WO2013156725A2 - Carter de compresseur a cavités au calage optimisé - Google Patents

Carter de compresseur a cavités au calage optimisé Download PDF

Info

Publication number
WO2013156725A2
WO2013156725A2 PCT/FR2013/050828 FR2013050828W WO2013156725A2 WO 2013156725 A2 WO2013156725 A2 WO 2013156725A2 FR 2013050828 W FR2013050828 W FR 2013050828W WO 2013156725 A2 WO2013156725 A2 WO 2013156725A2
Authority
WO
WIPO (PCT)
Prior art keywords
cavities
downstream
cavity
upstream
blade
Prior art date
Application number
PCT/FR2013/050828
Other languages
English (en)
Other versions
WO2013156725A3 (fr
Inventor
Thierry Jean-Jacques Obrecht
Céline GHILARDI
Vincent Perrot
Original Assignee
Snecma
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Snecma filed Critical Snecma
Priority to US14/390,178 priority Critical patent/US10024336B2/en
Priority to EP13742668.0A priority patent/EP2859239B1/fr
Priority to JP2015506286A priority patent/JP6618799B2/ja
Priority to BR112014025631-4A priority patent/BR112014025631B1/pt
Priority to CN201380019881.5A priority patent/CN104220759B/zh
Priority to RU2014141506A priority patent/RU2616695C2/ru
Priority to CA2868226A priority patent/CA2868226C/fr
Publication of WO2013156725A2 publication Critical patent/WO2013156725A2/fr
Publication of WO2013156725A3 publication Critical patent/WO2013156725A3/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/522Casings; Connections of working fluid for axial pumps especially adapted for elastic fluid pumps
    • F04D29/526Details of the casing section radially opposing blade tips
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/16Sealings between pressure and suction sides
    • F04D29/161Sealings between pressure and suction sides especially adapted for elastic fluid pumps
    • F04D29/164Sealings between pressure and suction sides especially adapted for elastic fluid pumps of an axial flow wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/541Specially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/541Specially adapted for elastic fluid pumps
    • F04D29/542Bladed diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/68Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
    • F04D29/681Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps
    • F04D29/685Inducing localised fluid recirculation in the stator-rotor interface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • F05D2220/321Application in turbines in gas turbines for a special turbine stage
    • F05D2220/3216Application in turbines in gas turbines for a special turbine stage for a special compressor stage

