RU2616695C2 - Корпус компрессора с полостями с оптимизированной регулировкой - Google Patents
Корпус компрессора с полостями с оптимизированной регулировкой Download PDFInfo
- Publication number
- RU2616695C2 RU2616695C2 RU2014141506A RU2014141506A RU2616695C2 RU 2616695 C2 RU2616695 C2 RU 2616695C2 RU 2014141506 A RU2014141506 A RU 2014141506A RU 2014141506 A RU2014141506 A RU 2014141506A RU 2616695 C2 RU2616695 C2 RU 2616695C2
- Authority
- RU
- Russia
- Prior art keywords
- cavities
- upstream
- downstream
- housing
- blades
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D27/00—Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
- F04D27/02—Surge control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/40—Casings; Connections of working fluid
- F04D29/52—Casings; Connections of working fluid for axial pumps
- F04D29/522—Casings; Connections of working fluid for axial pumps especially adapted for elastic fluid pumps
- F04D29/526—Details of the casing section radially opposing blade tips
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D19/00—Axial-flow pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/08—Sealings
- F04D29/16—Sealings between pressure and suction sides
- F04D29/161—Sealings between pressure and suction sides especially adapted for elastic fluid pumps
- F04D29/164—Sealings between pressure and suction sides especially adapted for elastic fluid pumps of an axial flow wheel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/40—Casings; Connections of working fluid
- F04D29/52—Casings; Connections of working fluid for axial pumps
- F04D29/54—Fluid-guiding means, e.g. diffusers
- F04D29/541—Specially adapted for elastic fluid pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/40—Casings; Connections of working fluid
- F04D29/52—Casings; Connections of working fluid for axial pumps
- F04D29/54—Fluid-guiding means, e.g. diffusers
- F04D29/541—Specially adapted for elastic fluid pumps
- F04D29/542—Bladed diffusers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/66—Combating cavitation, whirls, noise, vibration or the like; Balancing
- F04D29/68—Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
- F04D29/681—Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps
- F04D29/685—Inducing localised fluid recirculation in the stator-rotor interface
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2220/00—Application
- F05D2220/30—Application in turbines
- F05D2220/32—Application in turbines in gas turbines
- F05D2220/321—Application in turbines in gas turbines for a special turbine stage
- F05D2220/3216—Application in turbines in gas turbines for a special turbine stage for a special compressor stage
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
Компрессор для турбомашины, содержащий корпус, по меньшей мере одну ступень компрессора, образованную колесом с неподвижными лопатками и колесом с подвижными лопатками, полости, выполненные в толще корпуса и расположенные по окружности корпуса напротив подвижных лопаток. Полости выполнены удлиненной формы в основном направлении ориентации и закрыты в направлении выше по потоку и ниже по потоку соответственно расположенной выше по потоку стороной и расположенной ниже по потоку стороной, пересечения которых с корпусом образуют расположенную выше по потоку границу и расположенную ниже по потоку границу. Полости смещены относительно подвижных лопаток таким образом, чтобы выступать в направлении выше по потоку от колеса с подвижными лопатками, перекрывая их расположенный выше по потоку конец, расположенная ниже по потоку граница этих полостей ориентирована параллельно хорде в верхней части подвижной лопатки. Изобретение направлено на улучшение аэродинамических характеристик. 2 н. и 3 з.п. ф-лы, 6 ил.
Description
Настоящее изобретение относится к области тяги и, в частности к области аксиальных или аксиально-центробежных компрессоров для силовой установки (турбореактивный или турбовинтовой двигатели, называемые далее в описании турбомашинами), и, в особенности, сильно нагруженным компрессорам высокого давления.
