RU2615736C2 - Энергосберегающее покрытие и способ его формирования - Google Patents

Энергосберегающее покрытие и способ его формирования Download PDF

Info

Publication number
RU2615736C2
RU2615736C2 RU2015120369A RU2015120369A RU2615736C2 RU 2615736 C2 RU2615736 C2 RU 2615736C2 RU 2015120369 A RU2015120369 A RU 2015120369A RU 2015120369 A RU2015120369 A RU 2015120369A RU 2615736 C2 RU2615736 C2 RU 2615736C2
Authority
RU
Russia
Prior art keywords
coating
hardener
layer
epoxy resin
hollow glass
Prior art date
Application number
RU2015120369A
Other languages
English (en)
Other versions
RU2015120369A (ru
Inventor
Александр Всеволодович Пименов
Сергей Михайлович Пономарев
Аркадий Борисович Гофман
Original Assignee
Александр Всеволодович Пименов
Сергей Михайлович Пономарев
Аркадий Борисович Гофман
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Александр Всеволодович Пименов, Сергей Михайлович Пономарев, Аркадий Борисович Гофман filed Critical Александр Всеволодович Пименов
Priority to RU2015120369A priority Critical patent/RU2615736C2/ru
Publication of RU2015120369A publication Critical patent/RU2015120369A/ru
Application granted granted Critical
Publication of RU2615736C2 publication Critical patent/RU2615736C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Paints Or Removers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

Группа изобретений относится к химической промышленности и может быть использована в жилищном и промышленном строительстве, в частности, для защиты нефте- и газопроводов в неблагоприятных климатических условиях. Энергосберегающее покрытие содержит эпоксидную смолу, отвердитель и полые стеклянные микросферы. В качестве отвердителя или одного из компонентов отвердителя содержит 1,4-диазо-бицикло-(2,2,2)-октан. Покрытие выполнено из по меньшей мере трех слоев, при этом нижний и верхний слои содержат компоненты при следующем соотношении, об.%: эпоксидная смола - 40-80, отвердитель - 15-55, полые стеклянные микросферы - 1-5, средний слой содержит компоненты при следующем соотношении, об.%: эпоксидная смола - 20-30; отвердитель - 5-10, полые стеклянные микросферы - 50-70. Способ формирования энергосберегающего покрытия характеризуется последовательным нанесением слоев, при этом каждый последующий слой наносят через интервал времени, составляющий не более половины от времени, необходимого для полного высыхания слоя и которое предварительно определяют для конкретных условий нанесения покрытия. Технический результат - высокая степень адгезии покрытия к поверхности при одновременно высокой степени теплоизолирующих свойств, высокая стойкость покрытия к различным механическим и тепловым деформациям. 2 н. и 2 з.п. ф-лы, 1 табл., 9 пр.

