RU2620058C1 - Комплексный противостаритель для резин - Google Patents

Комплексный противостаритель для резин Download PDF

Info

Publication number
RU2620058C1
RU2620058C1 RU2016110486A RU2016110486A RU2620058C1 RU 2620058 C1 RU2620058 C1 RU 2620058C1 RU 2016110486 A RU2016110486 A RU 2016110486A RU 2016110486 A RU2016110486 A RU 2016110486A RU 2620058 C1 RU2620058 C1 RU 2620058C1
Authority
RU
Russia
Prior art keywords
rubber
antioxidant
caprolactam
rubbers
complex
Prior art date
Application number
RU2016110486A
Other languages
English (en)
Inventor
Александр Федорович Пучков
Марина Петровна Спиридонова
Наталья Александровна Третьякова
Юлия Дмитриевна Балюсова
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный технический университет" (ВолгГТУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный технический университет" (ВолгГТУ) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный технический университет" (ВолгГТУ)
Priority to RU2016110486A priority Critical patent/RU2620058C1/ru
Application granted granted Critical
Publication of RU2620058C1 publication Critical patent/RU2620058C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/005Stabilisers against oxidation, heat, light, ozone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Изобретение относится к получению комплексного противостарителя для резин, обеспечивающего последним высокие физико-механические показатели и их сохранение в процессе термоокислительного старения. Изобретение может быть использовано в резинотехнической промышленности для обеспечения термоокислительной стойкости резинам в течение длительного времени их эксплуатации. Комплексный противостаритель для резин содержит ε-капролактам, салициловую кислоту, оксид цинка, 2,2-метиленбис(4-метил-6-трет-бутилфенол). Техническим результатом при использовании комплексного противостарителя является повышение его активирующего влияния на процесс вулканизации каучука резиновых смесей и повышение устойчивости вулканизатов к термоокислительному старению при сохранении высоких физико-механические показателей. 3 ил., 3 табл.