Авиационные турбомашины содержат, в основном, один или несколько компрессоров, в которых воздух, засасываемый в воздухозаборник, сжимается, камеру сгорания, в которой инжектируемое топливо сгорает, далее турбину, в которой для привода одного или нескольких компрессоров сгоревшие газы расширяются и, наконец, выпускное устройство. Авиационные компрессоры образованы лопатками, или лопастями, которые приводятся во вращение внутри корпуса, который обеспечивает герметичность воздушного тракта относительно наружной среды двигателя. Известно, что зазор, существующий между концами подвижных лопаток компрессора и корпусом, образующим внутреннюю стенку тракта протекания воздуха, ухудшает кпд двигателя турбомашины. Кроме того, этот зазор может значительно изменить и ухудшить работу компрессора вплоть до появления явления «помпажа», которое возникает вследствие срыва потока воздуха с поверхности лопатки. Контроль циркуляции воздуха на концах лопатки изначально предназначен для получения одновременно хорошей аэродинамической отдачи компрессора и достаточного запаса против явления помпажа.
Разработанный подход для ограничения влияния этого паразитного течения между концом лопатки и корпусом состоит в выполнении полостей, расположенных в стенке корпуса на уровне пути прохода лопаток. Эти полости размещены напротив лопаток или предпочтительно смещены по оси в направлении выше по потоку двигателя с целью повторной подачи воздуха, циркулирующего в зазоре между лопаткой и корпусом, в тракт выше по потоку от рассматриваемой лопатки. Пример такого воплощения представлен в заявке на патент Заявителя, опубликованной под номером FR 2940374.
Улучшение, вносимое таким предложением, обеспечивается только оптимизацией осевого положения полостей, и следует продолжить поиск оптимизации других параметров для того, чтобы еще более улучшить аэродинамическую отдачу и/или запас по помпажу в существующих компрессорах.
Целью настоящего изобретения, таким образом, является предложение корпуса компрессора, снабженного полостями для еще большего улучшения аэродинамических характеристик.
Для достижения этой цели объектом изобретения является компрессор для турбомашины, содержащий корпус, по меньшей мере одну ступень компрессора, образованную колесом с неподвижными лопатками и колесом с подвижными лопатками, расположенным ниже по потоку от упомянутого колеса с неподвижными лопатками, а также полости, не сообщающиеся между собой, выполненные в толще упомянутого корпуса, с его внутренней стороны, и расположенные параллельно одни другим по окружности упомянутого корпуса напротив пути прохода подвижных лопаток, причем упомянутые полости имеют форму, удлиненную в основном направлении ориентации и закрыты в направлении выше по потоку и ниже по потоку соответственно расположенной выше по потоку стороной и расположенной ниже по потоку стороной, пересечения которых с корпусом образуют соответственно расположенную выше по потоку границу и расположенную ниже по потоку границу, при этом упомянутые полости смещены относительно подвижных лопаток таким образом, чтобы выступать в направлении выше по потоку от колеса с подвижными лопатками, перекрывая их расположенный выше по потоку конец, отличается тем, что расположенная ниже по потоку граница этих полостей ориентирована параллельно хорде в верхней части подвижной лопатки.
Параллельность между расположенной ниже по потоку границей полостей и хордой лопатки, создавая тяговый эффект, возникающий одновременно по всей расположенной ниже по потоку зоне полости, вызывает уменьшение турбулентного потока в зазоре, связанного с прохождением лопатки и позволяет увеличить запас по помпажу и несколько увеличить кпд ступени компрессора.
Предпочтительно, направление ориентации упомянутых полостей является перпендикулярным направлению хорды подвижных лопаток. По существу, параллелепипедная форма полости позволяет полностью использовать упомянутый выше тяговый эффект.
В частном варианте воплощения полости распределены равномерно по окружности корпуса.
В другом варианте воплощения полости распределены неравномерно по окружности корпуса.
Изобретение касается также турбомашины, содержащей описанный выше компрессор.
В дальнейшем изобретение поясняется нижеследующим описанием, не являющимся ограничительным, со ссылками на сопровождающие чертежи, на которых:
- фиг. 1 схематично изображает вид в разрезе ступени компрессора, корпус которого содержит полость рециркуляции воздуха, циркулирующего между лопаткой и корпусом;
- фиг. 2 схематично изображает вид сверху лопатки ротора и корпуса из известного уровня техники;
- фиг. 3 схематично изображает вид сверху лопатки ротора и корпуса в соответствии с вариантом воплощения изобретения;
- фиг. 4 схематично изображает сравнительное положение полости и лопатки по изобретению и из известного уровня техники;
- фиг. 5 изображает вид в перспективе полостей и лопаток ротора из известного уровня техники, и
- фиг. 6 изображает в перспективе вид полостей и лопаток в соответствии с изобретением.
