RU2618808C1 - Способ получения цемента с добавкой - Google Patents

Способ получения цемента с добавкой Download PDF

Info

Publication number
RU2618808C1
RU2618808C1 RU2016120290A RU2016120290A RU2618808C1 RU 2618808 C1 RU2618808 C1 RU 2618808C1 RU 2016120290 A RU2016120290 A RU 2016120290A RU 2016120290 A RU2016120290 A RU 2016120290A RU 2618808 C1 RU2618808 C1 RU 2618808C1
Authority
RU
Russia
Prior art keywords
serpentinite
cement
additive
grinding
fraction
Prior art date
Application number
RU2016120290A
Other languages
English (en)
Inventor
Сергей Фёдорович Шмотьев
Сергей Юрьевич Плинер
Евгений Васильевич Рожков
Вячеслав Михайлович Сычёв
Эдуард Викторович Глызин
Original Assignee
Общество С Ограниченной Ответственностью "Форэс"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество С Ограниченной Ответственностью "Форэс" filed Critical Общество С Ограниченной Ответственностью "Форэс"
Priority to RU2016120290A priority Critical patent/RU2618808C1/ru
Application granted granted Critical
Publication of RU2618808C1 publication Critical patent/RU2618808C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/042Magnesium silicates, e.g. talc, sepiolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/48Clinker treatment
    • C04B7/52Grinding ; After-treatment of ground cement
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

Изобретение относится к производству строительных материалов и может быть использовано при изготовлении цемента с добавкой различного назначения. Способ получения цемента с добавкой, включающий обжиг серпентинита, его измельчение до фракции менее 30 мкм и последующее введение в качестве минеральной добавки в количестве 2-30 масс. % в портландцемент или в смесь портландцементного клинкера и гипса на стадии их помола, причем перед обжигом серпентинит орошают водным раствором соли натрия, или калия, или кальция или водным раствором смеси указанных солей при общем содержании соли - 0,02-1,0% от массы серпентинита. Технический результат - повышение прочности. 2 пр., 2 табл.