Description

Изобретение относится к получению комплексного противостарителя для резин, обеспечивающего последним высокие физико-механические показатели и их сохранение в процессе термоокислительного старения. Изобретение может быть использовано в резинотехнической промышленности для обеспечения термоокислительной стойкости резинам в течение длительного времени их эксплуатации.
Известен композиционный противостаритель, используемый для приготовления вулканизуемой резиновой смеси и состоящий из порошкообразного носителя - коллоидной кремнекислоты и жидкого сплава противостарителей, полученного при 70-90°С, содержащего N-изопропил-N-фенил-n-фенилендиамин, ε-капролактам, стеариновую кислоту и борную кислоту [Патент РФ 2443730, МПК C08L 7/00, C08L 9/00, C08L 9/06, С08K 3/24, С08K 3/36, С08K 5/18, С08K 13/02, 27.02.2012], что позволяет эффективно защитить резину от воздействия озона.
Однако применение борной кислоты при синтезе противостарителя способствует существенному замедлению процессов структурирования каучука, что является недостатком противостарителя, особенно в тех случаях, когда его содержание составляет свыше 2-х масс. ч. на 100 масс. ч. каучука.
Известен композиционный противостаритель, используемый для приготовления вулканизуемой резиновой смеси и состоящий из жидкого сплава противостарителей, полученного при температуре 70-90°С из N-изопропил-N-фенил-n-фенилендиамина, N,N'-дифенил-n-фенилендиамина, 2-меркаптобензтиазола, ε-капролактама и порошкообразного носителя [Патент РФ 2236423, МПК C08L 7/00, C08L 9/00, C08L 9/02, С08K 13/02, С08K 3/22, С08K 3/26, С08K 3/36, С08K 5/16, С08K 5/18, С08K 5/47, 20.09.2004], также проявляющий превентивное защитное действие.
Однако содержание 2-меркаптобензтиазола в составе данного противостарителя, даже из расчета 1 мас. ч на 100 масс. ч. каучука, приводит к уменьшению индукционного периода, что, естественно, не всегда приемлемо, особенно при вулканизации крупногабаритных изделий.
Известен комплексный противостаритель (КП) для резин, состоящий из порошкообразного носителя оксид цинка и жидкого сплава противостарителей, полученного при 70-90°С, содержащего в масс. ч.: N-изопропил-N-фенил-n-фенилендиамин 50,00-45,20, ε-капролактам 14,50-13,40, борную кислоту 6,00-5,70, салициловую кислоту 23,00-27,60 и дополнительно оксид цинка 6,50-8,10 в виде предварительно полученного расплава в ε-капролактаме при температуре 110-115°С [Патент РФ 258673, МПК С08K 13/02, C08L 21/00, 20.09.14], а также комплексный противостаритель (КП) для резин, состоящий из порошкообразного носителя - оксида цинка и коллоидной кремнекислоты, и жидкого сплава противостарителей, полученного при 70-90°С, содержащего N-изопропил-N/-фенил-n-фенилендиамин (JPPD) (50,00-45,20), ε-капролактам (14,50-13,4), борную кислоту (6,00-5,70), оксид цинка (6,50-8,10) и салициловую кислоту (23,00-27,60) [Патент РФ 2531200, МПК С08K 13/02, C08L 21/00, 20.10.2014], которые обеспечивают высокий уровень термоокислительной и озонной стойкости резинам в течение длительного времени их эксплуатации.
Указанные комплексные противостарители объединяют общие структурные формальные признаки - присутствие в составе противостарителя превентивного действия ε-капролактама, направленное действие которого позволяет значительно уменьшить общее содержание противостарителей в каучуке при защите резин от термоокислительного старения и противостарителей, обрывающих цепь окисления, - производных n-фенилендиамина. Однако, данные комплексные противостарители оказывают негативное влияние на процессе структурирования, что приводит к образованию относительно низкомодульных вулканизатов, что, в свою очередь, сказывается на процессе вулканизации и недостаточной степени диспергирования активных наполнителей в каучуке.
Наиболее близким является комплексный противостаритель (КП) для резин, состоящий из порошкообразного носителя - коллоидной кремнекислоты и жидкого сплава противостарителей, содержащего N-изопропил-N-фенил-n-фенилендиамин (JPPD) (19,50-22,5), оксид цинка (33,00-37,00), ε-капролактам (19,50-22,50) и салициловую кислоту (10,50-11,50) при соотношении сплава и коллоидной кремнекислоты: 45-55 масс. ч. : 45-55 масс. ч. [Патент РФ 2559469, МПК C08L 21/00, С08K 3/22, С08K 5/09, С08K 5/18, 10.08.15], который эффективно защищает резины в процессе термоокислительного старения, оказывая при этом пролонгирующее влияние в защитном действии.
Однако данный комплексный противостаритель оказывает отрицательное влияние на процессе структурирования, выражающееся в получении относительно низкомодульных вулканизатов. Подобное обстоятельство может быть причиной низкого активирующего влияния этого противостарителя на процесс вулканизации и, возможно, недостаточной степени диспергирование активных наполнителей в каучуке, что, в свою очередь, влияет на физико-механические показатели вулканизатов.
Задача, на решение которой направлено данное изобретение, - получение комплексного противостарителя, обеспечивающего высокую устойчивость вулканизатов к термоокислительному старению.
Техническим результатом при использовании комплексного противостарителя является повышение его активирующего влияния на процесс вулканизации каучука резиновых смесей и повышение устойчивости вулканизатов к термоокислительному старению при сохранении высоких физико-механические показателей.
Технический результат достигается при использовании комплексного противостарителя для резин, содержащего ε-капролактам, салициловую кислоту и оксид цинка, при этом содержащего 2,2-метиленбис(4-метил-6-трет-бутилфенол) при следующих соотношениях компонентов масс. %: 2,2-метиленбис(4-метил-6-третбутилфенол) 44,00-36,00, ε-капролактам 43,00-35,00, оксид цинка 5,00-4,50, салициловая кислота 16,50-15,50.