На фиг. 1 изображена ступень компрессора, содержащая статорную лопатку, или неподвижную лопатку 2, расположенную на выше по потоку от роторной лопатки, или подвижной лопатки 1, соединенной с диском 3 (или непосредственно выполненная заодно с этим диском в соответствии с технологией так называемого моноблочного лопаточного диска). Неподвижные лопатки удерживаются на месте креплением на корпусе компрессора 4, которые окружают подвижные лопатки 1, оставляя заданный зазор между ними.
Корпус 4 с внутренней стороны выполнен с многочисленными полостями 5, не сообщающимися между собой, которые равномерно расположены по его окружности напротив пути прохода подвижных лопаток 1. Эти полости выполнены приблизительно прямоугольной параллелепипедной формы, которая углублена радиально внутрь корпуса и в разрезе по осевой форме имеет форму прямоугольника со скругленными углами. Их форма в разрезе по плоскости, касательной к окружности корпуса, представляет собой, по существу, форму удлиненного прямоугольника с двумя большими боковыми сторонами и двумя малыми сторонами, выше и ниже по потоку, образующими границы, называемые расположенной выше по потоку частью 7 и расположенной ниже по потоку частью 6. Эти две границы классически являются отрезками прямых.
Как можно видеть на фиг. 1, полости смещены в направлении выше по потоку двигателя относительно передней кромки подвижной лопатки 1. Длина, за которую выходит расположенная выше по потоку часть 7 полости относительно передней кромки 11 лопаток, ограничена пространством, существующим между колесом 1 с подвижными лопатками и колесом с неподвижными лопатками 2. Благодаря этим полостям, паразитный воздух всасывается в некотором количестве с хорды лопатки и повторно поступает во тракт выше по потоку от лопатки. Такая конфигурация обеспечивает рециркуляцию воздуха, который проходит в зазоре между лопаткой 1 и корпусом 4; этот зазор, действительно, может быть местом сильных турбулентных потоков, которые могли бы нарушить конфигурацию течения между различными ступенями и, таким образом, привести к ухудшению кпд компрессора или, в крайнем случае, вызвать явление, называемое «помпажем» или «срывом». Такое явление характеризуется моментальным падением коэффициента компрессии и переходной инверсией расхода воздуха, проходящего через компрессор, который, таким образом, выходит через расположенную выше по потоку часть компрессора.
На фиг. 2 и 3 изображено окружное положение последовательности полостей 5, выровненных вдоль корпуса 4. Количество полостей значительно превышает количество лопаток 1, образующих подвижное колесо ступени компрессора. Это количество на практике в 2-4 раза больше количества подвижных лопаток 1. Окружное распределение полостей, как видно на чертежах, имеет одинаковое расположение; впрочем, уже было предложено выполнять их распределение неравномерным, чтобы прекратить аэродинамическое возбуждение на лопатках, которое могло бы быть вызвано этими полостями, в частности на концах каждой из двух полуоболочек, которые образуют корпус.
На фиг. 2 в соответствии с известным уровнем техники ось этих полостей слегка наклонена относительно продольного направления двигателя, определяемого как ось вращения подвижного колеса 1 и изображенного стрелкой на чертеже. Напротив, на фиг. 3, которая иллюстрирует вариант воплощения по изобретению, полости 5 расположены с основной ориентацией их больших сторон, которые четко более тангенциальны, чем на фиг. 2, при этом угол их регулировки перпендикулярен хорде подвижных лопаток 1. Вспомним, что хорда лопатки определена как прямая, соединяющая ее переднюю кромку с ее задней кромкой. Вследствие того, что полость в представленном примере имеет, по существу, параллелепипедную форму, расположенная ниже по потоку граница 6 полости 5 выровнена с этой хордой подвижных лопаток.