Description

Группа изобретений относится к химической промышленности, в частности к производству защитных покрытий, обладающих высокими теплоизолирующими свойствами и прочностными характеристиками, и может быть использована в жилищном и промышленном строительстве, в частности для защиты нефте- и газопроводов в неблагоприятных климатических условиях.
Из уровня техники известно антикоррозионное и теплоизоляционное покрытие по патенту RU 2251563 (заявка №2003112108/04 24.04.2003 г.), Покрытие выполняют из композиции, включающей полимерное связующее 5-95% об. и полые микросферы - 5-95% об. Композицию наносят по меньшей мере в виде одного слоя и проводят сушку. Полимерное связующее состоит из латексной композиции и содержит 10-90% об. (со) полимера, выбранного из группы: гомополимер акрилата, стиролакрилатный сополимер, бутадиенстирольный сополимер, полистирол, бутадиеновый полимер, полихлорвиниловый полимер, полиуретановый полимер, полимер или сополимер винилацетата или их смеси, а также 10-90% об. смеси воды и поверхностно-активного вещества. Полые микросферы имеют размер 10-500 мкм и насыпную плотность - 50-650 кг/м3. Выбраны из группы: стеклянные, керамические, полимерные, зольные или их смеси.
Недостатком этого изобретения является невозможность получения из указанной композиции покрытия, которое одновременно обладает высокими теплоизоляционными свойствами и высокой степенью адгезии к поверхности, на которую наносится покрытие, так как высокое содержании полых микросфер в композиции, из которой выполнено покрытие, ухудшает ее адгезивные свойства, в то время как низкое содержание полых микросфер в композиции снижают теплоизоляционные свойства покрытия. Недостатком также является невысокая механическая стойкость связующего, из которого получают покрытие, к атмосферным факторам (осадки, перепады температур), что приводит вследствие эксплуатации к разрушению и отслоению покрытия. К низкой механической стойкости покрытия приводит и способ его получения, так как послойное нанесение композиции с последующей сушкой каждого слоя до полного высыхания создает высокую вероятность расслаивания покрытия в неблагоприятных атмосферных условиях.
Известна композиция для получения энергосберегающих покрытий по патенту RU 2522008 (заявка №2012152595/05, 06.12.2012), включающая эпоксидную смолу ЭД-20, отвердитель диэтилентриамин ДЭТА - отвердитель на основе алифатических аминов, реакционноспособный каучук СКН-30КТРА - низкомолекулярный сополимер бутадиена с нитрилом акриловой кислоты, содержащий концевые карбоксильные группы и в качестве наполнителя стеклянные или керамические микросферы фракции 40-120 мкм, а также слюду мусковит.
Недостатком известного изобретения является использование низкомолекулярного сополимера бутадиена с нитрилом акриловой кислоты, так как указанный сополимер при низких температурах, в частности при температурах ниже -30°C, утрачивает свойства эластичности, что приводит к разрушению покрытия и вследствие этого невозможности эксплуатации покрытия в агрессивных атмосферных условиях. Наличие слюды в композиции дает примесь с высокой удельной поверхностью, которая в свою очередь снижает прочность покрытия.
Известно антикоррозионное и теплоизоляционное покрытие на основе полых микросфер по патенту RU 2374281 (заявка №2008133899/04 18.08.2008), выполненное из водно-суспензионной композиции с вязкостью от 1 до 100 Па⋅с, включающей смесь полимерного связующего 5-95 об. % с полыми микросферами 5-95 об. %, в качестве полимерного связующего композиция содержит водоэмульсионную полимерную латексную композицию, содержащую от 10 до 90 об. % (со) полимера, выбранного из группы, включающей гомополимер акрилата, стирол-акрилатный сополимер, бутадиенстирольный сополимер, полистирол, бутадиеновый полимер, полихлорвиниловый полимер, полиуретановый полимер, полимер или сополимер винилацетата, или их смеси и от 10 до 90 об. % смеси воды и поверхностно-активного вещества и смесь многоатомного спирта с многоосновной карбоновой или аминокислотой в эквимолекулярном соотношении при следующем соотношении смесей в водно-суспензионной композиции, мас. ч.: смесь полимерного связующего с полыми микросферами - 100; смесь многоатомного спирта с многоосновной карбоновой или аминокислотой 2-5, а в качестве полых микросфер композиция содержит микросферы с разными размерами от 10 до 500 микрометров (мкм) и различной насыпной плотностью от 50 до 650 кг/м3, выбранные из группы, включающей полые стеклянные микросферы, полые керамические микросферы, полые полимерные микросферы, полые техногенные (зольные) микросферы или их смеси.
Недостатком этого технического решения является низкая адгезия покрытия. Также использование в качестве связующего водно-эмульсионной латексной полимерной композиции делает покрытие неустойчивым к резким перепадам температуры и к механической деформации, что приводит в процессе эксплуатации к разрушению покрытия и снижает срок его службы.