Благодаря синергетическому эффекту, проявляемому в результате взаимодействия ε-капролактама - противостарителя превентивного действия и 2,2-метиленбис(4-метил-6-трет-бутилфенола) - противостарителя, обрывающего цепь окисления, заявленный комплексный противостаритель проявляет более выраженные свойства диспергатора и активатора процесса вулканизации. Комплексный противостаритель, представленный комплексным соединением оксида цинка и салициловой кислоты, в результате присутствия во внутренней сфере комплекса ε-капролактама и 2,2-метиленбис(4-метил-6-трет-бутилфенола) способствует созданию более регулярной пространственной вулканизационной структуры.
Взаимодействие салициловой кислоты с оксидом цинка с образованием салицилата цинка происходит в расплаве смеси 2,2-метиленбис(4-метил-6-трет-бутилфенола) и ε-капролактама. При этом вокруг цинка координируются [Харитонов Ю.Я., Туйебахова З.К. Салицилатные комплексы кобальта, никеля, цинка и кадмия, Коорд. химия, 1983, т. 9, 16 II, с. 1512-1527] нейтральные молекулы 2,2-метиленбис(4-метил-6-трет-бутилфенола) и ε-капролактама, находящиеся в расплаве, с образованием координированного комплексного соединения.
На образование комплексного соединения, прежде всего, указывает появление окраски при синтезе комплексной соли. В промежутке времени от начала введения первой порции кислоты до конца синтеза соли происходит изменение окраски продукта от светло-розового до насыщенного розового цвета. Время синтеза продукта - 30 мин. После прекращения синтеза изменение окраски продукта не наблюдается.
Данные дифференциального термического анализа (ДТА) и дифференциально-термогравиметрического анализа (ДТГ) свидетельствуют о том, что ε-капролактам и 2,2-метиленбис(4-метил-6-трет-бутилфенол) входит в лигандную сферу комплексного соединения при температуре синтеза 130±5°С. В противном случае, если предположить существование четырехкомпонентной системы в виде механической смеси, на кривых ДТА появился бы эндотермический пик плавления ε-капролактама (68°С). Судя по тому, что на участке кривой ДТА от 20 до 220°С нет явных пиков, свидетельствующих о протекании тепловых эффектов, можно предположить, что в этом температурном интервале комплексы, полученные при 130±5°С, достаточно устойчивы.
Разложение комплексов, синтезированных в заявляемом температурном интервале, судя по кривой ДТГ, начинается в области свыше 160°С. При этом происходит высвобождение из комплекса ε-капролактама и 2,2-метиленбис(4-метил-6-трет-бутилфенола), что способствует дополнительному эффекту в обеспечении термоокислительной стойкости резин.
Идентификация КП проводилась также посредством анализа его характеристических групп ИК-спектра. Наиболее доступными для этих целей явились карбонильная группа (С=O) ε-капролактама и гидроксильные группы (ОН) 2,2-метиленбис(4-метил-6-трет-бутилфенола). В ИК-спектрах КП наблюдается смещение частоты валентных колебаний (υ) С=O - группы в сторону меньших частот и наблюдается при 1627 см-1, в то время как для «свободного» ε-капролактама из данных монографии [Р. Сильверстейн, Г. Басслер, Т. Морил. Спектрометрическая идентификация органических соединений. Москва, 1977 г., с. 195] - при 1650 см-1. Интенсивная полоса валентных колебаний ОН-групп «свободного» 2,2-метиленбис(4-метил-6-трет-бутилфенола) при 3600 см-1 в КП практически исчезает, но появляются широкие полосы поглощений при низких частотах (в области 3300-3100 см-1).
Таким образом, можно представить следующую структурную формулу полученной комплексной соли: [Zn(C6H11NO)(C23H32O2)](OOC(CH2)4COOH)2.
В комплексном противостарителе применяются следующие вещества: ε-капролактам ГОСТ 7850-86; 2,2-метиленбис(4-метил-6-трет-бутилфенол) - торговое название в России - агидол 2 ТУ 2492-433-05742686-98; салициловая кислота ГОСТ 6484-96 и оксид цинка ГОСТ 10262-73.
Комплексный противостаритель готовят из дисперсии оксида цинка (ZnO) в дисперсионной среде, представленной эвтектическим расплавом ε-капролактама с 2,2-метиленбис(4-метил-6-трет-бутилфенолом). Предварительное диспергирование ZnO необходимо, т.к. товарный ZnO с агломерированными частицами не позволяет получать однородные продукты реакции солеобразования (практически всегда на дне реактора можно обнаружить частицы ZnO, не вступившего в химическую реакцию). Получение ZnO коллоидных размеров в результате диспергирования практически полностью исключает возникающие проблемы.
Для получения жидкой дисперсионной среды массовое соотношение ε-капролактама и 2,2-метиленбис(4-метил-6-трет-бутилфенола) должно быть эвтектическим, а температура плавления - 34°С или близким к нему. Заявляемые интервалы их соотношений достаточны, чтобы при указанной температуре бинарная система оставалась жидкой. При этом максимальное количество оксида цинка в дисперсионной среде может составить 5,0% мас., выше которого жидкая дисперсия превращается в пасту, что существенно затрудняет процесс диспергирования. В свою очередь, при использовании в дисперсионной среде ZnO в количестве, меньшем заявляемого (4,5% мас.), ухудшаются некоторые функциональные свойства противостарителя в целом, в частности его активирующее влияние на процесс вулканизации каучука. Заявляемые количественные интервалы ZnO определяют, в конечном итоге, и заявляемые интервалы салициловой кислотой, которые, как следует из простых расчетов, соответствуют стехиометрическим соотношениям ее с ZnO, необходимым для образования средних солей салицилата цинка.
