RU2624757C1 - Способ управления структурой вибрационного поля вибрационной технологической машины на основе использования эффектов динамического гашения и устройство для его осуществления - Google Patents

Способ управления структурой вибрационного поля вибрационной технологической машины на основе использования эффектов динамического гашения и устройство для его осуществления Download PDF

Info

Publication number
RU2624757C1
RU2624757C1 RU2016102236A RU2016102236A RU2624757C1 RU 2624757 C1 RU2624757 C1 RU 2624757C1 RU 2016102236 A RU2016102236 A RU 2016102236A RU 2016102236 A RU2016102236 A RU 2016102236A RU 2624757 C1 RU2624757 C1 RU 2624757C1
Authority
RU
Russia
Prior art keywords
vibration
working body
structural
movement
point
Prior art date
Application number
RU2016102236A
Other languages
English (en)
Inventor
Сергей Викторович Елисеев
Андрей Владимирович Елисеев
Евгений Витальевич Каимов
Дык Хуинь Нгуен
Куанг Чык Выонг
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Иркутский государственный университет путей сообщения" (ФГБОУ ВО ИрГУПС)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Иркутский государственный университет путей сообщения" (ФГБОУ ВО ИрГУПС) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Иркутский государственный университет путей сообщения" (ФГБОУ ВО ИрГУПС)
Priority to RU2016102236A priority Critical patent/RU2624757C1/ru
Application granted granted Critical
Publication of RU2624757C1 publication Critical patent/RU2624757C1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems

Landscapes

  • Vibration Prevention Devices (AREA)

Abstract

Группа изобретений относится к области машиностроения. Способ управления включает введение в конструктивно-техническую схему системы устройства для преобразования движения несамотормозящегося винтового механизма с гайкой-маховиком. Генерируют дополнительные стабилизирующие движения рабочего органа для обеспечения возможности регулирования и настройки вибрационной системы. Устройство генерирует управляющее воздействие в определенной точке рабочего органа вибростенда. Точка приложения усилия на рабочий орган имеет возможность изменяться в результате перемещения конструктивного блока вдоль рабочего органа с помощью синхронно работающих двух электроприводов. Электроприводы обеспечивают перемещение верхней и нижней частей конструктивно-технического блока с помощью ходовых винтов. Информация с датчиков, контролирующих вибрационное состояние и системы, поступает в специальный программный блок. Достигается упрощение регулировки режимов работы. 2 н.п. ф-лы, 3 ил.