Definitions

  • the field of the present invention is that of propulsion and more particularly that of axial or axial-centrifugal compressors for propulsion assembly (turbojet or turboprop, referred to as turbomachines in the following description) and more specifically to high-pressure compressors heavily loaded.
  • the aeronautical turbomachines are mainly constituted by one or more compressors, in which the air sucked into the air intake is compressed, by a combustion chamber in which the injected fuel is burned, then by a turbine in which the burnt gases are relaxed to drive the compressor or compressors and finally by an ejection device.
  • Aeronautical compressors consist of blades, or blades, which are rotated inside a housing that seals the air stream with the outside of the engine. It is known that the clearance between the ends of the compressor blades and the casing forming the inner wall of the air flow line degrades the efficiency of the engine of the turbomachine.
  • this game can significantly modify and degrade the operation of the compressor until the occurrence of a phenomenon of "pumping", which results from the stalling of the airflow from the surface of the blades.
  • the control of the air circulation at the end of the blades is thus a major challenge to obtain both a good aerodynamic efficiency of the compressor and a sufficient margin against the pumping phenomenon.
  • the improvement brought by this realization comes only from an optimization of the axial position of the cavities and the search for optimization on other parameters of these cavities must be pursued to try to further improve the aerodynamic efficiency and / or the pumping margin of existing compressors.
  • the present invention therefore aims to provide a compressor housing with cavities, aerodynamic performance further improved.
  • the subject of the invention is a compressor for a turbomachine comprising a housing, at least one compressor stage consisting of a fixed blade wheel and a blade wheel positioned downstream of said wheel.
  • fixed vanes, and recessed cavities non-communicating with each other, in the thickness of said casing from its internal face and arranged parallel to each other on a circumference of said casing opposite the path of passage of the blades, said cavities having an elongated shape in a main direction of orientation and closing respectively upstream and downstream by an upstream face and a downstream face whose intersections with the housing respectively form an upstream boundary and a downstream boundary, said cavities being offset relative to the blades to overflow upstream of the blade wheel by covering their upstream end, characterized in that the front The downstream of these cavities is oriented parallel to the rope at the head of the moving blade.
  • the orientation direction of said cavities is perpendicular to that of the rope of the blades.
  • the substantially parallelepipedal shape of the cavity makes it possible to make full use of the thrust effect indicated above.
  • the cavities are evenly distributed around the circumference of the casing.
  • the cavities are distributed unevenly over the circumference of the housing.
  • the invention also relates to a turbomachine comprising a compressor as described above.
  • Figure 1 is a schematic sectional view of a compressor stage whose housing has a recirculating cavity of the air flowing between the blade and the housing;
  • Figure 2 is a schematic view, from above, of a rotor blade and a housing according to the prior art
  • Figure 3 is a schematic view, from above, of a rotor blade and a housing according to one embodiment of the invention
  • Figure 4 is a schematic comparative view of the positioning of a cavity and a blade in the invention and in the prior art
  • FIG. 5 is a perspective view of the cavities and blades of a rotor according to the prior art.
  • Figure 6 is a perspective view of the cavities and blades of a rotor according to the invention.
  • FIG. 1 there is shown a compressor stage comprising a stator vane, or fixed vane 2, positioned upstream of a rotor vane, or mobile vane 1, attached to a disk 3 (or directly attached to this disk according to a so-called blisk technology monobloc).
  • the vanes are held in place by attachment to a compressor casing 4, which surrounds the blades 1 leaving a predefined clearance with them.
  • the casing 4 is dug, from its internal face, multiple cavities 5, not communicating with each other, which are regularly arranged on its circumference, vis-à-vis the path of passage of the blades 1.
  • These cavities have, roughly, the shape of a rectangular parallelepiped which sinks radially into the housing and which has in section along an axial plane, the shape of a rectangle with rounded corners.