Известна композиция для получения антикоррозионного, огнестойкого и теплоизоляционного покрытия, применение ее по патенту RU 2301241 (заявка №2005122002/04, 13.07.2005), взятого в качестве прототипа, включающая следующее соотношение компонентов, мас. ч: 5-95 эпоксидной смолы, 3-65 отвердителя, 5-95 смеси полых микросфер, 0-20 целевых вспомогательных добавок. Полые микросферы выбирают из группы, включающей полые стеклянные микросферы, полые керамические микросферы, полые полимерные микросферы, полые техногенные микросферы или используют их смеси, при этом микросферы берут в пределах от 10 до 500 мкм с насыпной плотностью в пределах от 650 до 50 кг/м3.
Недостатком данного решения является использование полиэтиленполиамина в качестве отвердителя, который обладает высокой реакционной способностью, что приводит к получению покрытия с низкой стойкостью к тепловой и механической деформации. Также при высоком содержании полых микросфер в композиции снижается адгезионная способность полученного из нее покрытия.
Задачей заявленной группы изобретений является создание высокопрочного покрытия с высокими теплоизолирующими свойствами, высокой адгезионной способностью, высокой механической прочностью и стойкостью к циклическим термическим нагрузкам.
Поставленная задача решается за счет:
1) использования 1,4-диазо-бицикло-(2,2,2)-октана в качестве компонента отвердителя. Это позволяет замедлить процесс формирования трехмерной полимерной структуры покрытия и, как следствие, получить равномерное распределение сшивок в трехмерной молекулярной структуре эпоксидной смолы, что приводит к повышению стойкости покрытия, созданного на основе такой эпоксидной смолы к механическим и тепловым деформациям. Особенно важна стойкость покрытия к большим перепадам температур, имеющим место в условиях Крайнего Севера.
2) формирования по меньшей мере трех слоев покрытия, нижнего, среднего и верхнего, где нижний и верхний слои содержат в несколько раз меньшее количество полых стеклянных микросфер, чем средний слой. За счет малого содержания полых микросфер в слое, непосредственно соприкасающемся с поверхностью нанесения, повышается степень его адгезии с поверхностью. Наибольшее по количеству содержание полых микросфер в среднем слое увеличивает теплоизолирующие характеристики покрытия. Увеличение количества средних слоев усиливает теплоизоляционные свойства покрытия. Верхний слой покрытия с малым содержанием микросфер за счет высокой прочности предохраняет нижние слои от механических воздействий.
3) последовательного нанесения слоев таким образом, что после нанесения очередного слоя выдерживают определенное время, которое составляет не более половины времени, необходимого для полного высыхания слоя, определяемого по ГОСТу и зависящего от внешних условий, в которых формируется покрытие. Использование такого способа позволяет получить покрытие высокой прочности и полностью исключить вероятность его расслаивания при эксплуатации в неблагоприятных климатических условиях.
Техническим результатом группы изобретений является высокая степень адгезии покрытия к поверхности при одновременно высокой степени теплоизолирующих свойств, а также повышение степени стойкости покрытия к различным механическим и тепловым деформациям.
Технический результат достигается тем, что энергосберегающее покрытие, содержащее эпоксидную смолу, отвердитель и полые стеклянные микросферы, содержит 1,4-диазо-бицикло-(2,2,2)-октан в качестве одного из компонентов отвердителя и выполнено из по меньшей мере трех слоев, при этом нижний и верхний слои содержат компоненты при следующем соотношении об. %: эпоксидная смола - 40-80, отвердитель - 15-55, полые стеклянные микросферы - 1-5, средний слой содержит компоненты при следующем соотношении об. %: эпоксидная смола - 20-30; отвердитель - 5-10, полые стеклянные микросферы - 50-70, при этом между нижним и верхним слоями может быть выполнено более одного среднего слоя, предпочтительно три, а также верхний слой дополнительно содержит красящий пигмент, и тем, что в способе формирования энергосберегающего покрытия, характеризующемся последовательным нанесением слоев, каждый последующий слой наносят через интервал времени, составляющий не более половины от времени, необходимого для полного высыхания слоя и которое предварительно определяют для конкретных условий нанесения покрытия.
Примеры получения покрытия
Пример 1. Энергосберегающее покрытие, включающее три последовательно нанесенных слоя, было получено с использованием эпоксидной смолы, отвердителя и полых стеклянных микросфер в следующих объемных соотношениях (для высушенного слоя после удаления растворителя):
Figure 00000001
Нанесение каждого нового слоя осуществлялось после высыхания предыдущего слоя до 2 степени по ГОСТ 19007-73 «Материалы лакокрасочные. Метод определения времени и степени высыхания».
Для покрытия, нанесенного снаружи на отрезок стальной трубы диаметром 100 мм, определяли следующие характеристики:
1. Величина адгезии покрытия по ИСО 4624-2002 «Лаки и краски. Определение адгезии методом отрыва.
2. Прочность при ударе по ГОСТ Р 51164 «Трубопроводы стальные магистральные. Общие требования к защите от коррозии. Приложение А. Метод контроля защитных покрытий по заданной прочности при ударе».