Description

Изобретение относится к области машиностроения и может быть использовано в вибрационных технологических машинах для реализации режимов вибрационного подбрасывания сыпучих рабочих сред, состоящих из гранулированных элементов.
В процессах вибрационных взаимодействий гранулированная рабочая среда определенным образом изменяет поверхностные свойства обрабатываемых деталей, что нашло применение в технологических процессах вибрационного упрочнения материалов. Необходимое качество обработки поверхностей обеспечивается достижением определенной структуры вибрационного поля. Технологические аспекты этой проблемы заключаются в том, чтобы рабочий орган вибрационной машины совершал только вертикальные поступательные движения, при этом угловые колебания, возникающие при работе вибростенда, должны сводиться к минимуму.
Изменение динамического состояния различных механических систем в настоящее время связано с введением в структуру вибрационных машин различных связей в виде устройств, способных изменять частоты собственных колебаний и режимы взаимодействия элементов, что позволяет обеспечить необходимые свойства вибрационной системы. Возможности таких подходов ограничиваются особенностями конструктивной реализации устройств, позволяющих рассеивать энергию колебаний. В связи с этим актуальным направлением является поиск рациональных конструктивных решений, основанных на новых способах изменения динамического состояния вибрационной технологической системы.
Известно устройство для изменения динамического состояния системы при действии вибрации [Остроменский П.И., Никифоров И.С., Кинаш Н.Ж., Остромеиская В.А. «Виброзащитная подвеска сидения». Патент RU 2156192 С2, МПК B60N 2/54, приоритет от 15.07.1996]. Виброзащитная подвеска сиденья, содержащая несущую опору и подвесную опору, между которыми закреплен основной упругий подвес и корректор жесткости - дополнительный упругий подвес с неустойчивым средним положением равновесия, причем корректор жесткости выполнен из двух одинаковых сжатых до овальной формы упругих кольцевых элементов, расположенных против друг друга симметрично относительно продольной оси симметрии сиденья, причем ближайшие участки упругих кольцевых элементов прикреплены шарнирно к одной опоре, а диаметрально противоположные участки кольцевых элементов шарнирно соединены с другой опорой, при этом большие оси симметрии сжатых упругих кольцевых элементов и оси всех их шарнирных соединений с опорами параллельны продольной оси сиденья.
Упругие кольцевые элементы виброзащитной подвески сиденья выполнены из троса. Каждый упругий кольцевой элемент выполнен в виде бухты, намотанной, например, из пружинной ленты или проволок и с возможностью относительного перемещения витков с трением.
Недостатком данного изобретения является наличие неустойчивого среднего положения корректора, что при динамических воздействиях может привести к неустойчивости вибрационной технологической системы в целом.
Также к недостаткам следует отнести невозможность изменять параметры динамической системы в широком диапазоне частот.
Известен способ изменения динамических свойств и устройство с квазинулевой жесткостью [Кочетов О.С, Кочетова М.О., Ходакова Т.Д. «Способ виброизоляции и виброизолятор с квазинулевой жесткостью». Патент RU 2298119 C1, МПК F16F 7/08, F16A 9/06, приоритет от 19.09.2005].
Способ виброизоляции, заключающийся в том, что вибрирующий объект устанавливают на плоские упругие элементы, а демпфирование колебаний осуществляют с помощью демпфера, при этом плоские упругие элементы выполняют в виде пакета упругих элементов арочного типа, а демпфирование колебаний осуществляют с помощью вязкоупругого демпфера, сделанного в виде упруго демпфирующего кольца, связанного с упругими элементами через втулки и расположенного в плоскости, перпендикулярной вертикальной оси пакета упругих элементов за счет радиальной деформации упругих элементов.
Устройство с квазинулевой жесткостью, содержащее плоские упругие и демпфирующие элементы, при этом плоские упругие элементы выполнены в виде пакета упругих элементов арочного типа в виде набора чередующихся во взаимно перпендикулярных направлениях плоских пружин, опирающихся на основание, а демпфирующий элемент виброизолятора выполнен в виде упругодемпфирующего кольца из эластомера, расположенного по замкнутому контуру в плоскости, перпендикулярной оси виброизолятора, и взаимодействующего с втулками, которые связаны с опорными участками плоских пружин посредством заклепок, причем упругодемпфирующее кольцо имеет в поперечном сечении форму круга, эллипса, треугольника, квадрата, прямоугольника, многоугольника.
Упругодемпфирующее кольцо выполнено полым и имеет в поперечном сечении форму круга, эллипса, треугольника, квадрата, прямоугольника, многоугольника, причем полость упругодемпфирующего кольца заполнена вязкой жидкостью или сжатым до определенного давления воздухом или газом.
Недостатками данного изобретения являются: необходимость при гашении колебаний использовать дополнительно демпфер вязкого трения; невозможность настройки устройства в процессе работы на необходимые режимы, в частности отстраиваться от резонансных частот, осуществлять настройку режимов динамического гашения, а также формировать необходимую структуру вибрационного поля системы.
Известен способ регулирования жесткости динамической системы и устройство для его осуществления [Хоменко Л.П., Елисеев СВ., Белокобыльский С.В., Упырь Р.Ю., Трофимов Л.Н., Паршута И.А., Сорин В.В. «Способ регулирования жесткости виброзащитной системы и устройство для его осуществления». Патент RU 2440523 С2, МПК F16F 15/04, приоритет 20.01.2012]. Способ регулирования жесткости заключается в установке пружины с положительной жесткостью и дополнительного упругого элемента в виде вращающихся масс. Вращение масс вокруг вертикальной оси создает центробежные силы, обеспечивающие изменение суммарной жесткости устройства. Вращение масс создает «отрицательную» жесткость, которая зависит от угловой скорости вращения.