  • Their shape, in section in a plane tangential to the circumference of the housing is, in turn, substantially that of an elongated rectangle extending along two long sides and comprising, upstream and downstream, two small sides forming so-called upstream 7 and downstream borders 6. These two boundaries are classically straight line segments.
  • the cavities are offset upstream of the motor, with respect to the leading edge of the moving blade 1.
  • the length of which the upstream of the cavity exceeds the edge of attack 1 1 of the blades, is however, limited by the space between the blade wheel 1 and the blade wheel 2.
  • This configuration allows the recycling of air passing in the game between the blade 1 and the casing 4; this game can indeed be the place of violent turbulence which would disturb the configuration of the flow between the different stages and therefore which could lead to a deterioration of the performances of the compressor or, in the extreme, cause a phenomenon called "pumping" or of "stall".
  • Such a phenomenon is characterized by an instantaneous drop in the compression ratio and a transient inversion of the air flow through the compressor, which then leaves the upstream of the compressor.
  • FIGS. 2 and 3 the circumferential position of a series of cavities 5 aligned along the casing 4 is seen.
  • the number of cavities is much greater than the number of blades 1 constituting the moving wheel of the stage. of compressor. This number is in practice between 2 and 4 times the number of blades 1.
  • the circumferential distribution of the cavities as shown in the figures is a uniform arrangement; it has, moreover, already been proposed to make this provision irregular to break the aerodynamic excitation on the blades that could be caused by these cavities, especially at the ends of each of the two half-shells that constitute the housing.
  • FIG. 2 representing the prior art
  • the axis of these cavities is slightly inclined with respect to the longitudinal direction of the motor, defined as being the axis of rotation of the mobile wheel 1 and illustrated by an arrow in FIG. .
  • the cavities 5 are positioned with the main orientation of their long sides which is clearly more tangential than in FIG. 2, and which is characterized by an angle wedging perpendicular to the rope of moving blades 1.
  • the rope of a blade is defined as the line joining its leading edge to its trailing edge.
  • the cavity has, in the example shown, a substantially parallelepiped shape, the downstream boundary 6 of the cavity 5 is aligned with this rope of the blades.
  • Figures 5 and 6 show in perspective, and recessed, the relative position of the cavities 5 with respect to a blade wheel 1, respectively in the prior art and according to the invention.
  • the invention is characterized by an orientation of the main direction of the cavity 5 which is perpendicular to that of the rope of the blades 1.
  • the main characteristic of the invention is defined primarily as a parallelism between the downstream border 6 of the cavity 5 and the rope of the vane 1.
  • the downstream boundary of a cavity when it is not rectilinear, is defined, as for it, as the line segment connecting the extreme endpoints of the long sides forming the intersection of the cavity with the inner wall of the casing 4.
  • the first concerns the axial position of the downstream cavity, which defines the location air suction, the second, the axial position of the upstream cavity that defines the place of reinjection of air and the third, the volume of the cavity that determines the amount of air removed and reinjected, thus the efficiency of the crankcase treatment.
  • the invention first sought to reduce the axial extension of the cavities and for this analyzed the influence of the wedging thereof on the performance of the compressor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Compresseur pour turbomachine comprenant un carter, au moins un étage de compresseur constitué d'une roue d'aubes fixes et d'une roue d'aubes mobiles (1) positionnée en aval de ladite roue d'aubes fixes, et des cavités (5) creusées dans l'épaisseur dudit carter et disposées sur une circonférence dudit carter (4) en regard des aubes mobiles (1), lesdites cavités ayant une forme allongée selon une direction principale d'orientation et se refermant respectivement vers l'amont et vers l'aval par une face amont et par une face aval dont les intersections avec le carter forment respectivement une frontière amont (7) et une frontière aval (6), lesdites cavités étant décalées par rapport aux aubes mobiles (1) de façon à déborder vers l'amont de la roue d'aubes mobiles en recouvrant leur extrémité amont, caractérisé en ce que la frontière aval (6) de ces cavités (5) est orientée parallèlement à la corde en tête de l'aube mobile (1).