3. Коэффициент теплопроводности слоя по ГОСТ 7076-99 «Материалы и изделия строительные. Метод определения теплопроводности и термического сопротивления при стационарном тепловом режиме».
4. Стойкость к перепадам температуры: изделия с нанесенным покрытием последовательно выдерживалось 4 часа при 100°С, затем 4 час при -60°С, затем цикл повторялся. После 12 циклов смены температур визуально определялось состояние покрытия.
Результаты испытаний приведены в таблице 1.
Пример 2. Энергосберегающее покрытие, включающее три последовательно нанесенных слоя, было получено с использованием эпоксидной смолы, отвердителя и полых стеклянных микросфер в следующих объемных соотношениях (для высушенного слоя после удаления растворителя):
Figure 00000002
Нанесение каждого нового слоя осуществлялось после высыхания предыдущего слоя до 2 степени по ГОСТ 19007-73.
Характеристики покрытия определяли аналогично Примеру 1. Результаты испытаний приведены в таблице 1.
Пример 3. Энергосберегающее покрытие, включающее три последовательно нанесенных слоя, было получено с использованием эпоксидной смолы, отвердителей и полых стеклянных микросфер в следующих объемных соотношениях (для высушенного слоя после удаления растворителя):
Figure 00000003
Нанесение каждого нового слоя осуществлялось после высыхания предыдущего слоя до 2 степени по ГОСТ 19007-73.
Характеристики покрытия определяли аналогично Примеру 1. Результаты испытаний приведены в таблице 1.
Пример 4. Энергосберегающее покрытие, включающее три последовательно нанесенных слоя, было получено с использованием эпоксидной смолы, отвердителя и полых стеклянных микросфер в следующих объемных соотношениях (для высушенного слоя после удаления растворителя):
Figure 00000004
Нанесение каждого нового слоя осуществлялось после высыхания предыдущего слоя до 2 степени по ГОСТ 19007-73.
Характеристики покрытия определяли аналогично Примеру 1. Результаты испытаний приведены в таблице 1.
Пример 5. Энергосберегающее покрытие, включающее три последовательно нанесенных слоя, было получено с использованием эпоксидной смолы, отвердителя и полых стеклянных микросфер в следующих объемных соотношениях (для высушенного слоя после удаления растворителя):
Figure 00000005
Нанесение каждого нового слоя осуществлялось после высыхания предыдущего слоя до 2 степени по ГОСТ 19007-73.
Характеристики покрытия определяли аналогично Примеру 1. Результаты испытаний приведены в таблице 1.
Пример 6. Энергосберегающее покрытие, включающее три последовательно нанесенных слоя, было получено с использованием эпоксидной смолы, отвердителя и полых стеклянных микросфер в следующих объемных соотношениях (для высушенного слоя после удаления растворителя):
Figure 00000006
Нанесение каждого нового слоя осуществлялось после высыхания предыдущего слоя до 2 степени по ГОСТ 19007-73.
Характеристики покрытия определяли аналогично Примеру 1. Результаты испытаний приведены в таблице 1.
Пример 7. Энергосберегающее покрытие, включающее три последовательно нанесенных слоя, было получено с использованием эпоксидной смолы, отвердителя и полых стеклянных микросфер в следующих объемных соотношениях (для высушенного слоя после удаления растворителя):
Figure 00000007
Нанесение каждого нового слоя осуществлялось после высыхания предыдущего слоя до 2 степени по ГОСТ 19007-73.
Характеристики покрытия определяли аналогично Примеру 1. Результаты испытаний приведены в таблице 1.
Пример 8. Энергосберегающее покрытие, включающее три последовательно нанесенных слоя, было получено с использованием эпоксидной смолы, отвердителя и полых стеклянных микросфер в следующих объемных соотношениях (для высушенного слоя после удаления растворителя):
Figure 00000008
Сушка нанесенного покрытия осуществлялась при 20°С и относительной влажности 50-60%. В указанных условиях полное время высыхания покрытия по ГОСТ 19007-73 составляло 24 часа. Нанесения каждого нового слоя осуществлялось через 6 часов после нанесения предыдущего.
Характеристики покрытия определяли аналогично Примеру 1. Результаты испытаний приведены в таблице 1.
Пример 9. Энергосберегающее покрытие, включающее три последовательно нанесенных слоя, было получено с использованием эпоксидной смолы, отвердителя и полых стеклянных микросфер с следующих объемных соотношениях (для высушенного слоя после удаления растворителя):
Figure 00000009
Сушка нанесенного покрытия осуществлялась при 5°С и относительной влажности 80-90%. В указанных условия полное время высыхания покрытия по ГОСТ 19007-73 составляло 48 часа. Нанесения каждого нового слоя осуществлялось через 24 часа после нанесения предыдущего.
Характеристики покрытия определяли аналогично Примеру 1. Результаты испытаний приведены в таблице 1.
Figure 00000010
Результаты испытаний покрытий по примерам показывают, что покрытия, выполненные в соответствии с изобретением, обеспечивают оптимальное соотношение теплоизолирующих и прочностных свойств покрытия. Отклонение от оптимальных условий технологии получения покрытия приводит к ухудшению качества покрытия.