Упругие дополнительные устройства представлены в виде отдельных масс, соединенных шарнирно с помощью рычагов с основанием и объектом защиты с возможностью создания центробежных инерционных сил вращения вокруг вертикальной оси.
К недостаткам данного изобретения можно отнести сложность настройки процесса и необходимость обеспечения вращения дополнительных масс вокруг вертикальной оси с применением источников энергии.
К наиболее близкому техническому решению следует отнести способ регулирования жесткости виброзащитной системы и устройство для его осуществления [Елисеев С.В., Хоменко А.П., Ермошенко Ю.В., Большаков Р.С., Ситов И.С., Кашуба В.Б., Белокобыльский С.В. «Способ регулирования жесткости виброзащитной системы и устройство для его осуществления» Патент RU 2475568 С2, МПК F16F 7/10, F16F 15/02, приоритет 20.02.2013]. Способ регулирования жесткости вибрационной технологической машины, включающий 2-ступенчатое гашение вибрации, осуществляемое основным и дополнительными элементами виброзащитной системы, отличающийся тем, что на дополнительную промежуточную платформу прикладывают две силы (вибраторы), направленные в противоположном направлении, обеспечивающие взаимное гашение горизонтальных колебаний, гашение вертикальных сил от внешнего возмущения осуществляют тем, что накладывают на вибраторы дополнительные силы в виде двух дисбалансов с меняющимися величинами в зависимости от внешнего возмущения путем совместного изменения радиусов двух дисбалансов, чем обеспечивается соответствующее регулирование приведенной жесткости системы. Устройство для осуществления регулирования вибрационной технологической системы, включающее виброзащитную систему, состоящую из основного и дополнительного упругого элементов, отличающееся тем, что на дополнительную промежуточную платформу устанавливают два регулируемых инерционных вращательных вибратора, обеспечивающих взаимную компенсацию возникающих горизонтальных динамических сил, гашение вертикальных сил, возникающих от внешнего воздействия, достигается путем установки на инерционных вращающихся вибраторах двух дисбалансов с изменяющимся динамическим воздействием за счет настройки радиуса дисбаланса.
К недостаткам данного изобретения следует отнести: сложность конструкции, в результате которой многочисленные регулировочные элементы динамической системы крепятся только к объекту защиты, что создает дополнительные нагрузки на него и, следовательно, на упругие элементы, на которых закреплен объект, что влечет за собой снижение срока службы эффективной работы системы; за счет наличия вибраторов и дисбалансов создаваемое угловым вращением вибрационное поле приводит к неравномерному распределению амплитуд колебаний по объекту управления, что приводит к появлению на нем существенных дефектных зон в местах несбалансированного воздействия угловых колебаний.
Цель предлагаемого изобретения заключается в том, чтобы упростить регулировку режимов работы и формирования структуры вибрационного поля с использованием эффектов динамического гашения угловых колебаний с помощью специального регулируемого устройства.
Способ управления динамическим состоянием вибрационной системы или вибрационного технологического комплекса, состоящего из рабочего органа в виде твердого тела на упругих элементах, имеющего инерционный вибровозбудитель, действующий в определенной точке, отличающийся введением в конструктивно-техническую схему системы устройства для преобразования движения в виде несамотормозящегося винтового механизма с гайкой-маховиком с перемещением вдоль рабочего органа точки приложения усилия, возникающего при работе элементов винтовой пары, генерирующей дополнительные стабилизирующие движения рабочего органа таким образом, чтобы вибрационное поле имело однородную структуру и обеспечивая возможности регулирования и настройки вибрационной системы для реализации необходимых параметров технологического процесса.
Устройство, реализующее способ, представляющее собой конструктивно-технический блок, состоящий из винтового несамотормозящегося механизма с массивной гайкой-маховиком, на торцевой части которой может быть создан момент сил путем прижатия тормозной колодки специальным приводом, что генерирует управляющее воздействие в определенной точке рабочего органа вибростенда; устройство для преобразования движения также отличается тем, что точка приложения усилия на рабочий орган может изменяться в результате перемещения конструктивного блока вдоль рабочего органа с помощью синхронно работающих двух электроприводов, обеспечивающих перемещение верхней и нижней частей конструктивно-технического блока с помощью ходовых винтов, управляемого специальным программным блоком, в который для расчетов по заложенной математической модели поступает информация с датчиков, контролирующих вибрационное состояние и системы.
На фиг. 1 показана схема для формирования структуры вибрационного поля и сечения исполнительного механизма.
На фиг. 2 показана принципиальная расчетная схема вибрационного технологического комплекса.
На фиг. 3 показана структурная математическая модель вибрационной технологической машины.
На фиг. 1 показаны: направляющая 1; прижимное устройство 2; датчик прижимного усилия 3; корпус 4; ходовой винт 5; электропривод 6; блок управления 7; упругие элементы 8; датчик параметров вибрационного поля 9; рабочий орган 10; электропривод 11; ходовой винт 12; верхняя часть блока с винтовым механизмом 13; винт устройства для преобразования движения 14; инерционный вибровозбудитель 15; преобразователь 16; гайка-маховик 17; направляющая 18; основание 19.