Description

CARTER DE COMPRESSEUR A CAVITÉS AU CALAGE OPTIMISÉ
Le domaine de la présente invention est celui de la propulsion et plus particulièrement celui des compresseurs axiaux ou axialo-centrifuges pour ensemble propulsif (turboréacteur ou turbopropulseur, dénommés turbomachines dans la suite de la description) et plus spécifiquement aux compresseurs haute- pression fortement chargés.
Les turbomachines aéronautiques sont principalement constituées par un ou plusieurs compresseurs, dans lesquels l'air aspiré dans l'entrée d'air est comprimé, par une chambre de combustion dans laquelle le carburant injecté est brûlé, puis par une turbine dans laquelle les gaz brûlés sont détendus pour entraîner le ou les compresseurs et enfin par un dispositif d'éjection. Les compresseurs aéronautiques, sont constitués d'ailettes, ou aubes, qui sont mues en rotation à l'intérieur d'un carter qui assure l'étanchéité de la veine d'air avec l'extérieur du moteur. Il est connu que le jeu existant entre les extrémités des aubes mobiles du compresseur et le carter formant la paroi interne de la veine d'écoulement de l'air dégrade le rendement du moteur de la turbomachine. En outre, ce jeu peut notablement modifier et dégrader le fonctionnement du compresseur jusqu'à l'apparition d'un phénomène de « pompage », qui résulte du décrochage du flux d'air de la surface des aubes. Le contrôle de la circulation de l'air en bout des aubes constitue ainsi un enjeu primordial pour obtenir à la fois un bon rendement aérodynamique du compresseur et une marge suffisante contre le phénomène de pompage.
Une approche développée pour limiter l'impact de cet écoulement parasite entre l'extrémité de l'aube et le carter consiste à creuser des cavités disposées dans la paroi du carter au niveau du chemin de passage des aubes. Ces cavités sont placées en regard de l'aube ou préférentiellement décalées axialement, en direction de l'amont du moteur, dans le but de réinjecter l'air circulant dans le jeu entre l'aube et le carter, dans la veine en amont de l'aube en question. Un exemple d'une telle réalisation est donné dans la demande de brevet de la demanderesse qui a été publiée sous le numéro FR 2940374.
L'amélioration apportée par cette réalisation ne provient que d'une optimisation de la position axiale des cavités et la recherche d'optimisation sur d'autres paramètres de ces cavités doit être poursuivie pour tenter d'améliorer encore le rendement aérodynamique et/ou la marge au pompage des compresseurs existants. La présente invention a donc pour but de proposer un carter de compresseur muni de cavités, aux performances aérodynamiques encore améliorées.
A cet effet, l'invention a pour objet un compresseur pour turbomachine comprenant un carter, au moins un étage de compresseur constitué d'une roue d'aubes fixes et d'une roue d'aubes mobiles positionnée en aval de ladite roue d'aubes fixes, et des cavités creusées, de façon non communicantes entre elles, dans l'épaisseur dudit carter à partir de sa face interne et disposées parallèlement les unes aux autres sur une circonférence dudit carter en regard du chemin de passage des aubes mobiles, lesdites cavités ayant une forme allongée selon une direction principale d'orientation et se refermant respectivement vers l'amont et vers l'aval par une face amont et par une face aval dont les intersections avec le carter forment respectivement une frontière amont et une frontière aval, lesdites cavités étant décalées par rapport aux aubes mobiles de façon à déborder vers l'amont de la roue d'aubes mobiles en recouvrant leur extrémité amont, caractérisé en ce que la frontière aval de ces cavités est orientée parallèlement à la corde en tête de l'aube mobile.
Le parallélisme entre la frontière aval des cavités et la corde de l'aube, en créant un effet de poussée qui arrive au même moment sur toute la zone aval de la cavité, provoque la diminution du tourbillon de jeu associé au passage de l'aube et permet une augmentation de la marge au pompage et une légère amélioration du rendement de l'étage de compresseur.
Avantageusement la direction d'orientation desdites cavités est perpendiculaire à celle de la corde des aubes mobiles. La forme sensiblement parallélépipédique de la cavité permet d'utiliser pleinement l'effet de poussée indiqué ci-dessus.
Dans un mode particulier de réalisation les cavités sont réparties de façon régulière sur la circonférence du carter.
Dans une autre mode de réalisation les cavités sont réparties de façon non régulière sur la circonférence du carter.
L'invention porte également sur une turbomachine comportant un compresseur tel que décrit ci-dessus.
L'invention sera mieux comprise, et d'autres buts, détails, caractéristiques et avantages de celle-ci apparaîtront plus clairement au cours de la description explicative détaillée qui va suivre, d'un mode de réalisation de l'invention donné à titre d'exemple purement illustratif et non limitatif, en référence aux dessins schématiques annexés.
Sur ces dessins :
la figure 1 est une vue schématique en coupe d'un étage de compresseur dont le carter présente une cavité de recyclage de l'air circulant entre l'aube et le carter ;
la figure 2 est une vue schématique, de dessus, d'une pale de rotor et d'un carter selon l'art antérieur ;
la figure 3 est une vue schématique, de dessus, d'une pale de rotor et d'un carter selon un mode de réalisation de l'invention ;
la figure 4 est une vue schématique comparative du positionnement d'une cavité et d'une pale dans l'invention et dans l'art antérieur ;
la figure 5 est une vue en perspective des cavités et des pales d'un rotor selon l'art antérieur, et
la figure 6 est une vue en perspective des cavités et des pales d'un rotor selon l'invention.
En se référant à la figure 1 , on voit un étage de compresseur comportant une aube de stator, ou aube fixe 2, positionnée en amont d'une aube de rotor, ou aube mobile 1 , attachée à un disque 3 (ou directement solidaire de ce disque selon une technologie dite de disque aubagé monobloc). Les aubes fixes sont maintenues en place par fixation sur un carter de compresseur 4, qui entoure les aubes mobiles 1 en laissant un jeu prédéfini avec elles.