Диспергирование можно проводить в обогреваемых аппаратах, пригодных для этих целей, например в жерновой или шаровой мельницах. Диспергирование заканчивают после того, как проба дисперсии, разбавленная в ацетоне (1 г дисперсии на 50 мл ацетона), проходит через фильтр с розовой лентой.
Непосредственное получение комплексного противостарителя осуществляется при температуре 130±5°С в фарфоровом реакторе с фторопластовой мешалкой в течение 30 мин. Температурный режим синтеза - 130±5°С был выбран исходя из того, что выше указанной температуры происходит интенсивное улетучивание ε-капролактама. Проведение синтеза ниже указанной температуры приводит к получению аквакомплекса, который впоследствии при вулканизации каучука распадается, а выделяемая вода при этом приводит к порообразованию в вулканизатах. Последовательность загрузки ингредиентов противостарителя в реактор следующая: вначале загружается дисперсия ZnO в расплаве ε-капролактама с 2,2-метиленбис(4-метил-6-трет-бутилфенолом), затем порциями салициловая кислота; каждая порция составляет около 1/5 части общей навески салициловой кислоты. Порционная загрузка салициловой кислоты обязательна для предотвращения интенсивного пенообразования и возможного перетекания реакционной смеси через реактор.
Примеры составов заявляемого КП и прототипа приведены в таблице 1.
Заявляемый интервал соотношений компонентов КП является оптимальным с позиции обеспечения вулканизатам высоких физико-механических показателей и их сохранения в процессе термоокислительного старения.
Figure 00000001
Для оценки влияния КП на свойства резин использовалась протекторная резиновая смесь. Примеры составов резиновых смесей, приготовленных с использованием заявляемого КП и прототипа, приведены в таблице 2. Опытные резиновые смеси составов 1, 2 и 3 - приготовлены с использованием соответственно 1, 2 и 3 составов КП. Резиновая смесь состава 4 изготовлена с использованием КП по прототипу. Контрольная резиновая смесь состава 5 была приготовлена с использованием антиоксиданта N-изопропил-N/-фенил-n-фенилендиамина (JPPD).
Резиновые смеси готовили на лабораторных вальцах по общепринятой технологии. Смеси вулканизовали при температуре 155°С в течение 30 мин.
Результаты физико-механических испытаний резиновых смесей и их вулканизатов представлены в таблице 3. Физико-механические показатели (ФМП) оценивали по ГОСТ 270-75; стойкость к термическому старению - по ГОСТ 9.024-74.
Figure 00000002
Figure 00000003
Из приведенных в таблице 3 результатов физико-механических испытаний резиновых смесей и их вулканизатов следует, что заявляемый комплексный противостаритель превосходит в защитном действии антиоксиданту JPPD и КП, изготовленную по прототипу. Причем сохранение прочностных свойств вулканизатов с заявляемым комплексным противостарителем наблюдается на всем этапе пролонгирующего старения (96 и 120 часов).
На фиг. 1 представлены кривые дифференциального термического анализа (ДТА) и изменения температуры (Т) механической смеси компонентов для получения комплексного противостарителя, на фиг. 2 представлены кривые дифференциального термического анализа (ДТА), изменения температуры (Т) и дифференциально-термогравиметрического анализа (ДТГ) комплексного противостарителя, на фиг. 3 представлены реометрические кривые резиновых смесей с заявляемым комплексным противостарителем по составу 3 (кривая 1) и комплексный противостаритель по прототипу (кривая 2).
Как видно из кинетической кривой вулканизации на фиг. 3, активирующий эффект процесса вулканизации каучука от использования КП проявляется в увеличении крутящего момента. Кроме этого, активирующее влияние можно констатировать так же, как показано в таблице 3, по увеличению условных напряжений при удлинении 300%.
Пример 1.
В обогреваемый фарфоровый реактор, снабженный мешалкой, загружают 50,75 г, (35,00 масс. %) ε-капролактама и 63,8 г, (44,00 масс. %) 2,2-метиленбис(4-метил-6-трет-бутилфенола). Компоненты системы перемешивают в течение 10-15 мин при температуре 130±5°С. В образованную дисперсионную среду при перемешивании добавляют 6,52 г, (4,50 масс. %) оксида цинка. Диспергирование проводят до образования дисперсии, проба которой, разбавленная в ацетоне (1 г дисперсии на 50 мл ацетона), проходит через фильтр с розовой лентой. После образования дисперсии оксида цинка порционно (примерно по 1/5 части) загружают в нее салициловую кислоту суммарно в количестве 23,93 г. (16,50 масс. %). Каждую последующую порцию вводят после расплавления предыдущей.
Композиция перемешивается после последней загрузки салициловой кислоты в течение 0,5 ч. По окончании синтеза жидкая реакционная смесь выгружается в приемную емкость и охлаждается.
Готовый комплексный противостаритель представляет собой высоковязкую пасту.
Пример 2.
Готовится аналогично примеру 1. Отличается тем, что дисперсия содержит: оксида цинка - 6,82 г, (4,7 масс. %); ε-капролактама - 62,35 г, (43,00 масс. %); 2,2-метиленбис(4-метил-6-трет-бутилфенола) - 52,20 г, (36,00 масс. %). Порционная загрузка салициловой кислоты общей массой - 23,63 г (16,30 масс. %).
Пример 3.
Готовится аналогично примеру 1. Отличается тем, что дисперсия содержит: оксида цинка - 7,25 г, (5,00 масс. %); ε-капролактама - 57,64 г, (39,75 масс. %); 2,2-метиленбис(4-метил-6-трет-бутилфенола) - 57,64 г, (39,75 масс. %). Порционная загрузка салициловой кислоты общей массой - 22,47 г (15,50 масс. %).
Таким образом, как показывают результаты испытаний, использование заявляемого комплексного противостарителя обеспечивает вулканизатам более высокие физико-механические показатели и их лучшее сохранение в условиях пролонгирующего термоокислительного старения.