Claims (4)

1. Энергосберегающее покрытие, содержащее эпоксидную смолу, отвердитель и полые стеклянные микросферы, отличающееся тем, что в качестве отвердителя или одного из компонентов отвердителя содержит 1,4-диазо-бицикло-(2,2,2)-октан и выполнено из по меньшей мере трех слоев, при этом нижний и верхний слои содержат компоненты при следующем соотношении, об.%: эпоксидная смола - 40-80, отвердитель - 15-55, полые стеклянные микросферы - 1-5, средний слой содержит компоненты при следующем соотношении, об.%: эпоксидная смола - 20-30; отвердитель - 5-10, полые стеклянные микросферы - 50-70.
2. Энергосберегающее покрытие по п. 1, отличающееся тем, что между нижним и верхним слоями может быть выполнено более одного среднего слоя, предпочтительно три.
3. Энергосберегающее покрытие по п. 1 или 2, отличающееся тем, что верхний слой дополнительно содержит красящий пигмент.
4. Способ формирования энергосберегающего покрытия по п. 1, включающий последовательное нанесение слоев, при этом каждый последующий слой наносят через интервал времени, составляющий не более половины от времени, необходимого для полного высыхания слоя и которое предварительно определяют для конкретных условий нанесения покрытия.
RU2015120369A 2015-05-28 2015-05-28 Энергосберегающее покрытие и способ его формирования RU2615736C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015120369A RU2615736C2 (ru) 2015-05-28 2015-05-28 Энергосберегающее покрытие и способ его формирования

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015120369A RU2615736C2 (ru) 2015-05-28 2015-05-28 Энергосберегающее покрытие и способ его формирования

Publications (2)

Publication Number Publication Date
RU2015120369A RU2015120369A (ru) 2016-12-20
RU2615736C2 true RU2615736C2 (ru) 2017-04-10

Family

ID=57759220

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015120369A RU2615736C2 (ru) 2015-05-28 2015-05-28 Энергосберегающее покрытие и способ его формирования

Country Status (1)

Country Link
RU (1) RU2615736C2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2707346C1 (ru) * 2019-05-07 2019-11-26 Федеральное государственное бюджетное образовательное учреждение высшего образования "Владимирский Государственный Университет имени Александра Григорьевича и Николая Григорьевича Столетовых" (ВлГУ) Диэлектрическая композиция для композиционных полимерных материалов
RU2758790C1 (ru) * 2020-10-22 2021-11-01 Владимир Анатольевич Щебельский Способ производства эпоксидной композиции для грунтовки

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2301241C2 (ru) * 2005-07-13 2007-06-20 Виталий Степанович Беляев Композиция для получения антикоррозионного, огнестойкого и теплоизоляционного покрытия, применение ее
RU2387693C1 (ru) * 2008-08-13 2010-04-27 Закрытое акционерное общество "УНИХИМТЕК" (ЗАО "УНИХИМТЕК" Состав для получения огнезащитного покрытия
RU2424905C1 (ru) * 2009-11-23 2011-07-27 Государственное образовательное учреждение высшего профессионального образования Казанский государственный технический университет им. А.Н. Туполева (КГТУ им. А.Н. Туполева) Способ получения теплоизоляционного градиентного покрытия
RU2502763C1 (ru) * 2012-05-23 2013-12-27 Алексей Станиславович Платов Антикоррозионное и теплоизоляционное покрытие на основе полых микросфер
RU2522008C1 (ru) * 2012-12-06 2014-07-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный архитектурно-строительный университет" КГАСУ Композиция для получения энергосберегающих покрытий