Le carter 4 est creusé, à partir de sa face interne, de multiples cavités 5, non communicantes entre elles, qui sont régulièrement disposées sur sa circonférence, en vis-à-vis du chemin de passage des aubes mobiles 1. Ces cavités ont, grossièrement, la forme d'un parallélépipède rectangle qui s'enfonce radialement dans le carter et qui présente en coupe selon un plan axial, la forme d'un rectangle aux coins arrondis. Leur forme, en coupe dans un plan tangent à la circonférence du carter, est, quant à elle, sensiblement celle d'un rectangle allongé s'étendant selon deux grands côtés et comportant, à l'amont et à l'aval, deux petits côtés formant des frontières dites amont 7 et aval 6. Ces deux frontières sont classiquement des segments de droite.
Comme on peut le voir sur la figure 1 , les cavités sont décalées vers l'amont du moteur, par rapport au bord d'attaque de l'aube mobile 1. La longueur dont dépasse l'amont 7 de la cavité par rapport au bord d'attaque 1 1 des aubes, est toutefois limitée par l'espace existant entre la roue d'aubes mobiles 1 et la roue d'aubes fixes 2. Grâce à ces cavités, l'air parasite est aspiré à un certain pourcentage de la corde de l'aube et réinjecté dans la veine en amont de l'aube. Cette configuration permet le recyclage de l'air qui passe dans le jeu entre l'aube 1 et le carter 4 ; ce jeu peut en effet être le lieu de violentes turbulences qui perturberaient la configuration de l'écoulement entre les différents étages et donc qui pourraient entraîner une dégradation des performances du compresseur ou, à l'extrême, provoquer un phénomène dit de « pompage » ou de « décrochage ». Un tel phénomène se caractérise par une chute instantanée du taux de compression et une inversion transitoire du débit d'air traversant le compresseur, qui sort alors par l'amont du compresseur.
En se référant maintenant aux figures 2 et 3, on voit la position circonférentielle d'une série de cavités 5 alignées le long du carter 4. Le nombre de cavités est très supérieur au nombre d'aubes 1 constituant la roue mobile de l'étage de compresseur. Ce nombre est dans la pratique compris entre 2 et 4 fois le nombre d'aubes mobiles 1 . La répartition circonférentielle des cavités, telle que montrée sur les figures est une disposition uniforme ; il a, par ailleurs, déjà été proposé de rendre cette disposition irrégulière pour casser l'excitation aérodynamique sur les aubages qui pourrait être provoquée par ces cavités, notamment aux extrémités de chacune des deux demi-coquilles qui constituent le carter.
Sur la figure 2, représentant l'art antérieur, l'axe de ces cavités est légèrement incliné par rapport à la direction longitudinale du moteur, définie comme étant l'axe de rotation de la roue mobile 1 et illustrée par une flèche sur la figure. A contrario, sur la figure 3 qui représente un mode de réalisation de l'invention, les cavités 5 sont positionnées avec l'orientation principale de leurs grands côtés qui est nettement plus tangentielle que sur la figure 2, et qui se caractérise par un angle de calage perpendiculaire à la corde des aubes mobiles 1 . On rappelle que la corde d'une aube est définie comme étant la droite joignant son bord d'attaque à son bord de fuite. Et du fait que la cavité a, dans l'exemple représenté, une forme sensiblement parallélépipédique, la frontière aval 6 de la cavité 5 est alignée avec cette corde des aubes mobiles.
Il s'ensuit, comme on peut le voir sur la figure 4 que l'encombrement axial des cavités est nettement réduit par rapport à l'art antérieur (illustré en pointillés sur la figure). Parmi les conséquences bénéfiques de cette configuration on trouve, en premier lieu, le fait que la masse additionnelle due à l'épaississement du carter au droit des cavités est plus faible. Il convient en effet de renforcer le carter 4 au droit de ces cavités 5 pour prendre en compte leur impact sur la résistance mécanique du carter. On trouve, en second lieu, une réduction du risque d'interaction aérodynamique de la cavité 5 avec l'aube fixe 2 précédant la roue mobile 1 ; une telle interaction aurait pour effet une réduction de l'amélioration des performances apportées par la cavité.
Les figures 5 et 6 montrent en perspective, et en creux, la position relative des cavités 5 par rapport à une roue d'aubes mobiles 1 , respectivement dans l'art antérieur et selon l'invention. De même que précédemment, on voit que l'invention se caractérise par une orientation de la direction principale de la cavité 5 qui est perpendiculaire à celle de la corde des aubes mobiles 1 . Pour prendre en compte le cas où la cavité 5 n'aurait pas la forme d'un parallélépipède rectangle aux formes arrondies, comme illustré sur les figures, la caractéristique principale de l'invention se définit prioritairement comme un parallélisme entre la frontière aval 6 de la cavité 5 et la corde de l'aube 1. La frontière aval d'une cavité, lorsqu'elle n'est pas rectiligne, se définit, quant à elle, comme le segment de droite reliant les points extrêmes aval des grands côtés formant l'intersection de la cavité avec la paroi interne du carter 4.
On va maintenant expliquer l'apport de l'invention, en rappelant tout d'abord le principe de fonctionnement des traitements de carters par l'implantation dans leur épaisseur de cavités 5. Deux effets aérodynamiques sont combinés : en premier lieu, l'aspiration de l'air au bord d'attaque en sommet de rotor permet de contrer le développement du tourbillon de jeu entre le rotor et le carter, ce qui permet de gagner en rendement et en limite de stabilité contre le phénomène de pompage ; en second lieu, la réinjection de l'air en amont de la roue mobile permet par une ré-énergisation de la couche limite, de gagner en limite de stabilité, et donc en marge au pompage.
On considère en général qu'il convient de prendre en compte trois paramètres particuliers pour obtenir le meilleur résultat avec un traitement de carter par incorporation de cavités 5. Le premier concerne la position axiale de l'aval de la cavité, qui définit l'endroit d'aspiration de l'air, le second, la position axiale de l'amont de la cavité qui définit l'endroit de réinjection de l'air et, le troisième, le volume de la cavité qui détermine la quantité d'air prélevé et réinjecté, donc l'efficacité du traitement de carter.
L'invention a recherché tout d'abord à réduire l'extension axiale des cavités et pour cela a analysé l'influence du calage de celles-ci sur les performances du compresseur. La diminution de la trace axiale de la cavité par une

