (ja) 有機ホスホニウム塩の製造方法
WO2014034124A1 (ja) 簡易製造法
EP3083648B1 (en) Pharmaceutical process and intermediates
CN115260103B (zh) 一种4,5-二卤代-1-(二氟甲基)-1h-咪唑的制备方法
US11773120B2 (en) Method for producing optically active 2, 3-bisphosphinopyrazine derivative and method for producing optically active phosphine transition metal complex
JPS6232188B2 (ru)
JP5926797B2 (ja) ビス(パーフルオロアルキル)ホスフィン酸無水物の調製方法
SU1616922A1 (ru) Способ получени этилового эфира дифенилфосфинилуксусной кислоты
CN112745350A (zh) 一种4-膦酸烷基酯取代吲哚化合物的合成方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20201029