Введены следующие обозначения: y0 - колебания центра тяжести рабочего органа 10; М - масса рабочего органа 10; J - момент инерции рабочего органа 10; y1, y2 - линейные колебания рабочего органа 10; ϕ - угловое колебание рабочего органа 10; т. О - центр тяжести рабочего органа 10; т. А1 - точка крепления верхней части блока винтового механизма 13 к направляющей 18; т. А2 - точка крепления корпуса 4 к направляющей 1; l0 - расстояние от центра тяжести рабочего органа 10 до вертикальной оси А1А2; k1 и k2 - жесткости упругих элементов 8.
Принцип работы вибрационного технологического комплекса можно пояснить, используя принципиальную расчетную схему, приведенную на фиг. 2.
Система представляет собой твердое тело с массоинерционными параметрами М, J, опирающееся на упругие элементы с жесткостями k1 и k2. Точки крепления пружин удалены от центра тяжести (т. О) на расстояние l1 и l2 соответственно. В тт. А1 и А2 произведено закрепление устройства для преобразования движения в виде несамотормозящегося винтового механизма; гайка-маховик, как показано на фиг. 1, закреплена в корпусе 4 (фиг. 1), который может передвигаться по опорной поверхности, используя направляющие 1 (фиг. 1). Винт устройства для преобразования движения 14 (фиг. 1) закреплен в верхней части блока винтового механизма 13 (фиг. 1), который также может перемещаться в горизонтальной направляющей 18 (фиг. 1, сечение I-I) с помощью электроприводов 6 и 11 (фиг. 1), синхронно вращающих ходовые винты 5 и 12 (фиг. 1), связанные с подвижным корпусом 4 и верхней частью блока винтового механизма 13 (фиг. 1) устройства для преобразования движения. В сечении II-II (фиг. 1) гайка-маховик 17 имеет момент инерции J0. Приведенная масса устройства для преобразования движения (УПД) обозначается:
Figure 00000001
где rcp - средний радиус винта УПД; α - угол наклона винтовой нарезки (выбирается в пределах 45° до 70°).
Математическая модель вибрационного комплекса может быть построена на основе использования уравнения Лагранжа второго рода. Выражения для кинетической и потенциальной энергий объекта имеют вид:
Figure 00000002
где y1, y2 - рассматриваются в системе координат, связанной с неподвижным базисом. Воспользуемся известными соотношениями между координатами:
Figure 00000003
здесь
Figure 00000004
.
В свою очередь:
Figure 00000005
Координата
Figure 00000006
, где закрепляется УПД, определяется расстоянием l0 (фиг. 2) от центра тяжести (т. О):
Figure 00000007
таким образом:
Figure 00000008
где
Figure 00000009
Система уравнений движения рабочего органа (Фиг. 2) имеет вид:
Figure 00000010
В уравнениях (9) Q является внешним гармоническим воздействием, создающим вибрационное поле для рабочего органа 10 на фиг. 1.
После преобразований Лапласа система уравнений (9) может быть преобразована в систему алгебраических уравнений, на основе которых строится структурная математическая модель, как показано на фиг. 3.
На структурной схеме р=jω является комплексной переменной, значок (-) означает изображение переменной по Лапласу. Из структурной схемы (фиг. 3) найдем отношение амплитуд, формируемое действием силы Q; при этом понимается, что переходные процессы из-за наличия диссипативных сил не оказывают существенного влияния. Таким образом получим, что:
Figure 00000011
Из (10) следует, что при
Figure 00000012
вибрационное поле будет иметь необходимую однородную структуру на частоте:
Figure 00000013
Из выражения (11) найдем, что
Figure 00000014
В системе координат y0, ϕ выражения для кинетической и потенциальной энергий имеют вид:
Figure 00000015
Система уравнений в этом случае преобразуется к виду:
Figure 00000016
Передаточная функция по ϕ при действии Q формируется в системе координат таким образом, что имеется два входных воздействия: по координате y0 - Q и по координате ϕ - Ql2. Таким образом:
Figure 00000017
Выражение (16) получено после применения к (15) преобразований Лапласа с учетом двух внешних возмущений: по координате у0 - Q и по координате ϕ - Ql2 соответственно.
В выражении (16) знаменатель имеет вид:
Figure 00000018
Частота динамического гашения по координате ϕ определяется выражением
Figure 00000019
Очевидно, что выражения (12) и (18) совпадают.
Таким образом, режим соблюдения однородности вибрационного поля
Figure 00000020
совпадает с режимом динамического гашения колебаний в системе по координате ϕ при действии возбуждающей силы Q по координате y2.
На основании развитых доказательных позиций можно утверждать, что реализация способа управления динамическим состоянием вибрационного технологического комплекса принципиально осуществима с обеспечением однородности структуры вибрационного поля.
Возможные отклонения от заданного режима компенсируются двумя настроечными факторами: изменением положения точки А1, то есть изменением величины l0, что достигается соответствующим перемещением устройства для преобразования движения по горизонтальной опорной поверхности. Вторая возможность настройки вибрационного поля обеспечивается за счет приложения к ободу гайки-маховика тормозного момента сил, который, в физическом смысле, интерпретируется таким же динамическим эффектом, что и смещение точки A1 на величину l0. В динамических аспектах взаимодействие устройства для преобразования движения с вибрационной технологической системой может рассматриваться как коррекция момента сил относительно центра тяжести системы, вокруг которого движение сводится к режиму динамического гашения угловых колебаний.