Claims

augmentation du calage entraîne un rapprochement, à la fois, de l'aval de la cavité et de l'endroit de réinjection, du bord d'attaque 1 1 , mais elle se fait ici en préservant le volume de la cavité, ce qui permet de conserver l'efficacité associée au traitement de carter par une implantation de cavités. L'invention s'est ensuite attachée à déterminer quel est l'angle d'inclinaison optimum pour le calage des cavités. En effet, un angle trop important tend à trop rapprocher l'endroit du prélèvement du bord d'attaque de l'aube, donc de l'effectuer à un endroit où l'écart de pression entre intrados et extrados n'est pas encore grand, ce qui n'empêcherait pas le tourbillon de jeu de se développer un peu plus loin en aval. De même, la réinjection de l'air serait trop proche du bord d'attaque, et le mélange entre l'air amont principal et l'air réinjecté (de manière tangentielle) ne serait pas encore établi au bord d'attaque de l'aube, ce qui serait néfaste du point de vue de la stabilité de l'écoulement. Enfin, une cavité trop inclinée conduirait à un angle de réinjection de l'air trop grand, c'est à dire à une vitesse axiale de l'air réinjecté trop faible, nuisant à son efficacité. Il a été trouvé que l'angle optimum de calage de la cavité est celui qui permet d'avoir la frontière aval 6 de la cavité 5 alignée avec le calage de l'aube mobile 1. L'explication de cet optimum peut être donnée par le fait que, lors du passage de l'aube au-dessus de la cavité, l'aube « pousse » le débit d'air dans la cavité. Le fait d'avoir une frontière aval alignée avec le calage de l'aube permet d'avoir cet effet de poussée qui arrive au même moment sur toute la zone aval de la cavité. Ceci provoque une poussée plus efficace au moment optimum, quand l'aube passe au niveau de l'aval de la cavité, et cet effet de poussée provoque la diminution du tourbillon de jeu associé au passage de l'aube. Au final l'invention se traduit, d'une part, par une optimisation de la position axiale du début et de la fin de la cavité par rapport au bord d'attaque de l'aube, associée au maintien d'un volume suffisant de la cavité afin d'assurer l'efficacité du traitement de carter, et, d'autre part, par une diminution de l'encombrement axial des cavités, qui a pour effet une limitation de la surépaisseur du carter nécessaire à l'intégration de celles-ci. REVENDICATIONS
1 . Compresseur pour turbomachine comprenant un carter (4), au moins un étage de compresseur constitué d'une roue d'aubes fixes (2) et d'une roue d'aubes mobiles (1 ) positionnée en aval de ladite roue d'aubes fixes (2), et des cavités (5) creusées, de façon non communicantes entre elles, dans l'épaisseur dudit carter à partir de sa face interne et disposées parallèlement les unes aux autres sur une circonférence dudit carter (4) en regard du chemin de passage des aubes mobiles (1 ), lesdites cavités ayant une forme allongée selon une direction principale d'orientation et se refermant respectivement vers l'amont et vers l'aval par une face amont et par une face aval dont les intersections avec le carter forment respectivement une frontière amont (7) et une frontière aval (6), lesdites cavités étant décalées par rapport aux aubes mobiles (1 ) de façon à déborder vers l'amont de la roue d'aubes mobiles en recouvrant leur extrémité amont,
caractérisé en ce que la frontière aval (6) de ces cavités (5) est orientée parallèlement à la corde en tête de l'aube mobile (1 ).
2. Compresseur selon la revendication 1 dans lequel la direction d'orientation desdites cavités est perpendiculaire à celle de la corde en tête des aubes mobiles (1 ).
3. Compresseur selon l'une des revendications 1 à 2 dans lequel les cavités (5) sont réparties de façon régulière sur la circonférence du carter (4).
4. Compresseur selon l'une des revendications 1 à 2 dans lequel les cavités (5) sont réparties de façon non régulière sur la circonférence du carter (4).
5. Turbomachine comportant un compresseur selon l'une des revendications précédentes.
PCT/FR2013/050828 2012-04-19 2013-04-15 Carter de compresseur a cavités au calage optimisé WO2013156725A2 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US14/390,178 US10024336B2 (en) 2012-04-19 2013-04-15 Compressor casing comprising cavities with optimised setting
EP13742668.0A EP2859239B1 (fr) 2012-04-19 2013-04-15 Carter de compresseur a cavités au calage optimisé
JP2015506286A JP6618799B2 (ja) 2012-04-19 2013-04-15 最適化設定されたキャビティを備える圧縮機ケーシング
BR112014025631-4A BR112014025631B1 (pt) 2012-04-19 2013-04-15 Compressor para um motor de turbina, e, motor de turbina
CN201380019881.5A CN104220759B (zh) 2012-04-19 2013-04-15 包括带有优化设置的空腔的压气机外壳
RU2014141506A RU2616695C2 (ru) 2012-04-19 2013-04-15 Корпус компрессора с полостями с оптимизированной регулировкой
CA2868226A CA2868226C (fr) 2012-04-19 2013-04-15 Carter de compresseur a cavites au calage optimise