Claims (2)

  1. Комплексный противостаритель для резин, содержащий ε-капролактам, салициловую кислоту и оксид цинка, отличающийся тем, что содержит 2,2-метиленбис(4-метил-6-трет-бутилфенол) при следующих соотношениях компонентов, масс. %:
  2. 2,2-метиленбис(4-метил-6-третбутилфенол) 44,00-36,00 ε-капролактам 43,00-35,00 оксид цинка 5,00-4,50 салициловая кислота 16,50-15,50
RU2016110486A 2016-03-22 2016-03-22 Комплексный противостаритель для резин RU2620058C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016110486A RU2620058C1 (ru) 2016-03-22 2016-03-22 Комплексный противостаритель для резин

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016110486A RU2620058C1 (ru) 2016-03-22 2016-03-22 Комплексный противостаритель для резин

Publications (1)

Publication Number Publication Date
RU2620058C1 true RU2620058C1 (ru) 2017-05-22

Family

ID=58881239

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016110486A RU2620058C1 (ru) 2016-03-22 2016-03-22 Комплексный противостаритель для резин

Country Status (1)

Country Link
RU (1) RU2620058C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111471523A (zh) * 2020-04-15 2020-07-31 安徽华业香料合肥有限公司 一种具有抗氧化性能的香料组合物
US20220203782A1 (en) * 2019-04-29 2022-06-30 Bridgestone Corporation Sidewall Supports For Pneumatic Tires