Claims (2)

1. Способ управления динамическим состоянием вибрационной системы или вибрационного технологического комплекса, состоящего из рабочего органа в виде твердого тела на упругих элементах, имеющего инерционный вибровозбудитель, действующий в определенной точке, отличающийся введением в конструктивно-техническую схему системы устройства для преобразования движения в виде несамотормозящегося винтового механизма с гайкой-маховиком с перемещением вдоль рабочего органа точки приложения усилия, возникающего при работе элементов винтовой пары, генерирующей дополнительные стабилизирующие движения рабочего органа таким образом, чтобы вибрационное поле имело однородную структуру и обеспечивало возможности регулирования и настройки вибрационной системы для реализации необходимых параметров технологического процесса.
2. Устройство, реализующее способ, представляющее собой конструктивно-технический блок, состоящий из винтового несамотормозящегося механизма с массивной гайкой-маховиком, на торцевой части которой может быть создан момент сил путем прижатия тормозной колодки специальным приводом, что генерирует управляющее воздействие в определенной точке рабочего органа вибростенда; устройство для преобразования движения также отличается тем, что точка приложения усилия на рабочий орган может изменяться в результате перемещения конструктивного блока вдоль рабочего органа с помощью синхронно работающих двух электроприводов, обеспечивающих перемещение верхней и нижней частей конструктивно-технического блока с помощью ходовых винтов, управляемого специальным программным блоком, в который для расчетов по заложенной математической модели поступает информация с датчиков, контролирующих вибрационное состояние и системы.
RU2016102236A 2016-01-25 2016-01-25 Способ управления структурой вибрационного поля вибрационной технологической машины на основе использования эффектов динамического гашения и устройство для его осуществления RU2624757C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016102236A RU2624757C1 (ru) 2016-01-25 2016-01-25 Способ управления структурой вибрационного поля вибрационной технологической машины на основе использования эффектов динамического гашения и устройство для его осуществления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016102236A RU2624757C1 (ru) 2016-01-25 2016-01-25 Способ управления структурой вибрационного поля вибрационной технологической машины на основе использования эффектов динамического гашения и устройство для его осуществления