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1201159A FR2989744B1 (fr) 2012-04-19 2012-04-19 Carter de compresseur a cavites au calage optimise
FR1201159 2012-04-19

Publications (2)

Publication Number Publication Date
WO2013156725A2 true WO2013156725A2 (fr) 2013-10-24
WO2013156725A3 WO2013156725A3 (fr) 2014-01-09

Family

ID=48906433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2013/050828 WO2013156725A2 (fr) 2012-04-19 2013-04-15 Carter de compresseur a cavités au calage optimisé

Country Status (9)

Country Link
US (1) US10024336B2 (fr)
EP (1) EP2859239B1 (fr)
JP (1) JP6618799B2 (fr)
CN (1) CN104220759B (fr)
BR (1) BR112014025631B1 (fr)
CA (1) CA2868226C (fr)
FR (1) FR2989744B1 (fr)
RU (1) RU2616695C2 (fr)
WO (1) WO2013156725A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022229555A2 (fr) 2021-04-28 2022-11-03 Safran Ensemble de turbomachine comprenant un carter et un support de traitement aerodynamique en tete d'aubes et turbomachine correspondante

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014158236A1 (fr) * 2013-03-12 2014-10-02 United Technologies Corporation Stator en porte-à-faux comportant une caractéristique de déclenchement de tourbillon
JP6624846B2 (ja) * 2015-08-19 2019-12-25 株式会社荏原製作所 ターボ機械
US9589652B1 (en) 2015-09-24 2017-03-07 Cypress Semiconductor Corporation Asymmetric pass field-effect transistor for non-volatile memory
CN105840551B (zh) * 2016-04-15 2018-06-12 上海交通大学 多工况点高负荷压气机叶片的气动实现方法
US12085023B2 (en) 2022-10-03 2024-09-10 General Electric Company Circumferentially varying fan casing treatments for reducing fan noise effects
US12092034B2 (en) 2022-10-03 2024-09-17 General Electric Company Circumferentially varying fan casing treatments for reducing fan noise effects
US12066035B1 (en) 2023-08-16 2024-08-20 Rolls-Royce North American Technologies Inc. Adjustable depth tip treatment with axial member with pockets for a fan of a gas turbine engine
US12018621B1 (en) 2023-08-16 2024-06-25 Rolls-Royce North American Technologies Inc. Adjustable depth tip treatment with rotatable ring with pockets for a fan of a gas turbine engine
US12078070B1 (en) 2023-08-16 2024-09-03 Rolls-Royce North American Technologies Inc. Adjustable air flow plenum with sliding doors for a fan of a gas turbine engine
US12085021B1 (en) 2023-08-16 2024-09-10 Rolls-Royce North American Technologies Inc. Adjustable air flow plenum with movable closure for a fan of a gas turbine engine
US11970985B1 (en) 2023-08-16 2024-04-30 Rolls-Royce North American Technologies Inc. Adjustable air flow plenum with pivoting vanes for a fan of a gas turbine engine
US11965528B1 (en) 2023-08-16 2024-04-23 Rolls-Royce North American Technologies Inc. Adjustable air flow plenum with circumferential movable closure for a fan of a gas turbine engine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2940374A1 (fr) 2008-12-23 2010-06-25 Snecma Carter de compresseur a cavites optimisees.