Description

Изобретение относится к производству строительных материалов и может быть использовано при изготовлении цементов с добавкой различного назначения.
Потребность в вяжущих строительных материалах в настоящее время огромна и удовлетворить ее только за счет высококачественного портландцемента, применяемого в ответственном строительстве, не представляется возможным. В этой связи для увеличения объемов производства, а также снижения энергетических и материальных затрат, производят вяжущие составного типа, которые кроме клинкерной части содержат различные минеральные добавки. В качестве природных минеральных добавок находят широкое применение диатомит, трепел, опока, волластонит, цеолитсодержащие кремнистые породы и т.д. (см., например, патенты РФ №2122530, №2440939). В качестве искусственных минеральных добавок применяют промышленные отходы: гранулированные доменные шлаки, нефелиновый шлам, золу - уноса, образующуюся при сжигании угля и пр. (см., например, патент РФ №2497767). Еще одним из видов природного минерального сырья, которое может найти широкое применение в цементной промышленности, являются магнийсиликатные материалы (серпентинит, дунит, оливин), используемые в частности для производства керамических и огнеупорных изделий.
Известен, например, патент РФ №1769501, в котором в качестве минеральной добавки в портландцемент дополнительно вводят нетермообработанный серпентинит в количестве 1-2 масс. %. Известен также патент РФ №2288899, в котором дунитовый цемент, состоящий из портландцементного клинкера, двуводного гипса и дунита, получают при их совместном помоле в стержневой вибрационной установке в течение 10 минут, при следующем соотношении компонентов, масс. %: дунит - 30-40, портландцементный клинкер - 60-70, двуводный гипс - 3.
Наиболее близким по технической сущности к заявляемому решению является способ изготовления цемента с добавкой, который получают путем утилизации отходов производства магнийсиликатного проппанта (патент РФ №2582162), представляющих собой пылеунос обжига серпентинита - невозвратную пыль, образующуюся при грануляции, сушке, рассеве и обжиге проппанта - сырца, а также спеки, образующиеся при обжиге проппанта - сырца, указанные отходы вводятся в портландцемент в качестве функциональной техногенной минеральной добавки в количестве 5-20 масс. %, причем спеки, образующиеся при обжиге проппанта - сырца, предварительно измельчают до фракции менее 30 мкм.
Недостатком известного способа является пониженная прочность цемента, обусловленная природой используемых отходов - пылеуноса и спеков проппантов. В качестве сырья для производства магнийсиликатных проппантов используют, как правило, серпентинит как самостоятельно, так и в смеси с природным кварцполевошпатным песком. В процессе производства исходный серпентинит подвергают термообработке при температуре 700-1150°С, в результате чего получают материал, состоящий преимущественно из низкопрочного ортосиликата магния. Материал подвергают измельчению, гранулированию с использованием в качестве пластификатора глины и обжигу гранул при температуре выше 1200°С. В результате спекающего обжига получают гранулы, состоящие из высокопрочного метасиликата магния. Таким образом, спеки проппантов, используемые в качестве минеральной добавки в цемент, являются трудноизмельчаемым материалом и при помоле до фракции менее 30 мкм среднемедианный размер частиц составляет приблизительно 20 мкм, следовательно, минеральная добавка остается недостаточно измельченной, что отрицательно сказывается на прочности цемента. Пылевидные отходы производства проппанта имеют в своем составе пониженное содержание стеклофазы, что, в свою очередь, также негативно сказывается на прочности цемента.
Технической задачей, на решение которой направлено изобретение, является увеличение прочности цемента с добавкой.
Указанная задача решается тем, что в способе получения цемента с добавкой, включающем обжиг серпентинита, его измельчение до фракции менее 30 мкм и последующее введение в качестве минеральной добавки в количестве 2-30 масс. % в портландцемент или в смесь портландцементного клинкера и гипса на стадии их помола, перед обжигом серпентинит орошают водным раствором соли натрия, или калия, или кальция или водным раствором смеси указанных солей при общем содержании соли - 0,02-1,0% от массы серпентинита.
Как уже отмечалось, обожженный серпентинит, представляющий собой преимущественно ортосиликат магния, имеет пониженную прочность, вследствие чего обладает хорошей размолоспособностью. Кроме того, орошение серпентинита перед обжигом раствором указанных солей в заявляемом количестве приводит к тому, что материал пропитывается стеклообразующими соединениями. При обжиге микрочастицы солей окисляются и служат центрами стеклообразования, относительно равномерно распределенными в объеме материала, что, в свою очередь, выравнивает его химический и фазовый состав. Предварительно обожженный серпентинит является исходным сырьем для получения как керамических, так и огнеупорных материалов. В этой связи его предварительный обжиг может производиться в широком температурном диапазоне (700-1500°С). При этом химический и фазовый состав (преимущественно «рыхлый» ортосиликат магния) обожженного серпентинита остается неизменным, в отличие от спеков проппанта, в которых в обязательном порядке содержатся различные добавки (спекающие, упрочняющие, модифицирующие), и которые подверглись двойному обжигу и изменили фазовый состав (преимущественно «плотный» метасиликат магния). При проведении специальных исследований авторами не отмечалось значимого влияния температуры обжига серпентинита на свойства цемента. Для орошения серпентинита авторами выбраны водорастворимые соли натрия, калия и кальция. Это обусловлено их доступностью и низкой ценой, а также тем обстоятельством, что Na+, K+, Ca2+ входят в число природных примесей, содержащихся в составе серпентинита, и при использовании обожженного серпентинита в качестве минеральной добавки в цемент не оказывают негативного влияния на долгосрочные физико-механические характеристики продукта.
Введение в состав цемента или смеси цементного клинкера с гипсом обожженного и измельченного до фракции менее 30 мкм серпентинита в количестве менее 2 масс. % не оказывает заметного влияния на его прочность, увеличение содержания указанной добавки свыше 30 масс. % вызывает снижение прочности цемента. Добавка заявляемых солей в количестве менее 0,02 масс. % не оказывает заметного воздействия на прочностные характеристики цемента, увеличение количества вводимых солей более 1 масс. % не приводит к дальнейшему увеличению прочности цемента. Экспериментальным путем установлено, что пропитанный растворами солей, обожженный и измельченный до фракции менее 30 мкм серпентинит, имеет среднемедианный размер частиц приблизительно 10 мкм, в отличие от 20 мкм у прототипа, что благоприятно сказывается на прочностных характеристиках получаемого при его введении цемента с добавкой. Кроме того, по мнению авторов, наличие в цементе заметного количества стеклофазы переменного состава также, в свою очередь, увеличивает прочность материала.
Примеры осуществления изобретения.
Пример 1
100 г хлорида кальция растворяли в 1 л дистиллированной воды. 10 кг серпентинита помещали во вращающуюся под углом 45° цилиндрическую емкость с открытым торцом и орошали приготовленным раствором хлорида кальция. Увлажненный серпентинит обжигали при температуре 1150°С и измельчали до фракции менее 30 мкм. Затем 4 кг (80 масс. %) портландцемента фракции менее 80 мкм и 1 кг (20 масс. %) обожженного серпентинита фракции менее 30 мкм перемешивали в течение 2 мин. в лабораторной вибромельнице. Смешивание цемента и добавки может осуществляться в любом перемешивающем устройстве. Вибромельница использовалась лишь для интенсификации усреднения материала. Смесь затворяли водой при водотвердом соотношении 0,3, перемешивали в течение 5 минут и готовили образцы - кубы размером 20×20×20 (мм). Образцы хранили в формах в течение 24 часов, а затем в нормально-влажностных условиях 28 суток. Полученные образцы испытывали на сжатие. Подобным образом готовили образцы цемента с различным количеством обожженного и измельченного до фракции менее 30 мкм серпентинита, увлажненного растворами солей натрия или кальция, или калия и их смесями. Результаты испытаний приведены в таблице 1.
Пример 2
100 г хлорида натрия растворяли в 1 л дистиллированной воды. 10 кг серпентинита помещали во вращающуюся под углом 45° цилиндрическую емкость с открытым торцом и орошали приготовленным раствором хлорида натрия. Увлажненный серпентинит обжигали при температуре 1150°С и измельчали до фракции менее 30 мкм. Затем 7,75 кг (77,5 масс. %) портландцементного клинкера, 0,25 кг (2,5 масс. %) гипса и 2 кг (20 масс. %) обожженного серпентинита фракции менее 30 мкм помещали в мельницу сухого помола и измельчали до фракции менее 80 мкм. Смесь затворяли водой при водотвердом соотношении 0,3, перемешивали в течение 5 минут и готовили образцы - кубы размером 20×20×20 (мм). Образцы хранили в формах в течение 24 часов, а затем в нормально-влажностных условиях 28 суток. Полученные образцы испытывали на сжатие. Подобным образом готовили образцы цемента с различным количеством обожженного и измельченного до фракции менее 30 мкм серпентинита, увлажненного растворами солей натрия или кальция, или калия и их смесями. Во всех случаях к клинкеру добавляли 2,5 масс. % гипса. Результаты испытаний приведены в таблице 2.
Анализ данных таблиц показывает, что цемент с добавкой, полученный заявляемым способом (примеры 5-9, 12-15 таблицы 1, примеры 5-9, 12-15 таблицы 2), при равномерном содержании добавки имеет более высокую прочность в сравнении с прототипом.
Figure 00000001
Figure 00000002