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2301241C2 (ru) * 2005-07-13 2007-06-20 Виталий Степанович Беляев Композиция для получения антикоррозионного, огнестойкого и теплоизоляционного покрытия, применение ее
RU2387693C1 (ru) * 2008-08-13 2010-04-27 Закрытое акционерное общество "УНИХИМТЕК" (ЗАО "УНИХИМТЕК" Состав для получения огнезащитного покрытия
RU2424905C1 (ru) * 2009-11-23 2011-07-27 Государственное образовательное учреждение высшего профессионального образования Казанский государственный технический университет им. А.Н. Туполева (КГТУ им. А.Н. Туполева) Способ получения теплоизоляционного градиентного покрытия
RU2502763C1 (ru) * 2012-05-23 2013-12-27 Алексей Станиславович Платов Антикоррозионное и теплоизоляционное покрытие на основе полых микросфер
RU2522008C1 (ru) * 2012-12-06 2014-07-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный архитектурно-строительный университет" КГАСУ Композиция для получения энергосберегающих покрытий

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2707346C1 (ru) * 2019-05-07 2019-11-26 Федеральное государственное бюджетное образовательное учреждение высшего образования "Владимирский Государственный Университет имени Александра Григорьевича и Николая Григорьевича Столетовых" (ВлГУ) Диэлектрическая композиция для композиционных полимерных материалов
RU2758790C1 (ru) * 2020-10-22 2021-11-01 Владимир Анатольевич Щебельский Способ производства эпоксидной композиции для грунтовки

Also Published As

Publication number Publication date
RU2015120369A (ru) 2016-12-20

Similar Documents

Publication Publication Date Title
CN104109439A (zh) 一种保温真石漆及其制备方法
CN102174291A (zh) 一种有机硅改性醇酸树脂涂料组合物及其制备方法
CN104631207A (zh) 一种水性纸板防水涂料及其制备方法
CN105130369A (zh) 一种水性内墙无机涂料及其制备方法
RU2615736C2 (ru) Энергосберегающее покрытие и способ его формирования
CN105368150A (zh) 一种水性耐候玻璃油墨
RU2374281C1 (ru) Антикоррозионное и теплоизоляционное покрытие на основе полых микросфер
CN102533052B (zh) 一种无溶剂型环氧富锌底漆及其制备方法
CN107760072A (zh) 一种硅溶胶与石墨烯聚合建筑外墙纳米自洁涂料及制备技术
CN104610842A (zh) 防火涂料的制备方法及施工方法
KR101778213B1 (ko) 피씨엠 컬러강판 제조용 피씨엠 도료 조성물 및 이에 의해 제조된 스노우 매트형 컬러강판
RU2502763C1 (ru) Антикоррозионное и теплоизоляционное покрытие на основе полых микросфер
CN106978034A (zh) 一种丙烯酸防腐涂料
KR20210081469A (ko) 가전용 임프린팅 피씨엠 도료 조성물 및 이에 의해 제조된 가전용 임프린팅 컬러강판
CN104610843A (zh) 防火涂料
CN105542638B (zh) 一种涂料及其制备方法
CN102051105A (zh) 无溶剂型古马隆改性环氧重防腐涂料
RU2351624C1 (ru) Полимерная композиция для защитного антикоррозионного покрытия барьерного типа
US2979416A (en) Method for sealing eroded articles and thixotropic composition therefor
RU2245350C1 (ru) Термозащитная краска
CN115260881A (zh) 一种低温固化聚酯型粉末涂料及其制备方法
CN107043583A (zh) 一种高耐候性的丙烯酸防腐涂料
US2923643A (en) Production of anti-corrosive coatings for metals
CN107141952B (zh) 低温快干型底面合一水漆及其制备方法
CN105176315B (zh) 用于油管内壁的防腐涂料及内壁喷涂防腐涂料的油管

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180529