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1518293A (en) * 1975-09-25 1978-07-19 Rolls Royce Axial flow compressors particularly for gas turbine engines
JPS6318799Y2 (fr) * 1980-12-02 1988-05-26
GB2245312B (en) * 1984-06-19 1992-03-25 Rolls Royce Plc Axial flow compressor surge margin improvement
US4781530A (en) * 1986-07-28 1988-11-01 Cummins Engine Company, Inc. Compressor range improvement means
US5059093A (en) * 1990-06-07 1991-10-22 United Technologies Corporation Compressor bleed port
RU2109174C1 (ru) * 1996-01-05 1998-04-20 Акционерное общество "Авиадвигатель" Устройство для регулирования перепуска воздуха из компрессора газотурбинного двигателя самолета
EP1131561B1 (fr) * 1998-11-13 2003-06-25 Pratt & Whitney Canada, Inc. Configuration d'un carter de compresseur
US6290458B1 (en) * 1999-09-20 2001-09-18 Hitachi, Ltd. Turbo machines
DE60014025T2 (de) * 2000-03-17 2006-02-16 Hitachi, Ltd. Turbomaschinen
RU2215908C2 (ru) * 2001-12-06 2003-11-10 Открытое акционерное общество "Авиадвигатель" Устройство для регулирования перепуска воздуха из компрессора газотурбинного двигателя самолета
WO2003072910A1 (fr) * 2002-02-28 2003-09-04 Mtu Aero Engines Gmbh Structure de recirculation de turbocompresseurs
GB2408546B (en) * 2003-11-25 2006-02-22 Rolls Royce Plc A compressor having casing treatment slots
DE102007037924A1 (de) * 2007-08-10 2009-02-12 Rolls-Royce Deutschland Ltd & Co Kg Strömungsarbeitsmaschine mit Ringkanalwandausnehmung
DE102008037154A1 (de) * 2008-08-08 2010-02-11 Rolls-Royce Deutschland Ltd & Co Kg Strömungsarbeitsmaschine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2940374A1 (fr) 2008-12-23 2010-06-25 Snecma Carter de compresseur a cavites optimisees.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022229555A2 (fr) 2021-04-28 2022-11-03 Safran Ensemble de turbomachine comprenant un carter et un support de traitement aerodynamique en tete d'aubes et turbomachine correspondante
FR3122450A1 (fr) 2021-04-28 2022-11-04 Safran Ensemble de turbomachine comprenant un carter et un support de traitement aerodynamique en tete d’aubes et turbomachine correspondante

Also Published As

Publication number Publication date
EP2859239A2 (fr) 2015-04-15
JP6618799B2 (ja) 2019-12-11
RU2014141506A (ru) 2016-06-10
CN104220759B (zh) 2016-08-24
EP2859239B1 (fr) 2016-11-16
WO2013156725A3 (fr) 2014-01-09
CA2868226C (fr) 2020-01-14
FR2989744A1 (fr) 2013-10-25
US20150078890A1 (en) 2015-03-19
US10024336B2 (en) 2018-07-17
RU2616695C2 (ru) 2017-04-18
BR112014025631B1 (pt) 2021-06-01
JP2015514906A (ja) 2015-05-21
CA2868226A1 (fr) 2013-10-24
FR2989744B1 (fr) 2014-06-13
CN104220759A (zh) 2014-12-17

Similar Documents

Publication Publication Date Title
EP2859239B1 (fr) Carter de compresseur a cavités au calage optimisé
EP2859240B1 (fr) Carter de compresseur á cavités a forme amont optimisée
EP2368045B1 (fr) Carter de compresseur à cavités optimisées
CA2651055C (fr) Compresseur de turboreacteur
CA2975570C (fr) Ensemble de redressement a performances aerodynamiques optimisees
CA2755017C (fr) Compresseur axialo-centrifuge a angle de rake evolutif
FR3070448B1 (fr) Aube de redresseur de soufflante de turbomachine, ensemble de turbomachine comprenant une telle aube et turbomachine equipee de ladite aube ou dudit ensemble
FR2875841A1 (fr) Procede et dispositif pour des pales de rotor a auto-amelioration aerodynamique.
EP3274564A1 (fr) Étage de compresseur
FR2898636A1 (fr) Structure de queue-d'aronde de soufflante.
FR3025843B1 (fr) Bras de passage de servitudes pour une turbomachine
EP3044464A1 (fr) Impulseur de pompe polyphasique avec des moyens d'amplification et de répartition d'écoulements de jeu
FR3063102A1 (fr) Aube statorique a angle de calage variable pour une turbomachine d'aeronef
FR2939852A1 (fr) Etage d'aubes statoriques dans un compresseur
FR3090033A1 (fr) Ensemble d’aube directrice de sortie et de bifurcation pour turbomachine
FR3052494A1 (fr) Etage redresseur a calage variable pour compresseur de turbomachine comportant un joint d'etancheite sur carter externe et/ou anneau interne
FR2989743A1 (fr) Carter de compresseur a cavites de longueurs variees
FR3068735B1 (fr) Turboreacteur a faible bruit de soufflante
BE1028097B1 (fr) Aube de compresseur de turbomachine, compresseur et turbomachine munis de celle-ci
WO2023198980A1 (fr) Pièce statorique à ailette dans une turbomachine
WO2023198981A1 (fr) Pièce statorique à ailette dans une turbomachine
EP4388178A1 (fr) Pièce statorique d'une turbomachine comprenant une pale et une ailette définissant entre elles une surface décroissante d'amont en aval selon le sens d'écoulement des gaz
FR3006722A1 (fr) Dispositif de depoussierage de compresseur de turbomachine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13742668

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2868226

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14390178

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015506286

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013742668

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013742668

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014141506

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014025631

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014025631

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20141014