Claims (1)


  1. Способ получения цемента с добавкой, включающий обжиг серпентинита, его измельчение до фракции менее 30 мкм и последующее введение в качестве минеральной добавки в количестве 2-30 масс. % в портландцемент или в смесь портландцементного клинкера и гипса на стадии их помола, причем перед обжигом серпентинит орошают водным раствором соли натрия, или калия, или кальция или водным раствором смеси указанных солей при общем содержании соли - 0,02-1,0% от массы серпентинита.
RU2016120290A 2016-05-25 2016-05-25 Способ получения цемента с добавкой RU2618808C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016120290A RU2618808C1 (ru) 2016-05-25 2016-05-25 Способ получения цемента с добавкой

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016120290A RU2618808C1 (ru) 2016-05-25 2016-05-25 Способ получения цемента с добавкой

Publications (1)

Publication Number Publication Date
RU2618808C1 true RU2618808C1 (ru) 2017-05-11

Family

ID=58715662

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016120290A RU2618808C1 (ru) 2016-05-25 2016-05-25 Способ получения цемента с добавкой

Country Status (1)

Country Link
RU (1) RU2618808C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2376255C1 (ru) * 2008-06-11 2009-12-20 Государственное образовательное учреждение высшего профессионального образования "Белгородский государственный технологический университет им. В.Г. Шухова" ("БГТУ им. В.Г. Шухова") Строительный раствор с высокой стойкостью к высолообразованию
RU2378208C1 (ru) * 2008-07-21 2010-01-10 Государственное образовательное учреждение высшего профессионального образования "Петербургский государственный университет путей сообщения" Добавка для бетонной смеси
WO2014118242A1 (de) * 2013-02-04 2014-08-07 Refratechnik Holding Gmbh Geopolymer-bindemittelsystem für feuerbetone, trockener feuerbetonversatz enthaltend das bindemittelsystem sowie die verwendung des versatzes
WO2015035388A1 (en) * 2013-09-09 2015-03-12 Halliburton Energy Services, Inc. Two-part set-delayed cement compositions
RU2582162C1 (ru) * 2015-04-15 2016-04-20 Общество С Ограниченной Ответственностью "Форэс" Способ утилизации отходов производства магнийсиликатного проппанта