Отсюда следует, как можно видеть на фиг. 4, что осевой габаритный размер полостей значительно уменьшен по сравнению с известным уровнем техники (проиллюстрирован пунктиром на чертеже). Среди преимуществ такой конфигурации можно, во-первых, назвать уменьшение дополнительной массы, вызванное толщиной корпуса под прямым углом к полостям. Действительно, следует усилить корпус 4 под прямым углом к этим полостям 5 для того, чтобы учесть их влияние на механическую прочность корпуса. Во-вторых, преимуществом является уменьшение риска аэродинамического взаимодействия полости 5 с неподвижной лопаткой 2, размещенной перед подвижным колесом; такое взаимодействие могло бы вызвать меньшее улучшение соответствующих характеристик, привносимых полостью.
Фиг. 5 и 6 контурно изображают в перспективе относительное положение полостей 5 по отношению к колесу с подвижными лопатками 1, соответственно, по известному уровню техники и по изобретению. Как ранее видно, изобретение отличается ориентацией основного направления полости 5, которая перпендикулярна направлению хорды подвижных лопаток 1. Для учета случая, когда полость 5 не имела бы форму прямоугольного параллелепипеда со скругленными формами, как изображено на чертежах, основной характеристикой изобретения является параллельность между расположенной ниже по потоку границей 6 полости 5 и хордой лопатки 1. Расположенная ниже по потоку граница полости, когда она не является прямолинейной, определяется собственно как сегмент прямой, связывающей крайние расположенные ниже по потоку точки больших сторон, образующих пересечение полости с внутренней стенкой корпуса 4.
Далее будет представлен вклад изобретения, при напоминании, прежде всего, принципа функционирования обработок корпусов при выполнении в их толще полостей 5. Комбинируются два аэродинамических эффекта: во-первых, всасывание воздуха передней кромкой в вершине ротора позволяет нейтрализовать развитие турбулентного потока в зазоре между ротором и корпусом, что позволяет получить выигрыш в кпд и в пределе устойчивости против явления помпажа; во-вторых, повторная закачка воздуха выше по потоку подвижного колеса позволяет путем повторной подачи энергии пограничного слоя достичь предела устойчивости и, таким образом, увеличить запас по помпажу.
Обычно считают, что следует принимать в расчет три особых параметра для получения лучшего результата при обработке корпуса путем выполнения полостей 5. Первый касается осевого положения расположенной ниже по потоку части полости, которое определяет место всасывания воздуха, второй - осевое положение расположенной выше по потоку части полости, которое определяет место повторной закачки воздуха, и третий - объем полости, который определяет количество отобранного и нагнетаемого воздуха, то есть эффективности обработки корпуса.
Изобретение направлено, прежде всего, на уменьшение осевого расширения полостей, и для этого проведен анализ влияния регулировки последних на кпд компрессора. Уменьшение осевого следа полости вследствие увеличения угла регулировки приводит одновременно к сближению расположенной ниже по потоку полости и места повторной закачки воздуха со стороны передней кромки 11, но оно осуществляется в данном случае при сохранении объема полости, что позволяет сохранить эффективность, связанную с обработкой корпуса, путем выполнения полостей.
Изобретение далее стремится определить оптимальный угол наклона для регулировки полостей. Действительно, слишком большой угол сильно приближает место отбора к передней кромке лопатки, поэтому надо выполнить его в месте, где расхождение давления между корытцем и спинкой еще не слишком большое, что не помешало бы турбулентному потоку зазора развиваться несколько дальше ниже по потоку. Кроме того, повторная закачка воздуха осуществлялась бы слишком близко к передней кромке, и смесь основного входящего воздуха и повторно закачанного воздуха (тангенциально) не была бы еще установившейся на передней кромке лопатки, что являлось бы отрицательным с точки зрения устойчивости течения. Наконец, слишком наклоненная полость привела бы к слишком большому углу повторной закачки воздуха, то есть к очень малой аксиальной скорости повторно закачанного воздуха, отрицательно влияющей на его эффективность.