Publications (1)

Publication Number Publication Date
RU2624757C1 true RU2624757C1 (ru) 2017-07-06

Family

ID=59312882

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016102236A RU2624757C1 (ru) 2016-01-25 2016-01-25 Способ управления структурой вибрационного поля вибрационной технологической машины на основе использования эффектов динамического гашения и устройство для его осуществления

Country Status (1)

Country Link
RU (1) RU2624757C1 (ru)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2689901C2 (ru) * 2017-11-22 2019-05-29 Федеральное государственное бюджетное образовательное учреждение высшего образования Иркутский государственный университет путей сообщения (ФГБОУ ВО ИрГУПС) Устройство управления вибрационным полем технологической машины
RU2691646C1 (ru) * 2018-05-07 2019-06-17 Федеральное государственное бюджетное образовательное учреждение высшего образования Иркутский государственный университет путей сообщения (ФГБОУ ВО ИрГУПС) Способ управления формированием структуры и параметров вибрационного поля технологической машины
RU2718177C1 (ru) * 2018-12-24 2020-03-31 Федеральное государственное бюджетное образовательное учреждение высшего образования Иркутский государственный университет путей сообщения (ФГБОУ ВО ИрГУПС) Способ настройки динамического состояния вибрационной технологической машины и устройство для его осуществления
RU2753843C1 (ru) * 2020-09-03 2021-08-24 Федеральное государственное бюджетное образовательное учреждение высшего образования Иркутский государственный университет путей сообщения (ФГБОУ ВО ИрГУПС) Устройство формирования и управления динамическим состоянием вибрационной технологической машины и способ для его реализации
RU2773825C1 (ru) * 2021-02-04 2022-06-10 Федеральное государственное бюджетное образовательное учреждение высшего образования Иркутский государственный университет путей сообщения (ФГБОУ ВО ИрГУПС) Устройство для формирования вибрационного перемещения рабочей среды

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090212475A1 (en) * 2005-07-03 2009-08-27 Hermann Tropf Fastening Means Preventing The Transmission of Shocks and Vibrations
RU2475658C2 (ru) * 2011-04-28 2013-02-20 Государственное образовательное учреждение высшего профессионального образования Иркутский государственный университет путей сообщения (ИрГУПС (ИрИИТ)) Способ регулирования жесткости виброзащитной системы и устройство для его осуществления
US20130292541A1 (en) * 2011-01-11 2013-11-07 Drs Tactical Systems, Inc. Vibration isolating device
RU136112U1 (ru) * 2013-07-25 2013-12-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Иркутский государственный университет путей сообщения (ФГБОУ ВПО ИрГУПС) Устройство для гашения колебаний

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090212475A1 (en) * 2005-07-03 2009-08-27 Hermann Tropf Fastening Means Preventing The Transmission of Shocks and Vibrations
US20130292541A1 (en) * 2011-01-11 2013-11-07 Drs Tactical Systems, Inc. Vibration isolating device
RU2475658C2 (ru) * 2011-04-28 2013-02-20 Государственное образовательное учреждение высшего профессионального образования Иркутский государственный университет путей сообщения (ИрГУПС (ИрИИТ)) Способ регулирования жесткости виброзащитной системы и устройство для его осуществления
RU136112U1 (ru) * 2013-07-25 2013-12-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Иркутский государственный университет путей сообщения (ФГБОУ ВПО ИрГУПС) Устройство для гашения колебаний