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2376255C1 (ru) * 2008-06-11 2009-12-20 Государственное образовательное учреждение высшего профессионального образования "Белгородский государственный технологический университет им. В.Г. Шухова" ("БГТУ им. В.Г. Шухова") Строительный раствор с высокой стойкостью к высолообразованию
RU2378208C1 (ru) * 2008-07-21 2010-01-10 Государственное образовательное учреждение высшего профессионального образования "Петербургский государственный университет путей сообщения" Добавка для бетонной смеси
WO2014118242A1 (de) * 2013-02-04 2014-08-07 Refratechnik Holding Gmbh Geopolymer-bindemittelsystem für feuerbetone, trockener feuerbetonversatz enthaltend das bindemittelsystem sowie die verwendung des versatzes
WO2015035388A1 (en) * 2013-09-09 2015-03-12 Halliburton Energy Services, Inc. Two-part set-delayed cement compositions
RU2582162C1 (ru) * 2015-04-15 2016-04-20 Общество С Ограниченной Ответственностью "Форэс" Способ утилизации отходов производства магнийсиликатного проппанта

Similar Documents

Publication Publication Date Title
CN104057018B (zh) 一种铸造用型砂及其制备方法
CN103586399A (zh) 一种快速透气散热型砂及其制备方法
JPH0543666B2 (ru)
CN103521681A (zh) 一种型砂及其制备方法
CN103521678A (zh) 一种增加铸件光亮度的型砂及其制备方法
JPS6242871B2 (ru)
RU2361834C1 (ru) Гранулированный заполнитель на основе природных осадочных высококремнеземистых пород для бетонной смеси, состав бетонной смеси для получения бетонных строительных изделий, способ получения бетонных строительных изделий и бетонное строительное изделие
RU2476478C1 (ru) Способ изготовления магнийсиликатного проппанта и проппант
RU2397967C1 (ru) Способ получения полуфабриката для изготовления строительных материалов
RU2358937C1 (ru) Гранулированный заполнитель на основе перлита для бетонной смеси, состав бетонной смеси для получения строительных изделий, способ получения бетонных строительных изделий и бетонное строительное изделие
Khaliullin et al. Composite gypsum binder under introducing thermally activated clay as a pozzolanic component and adding ground limestone
RU2365555C2 (ru) Гранулированный композиционный заполнитель для силикатных стеновых изделий на основе трепела, диатомита и опоки, состав сырьевой смеси для изготовления силикатных стеновых изделий, способ получения силикатных стеновых изделий и силикатное стеновое изделие
CN103521692A (zh) 一种用于铸铝的型砂及其制备方法
CN103521696A (zh) 一种压盘铸造的型砂及其制备方法
CN103468240B (zh) 以焦宝石尾矿为原料的超低密陶粒支撑剂及其制备方法
RU2618808C1 (ru) Способ получения цемента с добавкой
RU2582162C1 (ru) Способ утилизации отходов производства магнийсиликатного проппанта
RU2327666C1 (ru) Способ изготовления стеновых керамических изделий с использованием осадочных высококремнеземистых пород, шихта для стеновых керамических изделий и заполнитель для стеновых керамических изделий
RU2528814C2 (ru) Способ получения стеклокерамзита и порокерамики из трепелов и опок
RU2646910C1 (ru) Сырьевая шихта для изготовления магнизиально-кварцевого проппанта
RU2376258C1 (ru) Известково-кремнеземистое вяжущее, способ получения известково-кремнеземистого вяжущего и способ получения формовочной смеси для прессованных силикатных изделий
RU2481288C1 (ru) Способ производства пористого заполнителя
CN102166784A (zh) 凹凸棒多孔陶瓷压制法成形的生产方法
CN105218054A (zh) 一种抗菌耐久型加气砖及其制备方法
KR101685018B1 (ko) 모래를 대체할 수 있는 지오폴리머 과립 제조방법

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190526