Было обнаружено, что оптимальный угол регулировки полости является углом, который позволяет иметь расположенную ниже по потоку границу 6 полости 5, выровненную с регулировкой подвижной лопатки 1. Объяснением этого оптимума может являться то, что в процессе прохода лопатки над полостью лопатка «толкает» объем воздуха в полость. Возможность иметь расположенную ниже по потоку границу, выровненную с регулировкой лопатки, позволяет осуществить этот тяговый эффект, который возникает одновременно на всей расположенной ниже по потоку зоне полости. Это вызывает более эффективную тягу в оптимальный момент, когда лопатка проходит на уровне расположенной ниже по потоку части полости, и этот тяговый эффект вызывает уменьшение турбулентного потока в зазоре, связанного с прохождением лопатки.
В конечном итоге изобретение приводит, с одной стороны, к оптимизации осевого положения начала и конца полости по отношению к передней кромке лопатки, совмещенного с удержанием достаточного объема полости для обеспечения эффективности обработки корпуса, и, с другой стороны, к уменьшению осевого габаритного размера полостей, следствием чего является ограничение дополнительной толщины корпуса, необходимой для интеграции этих полостей.
Claims (5)
1. Компрессор для турбомашины, содержащий корпус (4), по меньшей мере одну ступень компрессора, образованную колесом с неподвижными лопатками (2) и колесом с подвижными лопатками (1), расположенным ниже по потоку от упомянутого колеса с неподвижными лопатками (2), а также полости (5), не сообщающиеся между собой, выполненные в толще упомянутого корпуса, с его внутренней стороны, и расположенные параллельно одни другим по окружности упомянутого корпуса (4) напротив пути прохода подвижных лопаток (1), при этом упомянутые полости имеют форму, удлиненную в основном направлении ориентации, и закрыты в направлении выше по потоку и ниже по потоку соответственно расположенной выше по потоку стороной и расположенной ниже по потоку стороной, пересечения которых с корпусом образуют соответственно расположенную выше по потоку границу (7) и расположенную ниже по потоку границу (6), причем упомянутые полости смещены относительно подвижных лопаток (1) таким образом, чтобы выступать в направлении выше по потоку от колеса с подвижными лопатками, перекрывая их расположенный выше по потоку конец, отличающийся тем, что расположенная ниже по потоку граница (6) этих полостей (5) ориентирована параллельно хорде в верхней части подвижной лопатки (1).
2. Компрессор по п. 1, в котором направление ориентации упомянутых полостей перпендикулярно направлению хорды в верхней части подвижных лопаток (1).
3. Компрессор по п. 1, в котором полости (5) распределены равномерно по окружности корпуса (4).
4. Компрессор по п. 1, в котором полости (5) распределены неравномерно по окружности корпуса (4).
5. Турбомашина, содержащая компрессор по п. 1.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1201159 | 2012-04-19 | ||
FR1201159A FR2989744B1 (fr) | 2012-04-19 | 2012-04-19 | Carter de compresseur a cavites au calage optimise |
PCT/FR2013/050828 WO2013156725A2 (fr) | 2012-04-19 | 2013-04-15 | Carter de compresseur a cavités au calage optimisé |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2014141506A RU2014141506A (ru) | 2016-06-10 |
RU2616695C2 true RU2616695C2 (ru) | 2017-04-18 |
Family
ID=48906433
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2014141506A RU2616695C2 (ru) | 2012-04-19 | 2013-04-15 | Корпус компрессора с полостями с оптимизированной регулировкой |
Country Status (9)
Country | Link |
---|---|
US (1) | US10024336B2 (ru) |
EP (1) | EP2859239B1 (ru) |
JP (1) | JP6618799B2 (ru) |
CN (1) | CN104220759B (ru) |