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2689901C2 (ru) * 2017-11-22 2019-05-29 Федеральное государственное бюджетное образовательное учреждение высшего образования Иркутский государственный университет путей сообщения (ФГБОУ ВО ИрГУПС) Устройство управления вибрационным полем технологической машины
RU2691646C1 (ru) * 2018-05-07 2019-06-17 Федеральное государственное бюджетное образовательное учреждение высшего образования Иркутский государственный университет путей сообщения (ФГБОУ ВО ИрГУПС) Способ управления формированием структуры и параметров вибрационного поля технологической машины
RU2718177C1 (ru) * 2018-12-24 2020-03-31 Федеральное государственное бюджетное образовательное учреждение высшего образования Иркутский государственный университет путей сообщения (ФГБОУ ВО ИрГУПС) Способ настройки динамического состояния вибрационной технологической машины и устройство для его осуществления
RU2753843C1 (ru) * 2020-09-03 2021-08-24 Федеральное государственное бюджетное образовательное учреждение высшего образования Иркутский государственный университет путей сообщения (ФГБОУ ВО ИрГУПС) Устройство формирования и управления динамическим состоянием вибрационной технологической машины и способ для его реализации
RU2773825C1 (ru) * 2021-02-04 2022-06-10 Федеральное государственное бюджетное образовательное учреждение высшего образования Иркутский государственный университет путей сообщения (ФГБОУ ВО ИрГУПС) Устройство для формирования вибрационного перемещения рабочей среды

Similar Documents

Publication Publication Date Title
RU2624757C1 (ru) Способ управления структурой вибрационного поля вибрационной технологической машины на основе использования эффектов динамического гашения и устройство для его осуществления
RU2475658C2 (ru) Способ регулирования жесткости виброзащитной системы и устройство для его осуществления
RU2710314C1 (ru) Способ изменения и настройки динамического состояния вибрационной технологической машины и устройство для его осуществления
RU2595733C2 (ru) Способ настройки режимов работы виброзащитной системы и устройство для его осуществления
TWI695128B (zh) 主動慣性阻尼器系統及方法
RU142137U1 (ru) Устройство для регулирования упругодиссипативных свойств виброзащитной системы
CN113565912B (zh) 一种共振频率自适应快速可调的动力吸振结构及方法
De Roeck et al. A versatile active mass damper for structural vibration control
RU2668933C1 (ru) Устройство для гашения колебаний
US20020170793A1 (en) Nonlinear mass damper with active centerband control
JP2008082542A (ja) 振動低減機構およびその諸元設定方法
CN204107827U (zh) 一种多振型振动筛
RU2711832C1 (ru) Способ управления динамическим состоянием технологической вибрационной машины и устройство для его осуществления
RU2693711C2 (ru) Устройство управления динамическим состоянием вибрационной технологической машины
CN104070009A (zh) 一种多振型振动筛
RU2718177C1 (ru) Способ настройки динамического состояния вибрационной технологической машины и устройство для его осуществления
RU2695899C1 (ru) Способ настройки распределения амплитуд колебаний рабочего органа вибростенда и устройство для его осуществления
RU2689901C2 (ru) Устройство управления вибрационным полем технологической машины
RU2716368C1 (ru) Способ корректировки распределения амплитуд колебаний рабочего органа вибрационного технологического стенда и устройство для его реализации
RU2696506C1 (ru) Способ управления динамическим состоянием технического объекта при вибрационных воздействиях и устройство для его осуществления
RU2654890C1 (ru) Способ динамического гашения колебаний объекта защиты и устройство для его осуществления
JP2014009942A (ja) 共振振動台
RU180976U1 (ru) Устройство для отделочно-упрочняющей обработки деталей
RU2410167C1 (ru) Способ возбуждения резонансных механических колебаний и устройство для его осуществления (варианты)
RU2335352C2 (ru) Способ получения и поддержания резонансных механических колебаний и устройство для его осуществления

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190126