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2236423C1 (ru) * 2002-12-15 2004-09-20 Волгоградский государственный технический университет Вулканизуемая резиновая смесь
KR20100002779A (ko) * 2008-06-30 2010-01-07 금호타이어 주식회사 노화방지 특성이 향상된 타이어 고무조성물
RU2443730C1 (ru) * 2010-06-28 2012-02-27 Государственное образовательное учреждение высшего профессионального образования Волгоградский государственный технический университет (ВолгГТУ) Вулканизуемая резиновая смесь
US20120165446A1 (en) * 2009-06-24 2012-06-28 Michelin Recherche Et Technique S.A. Tire Rubber Composition Comprising an Acetylacetonate Compound
RU2531200C1 (ru) * 2013-03-28 2014-10-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Волгоградский государственный технический университет" (ВолгГТУ) Комплексный противостаритель для резин
RU2559469C1 (ru) * 2014-01-09 2015-08-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Волгоградский государственный технический университет" (ВолгГТУ) Комплексный противостаритель для резин

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2236423C1 (ru) * 2002-12-15 2004-09-20 Волгоградский государственный технический университет Вулканизуемая резиновая смесь
KR20100002779A (ko) * 2008-06-30 2010-01-07 금호타이어 주식회사 노화방지 특성이 향상된 타이어 고무조성물
US20120165446A1 (en) * 2009-06-24 2012-06-28 Michelin Recherche Et Technique S.A. Tire Rubber Composition Comprising an Acetylacetonate Compound
RU2443730C1 (ru) * 2010-06-28 2012-02-27 Государственное образовательное учреждение высшего профессионального образования Волгоградский государственный технический университет (ВолгГТУ) Вулканизуемая резиновая смесь
RU2531200C1 (ru) * 2013-03-28 2014-10-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Волгоградский государственный технический университет" (ВолгГТУ) Комплексный противостаритель для резин
RU2559469C1 (ru) * 2014-01-09 2015-08-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Волгоградский государственный технический университет" (ВолгГТУ) Комплексный противостаритель для резин

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220203782A1 (en) * 2019-04-29 2022-06-30 Bridgestone Corporation Sidewall Supports For Pneumatic Tires
US11926179B2 (en) * 2019-04-29 2024-03-12 Bridgestone Corporation Sidewall supports for pneumatic tires
CN111471523A (zh) * 2020-04-15 2020-07-31 安徽华业香料合肥有限公司 一种具有抗氧化性能的香料组合物
CN111471523B (zh) * 2020-04-15 2022-12-23 安徽华业香料合肥有限公司 一种具有抗氧化性能的香料组合物

Similar Documents

Publication Publication Date Title
Busolo et al. Antioxidant polyethylene films based on a resveratrol containing clay of interest in food packaging applications
US5240642A (en) Process for obtaining granular forms of additives for organic polymers
RU2620058C1 (ru) Комплексный противостаритель для резин
CN109553949B (zh) 一种抗菌聚碳酸酯复合材料及其制备方法
EP1780236B1 (en) Granule mass
US20140162045A1 (en) Radiation stabilized pvc compositions, and method of making same
AU2016385771B2 (en) PBAT resin composition
JP5623735B2 (ja) タイヤ用ゴム組成物
US20050171230A1 (en) Agent for suppressing transfer of odor and taste originating from a diacetal a diacetal composition comprising the agent for suppressing transfer of odor and taste a polyolefin nucleating agent comprising the composition a polyolefin resin composition and a molded product comprising the nucleating agent
US20220106488A1 (en) Grinding Aid for Titanium Dioxide Particles
RU2596251C1 (ru) Промотор адгезии резины к текстильному корду
RU2559469C1 (ru) Комплексный противостаритель для резин
US8293817B2 (en) Method for manufacturing natural rubber
RU2528673C1 (ru) Комплексный противостаритель для резин
RU2543179C2 (ru) Вулканизуемая резиновая смесь на основе фторкаучука
RU2443730C1 (ru) Вулканизуемая резиновая смесь
RU2620060C1 (ru) Вулканизуемая резиновая смесь для изготовления светлых резин
RU2620059C1 (ru) Вулканизуемая резиновая смесь для изготовления светлых резин
EP3091051A1 (en) Polyoxymethylene resin composition and molded article containing same
RU2531200C1 (ru) Комплексный противостаритель для резин
RU2458948C1 (ru) Пластифицированная полимерная композиция на основе поливинилхлорида для пленочного материала
JP5923147B2 (ja) タイヤ用ゴム組成物
US3546272A (en) Pentaerythritoltetrakis-(3,5-di-t-butyl-4-hydroxy-benzylthioacetate)
RU2656489C1 (ru) Комплексный противостаритель для резин с повышенной стойкостью к абразивному износу
US2189417A (en) Antioxidant

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180323