BR (1) | BR112014025631B1 (ru) |
CA (1) | CA2868226C (ru) |
FR (1) | FR2989744B1 (ru) |
RU (1) | RU2616695C2 (ru) |
WO (1) | WO2013156725A2 (ru) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2971547B1 (en) * | 2013-03-12 | 2020-01-01 | United Technologies Corporation | Cantilever stator with vortex initiation feature |
JP6624846B2 (ja) * | 2015-08-19 | 2019-12-25 | 株式会社荏原製作所 | ターボ機械 |
US9589652B1 (en) | 2015-09-24 | 2017-03-07 | Cypress Semiconductor Corporation | Asymmetric pass field-effect transistor for non-volatile memory |
CN105840551B (zh) * | 2016-04-15 | 2018-06-12 | 上海交通大学 | 多工况点高负荷压气机叶片的气动实现方法 |
FR3122450B1 (fr) | 2021-04-28 | 2023-05-12 | Safran | Ensemble de turbomachine comprenant un carter et un support de traitement aerodynamique en tete d’aubes et turbomachine correspondante |
US12085023B2 (en) | 2022-10-03 | 2024-09-10 | General Electric Company | Circumferentially varying fan casing treatments for reducing fan noise effects |
US12092034B2 (en) | 2022-10-03 | 2024-09-17 | General Electric Company | Circumferentially varying fan casing treatments for reducing fan noise effects |
US11965528B1 (en) | 2023-08-16 | 2024-04-23 | Rolls-Royce North American Technologies Inc. | Adjustable air flow plenum with circumferential movable closure for a fan of a gas turbine engine |
US12066035B1 (en) | 2023-08-16 | 2024-08-20 | Rolls-Royce North American Technologies Inc. | Adjustable depth tip treatment with axial member with pockets for a fan of a gas turbine engine |
US12078070B1 (en) | 2023-08-16 | 2024-09-03 | Rolls-Royce North American Technologies Inc. | Adjustable air flow plenum with sliding doors for a fan of a gas turbine engine |
US12018621B1 (en) | 2023-08-16 | 2024-06-25 | Rolls-Royce North American Technologies Inc. | Adjustable depth tip treatment with rotatable ring with pockets for a fan of a gas turbine engine |
US11970985B1 (en) | 2023-08-16 | 2024-04-30 | Rolls-Royce North American Technologies Inc. | Adjustable air flow plenum with pivoting vanes for a fan of a gas turbine engine |
US12085021B1 (en) | 2023-08-16 | 2024-09-10 | Rolls-Royce North American Technologies Inc. | Adjustable air flow plenum with movable closure for a fan of a gas turbine engine |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2109174C1 (ru) * | 1996-01-05 | 1998-04-20 | Акционерное общество "Авиадвигатель" | Устройство для регулирования перепуска воздуха из компрессора газотурбинного двигателя самолета |
EP1134427A1 (en) * | 2000-03-17 | 2001-09-19 | Hitachi, Ltd. | Turbo machines |
RU2215908C2 (ru) * | 2001-12-06 | 2003-11-10 | Открытое акционерное общество "Авиадвигатель" | Устройство для регулирования перепуска воздуха из компрессора газотурбинного двигателя самолета |
EP2025945A2 (de) * | 2007-08-10 | 2009-02-18 | Rolls-Royce Deutschland Ltd & Co KG | Strömungsarbeitsmaschine mit Ringkanalwandausnehmung |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1518293A (en) * | 1975-09-25 | 1978-07-19 | Rolls Royce | Axial flow compressors particularly for gas turbine engines |
JPS6318799Y2 (ru) * | 1980-12-02 | 1988-05-26 | ||
GB2245312B (en) * | 1984-06-19 | 1992-03-25 | Rolls Royce Plc | Axial flow compressor surge margin improvement |
US4781530A (en) * | 1986-07-28 | 1988-11-01 | Cummins Engine Company, Inc. | Compressor range improvement means |
US5059093A (en) * | 1990-06-07 | 1991-10-22 | United Technologies Corporation | Compressor bleed port |
DE69909120T2 (de) * | 1998-11-13 | 2003-12-24 | Pratt & Whitney Canada Inc., Longueuil | Gehäusekonfiguration für einen verdichter |
US6290458B1 (en) * | 1999-09-20 | 2001-09-18 | Hitachi, Ltd. | Turbo machines |
CA2495186C (en) * | 2002-02-28 | 2010-04-27 | Mtu Aero Engines Gmbh | Recirculation structure for turbocompressors |
GB2418956B (en) * | 2003-11-25 | 2006-07-05 | Rolls Royce Plc | A compressor having casing treatment slots |
DE102008037154A1 (de) | 2008-08-08 | 2010-02-11 | Rolls-Royce Deutschland Ltd & Co Kg | Strömungsarbeitsmaschine |
FR2940374B1 (fr) * | 2008-12-23 | 2015-02-20 | Snecma | Carter de compresseur a cavites optimisees. |
-
2012
- 2012-04-19 FR FR1201159A patent/FR2989744B1/fr active Active
-
2013
- 2013-04-15 EP EP13742668.0A patent/EP2859239B1/fr active Active
- 2013-04-15 JP JP2015506286A patent/JP6618799B2/ja active Active
- 2013-04-15 WO PCT/FR2013/050828 patent/WO2013156725A2/fr active Application Filing
- 2013-04-15 US US14/390,178 patent/US10024336B2/en active Active
- 2013-04-15 CA CA2868226A patent/CA2868226C/fr active Active
- 2013-04-15 RU RU2014141506A patent/RU2616695C2/ru active
- 2013-04-15 CN CN201380019881.5A patent/CN104220759B/zh active Active
- 2013-04-15 BR BR112014025631-4A patent/BR112014025631B1/pt active IP Right Grant
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2109174C1 (ru) * | 1996-01-05 | 1998-04-20 | Акционерное общество "Авиадвигатель" | Устройство для регулирования перепуска воздуха из компрессора газотурбинного двигателя самолета |
EP1134427A1 (en) * | 2000-03-17 | 2001-09-19 | Hitachi, Ltd. | Turbo machines |
RU2215908C2 (ru) * | 2001-12-06 | 2003-11-10 | Открытое акционерное общество "Авиадвигатель" | Устройство для регулирования перепуска воздуха из компрессора газотурбинного двигателя самолета |
EP2025945A2 (de) * | 2007-08-10 | 2009-02-18 | Rolls-Royce Deutschland Ltd & Co KG | Strömungsarbeitsmaschine mit Ringkanalwandausnehmung |
Also Published As
Publication number | Publication date |
---|---|
EP2859239A2 (fr) | 2015-04-15 |
BR112014025631B1 (pt) | 2021-06-01 |
WO2013156725A2 (fr) | 2013-10-24 |
JP2015514906A (ja) | 2015-05-21 |
US20150078890A1 (en) | 2015-03-19 |
CN104220759B (zh) | 2016-08-24 |
CA2868226A1 (fr) | 2013-10-24 |
CA2868226C (fr) | 2020-01-14 |
WO2013156725A3 (fr) | 2014-01-09 |
CN104220759A (zh) | 2014-12-17 |
FR2989744A1 (fr) | 2013-10-25 |
RU2014141506A (ru) | 2016-06-10 |
FR2989744B1 (fr) | 2014-06-13 |
EP2859239B1 (fr) | 2016-11-16 |
US10024336B2 (en) | 2018-07-17 |
JP6618799B2 (ja) | 2019-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2616695C2 (ru) | Корпус компрессора с полостями с оптимизированной регулировкой | |
RU2514459C2 (ru) | Кожух компрессора с оптимизированными полостями | |
US10934858B2 (en) | Method and system for improving turbine blade performance | |
US9638213B2 (en) | Compressor casing comprising cavities having an optimised upstream shape | |
US9726084B2 (en) | Compressor bleed self-recirculating system | |
US9188017B2 (en) | Airfoil assembly with paired endwall contouring | |
US20160153465A1 (en) | Axial compressor endwall treatment for controlling leakage flow therein | |
US10046424B2 (en) | Rotors with stall margin and efficiency optimization and methods for improving gas turbine engine performance therewith | |
RU2498117C2 (ru) | Компрессор газотурбинного двигателя | |
US10760580B2 (en) | Gas turbine engine compressors having optimized stall enhancement feature configurations and methods for the production thereof | |
CA3055849A1 (en) | Compressor stator with leading edge fillet | |
RU2638250C2 (ru) | Уплотнение для газотурбинного двигателя | |
CA2936579A1 (en) | Turbine section with tip flow vanes | |
US20170335860A1 (en) | Tandem tip blade | |
US20200165968A1 (en) | Fan assembly having flow recirculation circuit with rotating airfoils |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PD4A | Correction of name of patent owner |