RU2615068C1 - Биполярно-полевой дифференциальный операционный усилитель - Google Patents

Биполярно-полевой дифференциальный операционный усилитель Download PDF

Info

Publication number
RU2615068C1
RU2615068C1 RU2015153927A RU2015153927A RU2615068C1 RU 2615068 C1 RU2615068 C1 RU 2615068C1 RU 2015153927 A RU2015153927 A RU 2015153927A RU 2015153927 A RU2015153927 A RU 2015153927A RU 2615068 C1 RU2615068 C1 RU 2615068C1
Authority
RU
Russia
Prior art keywords
current
transistor
output
auxiliary
bus
Prior art date
Application number
RU2015153927A
Other languages
English (en)
Inventor
Николай Николаевич Прокопенко
Олег Владимирович Дворников
Николай Владимирович Бутырлагин
Анна Витальевна Бугакова
Original Assignee
федеральное государственное бюджетное образовательное учреждение высшего образования "Донской государственный технический университет" (ДГТУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by федеральное государственное бюджетное образовательное учреждение высшего образования "Донской государственный технический университет" (ДГТУ) filed Critical федеральное государственное бюджетное образовательное учреждение высшего образования "Донской государственный технический университет" (ДГТУ)
Priority to RU2015153927A priority Critical patent/RU2615068C1/ru
Application granted granted Critical
Publication of RU2615068C1 publication Critical patent/RU2615068C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45179Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit
    • H03F3/45273Mirror types

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Abstract

Изобретение относится к области радиотехники. Технический результат: повышение разомкнутого коэффициента усиления по напряжению операционного усилителя (ОУ) при сохранении высоких показателей по стабильности напряжения смещения нуля. Для этого предложен биполярно-полевой дифференциальный операционный усилитель, который содержит входной дифференциальный каскад (1) с первым (2) и вторым (3) противофазными токовыми выходами, первый (4) токовый вход, первый (5) полевой транзистор, первую (6) шину питания, первый (7) вспомогательный токостабилизирующий двухполюсник, первый (8) токостабилизирующий двухполюсник, вторую (9) шину питания, второй (10) токостабилизирующий двухполюсник, первый (11) выходной транзистор, токовое зеркало (12), второй (13) выходной транзистор, буферный усилитель (14), первый (15) и второй (16) вспомогательные транзисторы. В схему введены первый (17) и второй (18) дополнительные транзисторы, второй (19) вспомогательный токостабилизирующий двухполюсник, третий (20) вспомогательный токостабилизирующий двухполюсник. 1 з.п. ф-лы, 12 ил.

Description

Изобретение относится к области радиотехники и автоматики и может быть использовано в измерительной технике в качестве прецизионного устройства усиления сигналов различных сенсоров.
В современной радиоэлектронной аппаратуре находят применение операционные усилители (ОУ) на полевых и биполярных транзисторах, которые содержат отрицательную обратную связь по синфазному сигналу [1-5].
Для работы в условиях космического пространства, в экспериментальной физике необходимы радиационно-стойкие ОУ с повышенным коэффициентом усиления и малым напряжением смещения нуля (Uсм). Опыт проектирования устройств данного класса показывает, что решение этих задач возможно с использованием биполярно-полевого технологического процесса [6], обеспечивающего формирование p-канальных полевых и высококачественных n-p-n биполярных транзисторов с радиационной стойкостью до 1 Мрад и потоком нейтронов до 1013 н/см2.
Ближайшим прототипом (фиг. 1) заявляемого устройства является операционный усилитель по патенту RU 2571579 (заявка 2014145403/08, положительное решение от 09.07.15), фиг. 4. Он содержит (фиг. 1) входной дифференциальный каскад 1 с первым 2 и вторым 3 противофазными токовыми выходами, первый 4 токовый вход для установления статического режима по току транзисторов входного дифференциального каскада 1, подключенный к стоку первого 5 полевого транзистора с управляющим p-n переходом, затвор которого связан с первой 6 шиной источника питания, а исток подключен к первой 6 шине источника питания через первый 7 вспомогательный токостабилизирующий двухполюсник, первый 8 токостабилизирующий двухполюсник, включенный между первым 2 токовым выходом входного дифференциального каскада 1 и второй 9 шиной источника питания, второй 10 токостабилизирующий двухполюсник, включенный между вторым 3 токовым выходом входного дифференциального каскада 1 и второй 9 шиной источника питания, первый 11 выходной транзистор, эмиттер которого подключен ко второй 9 шине источника питания, а коллектор связан со входом токового зеркала 12, второй 13 выходной транзистор, эмиттер которого подключен ко второй 9 шине источника питания, а коллектор связан с выходом токового зеркала 12 и входом буферного усилителя 14, первый 15 и второй 16 вспомогательные транзисторы, коллекторы которых объединены и подключены к истоку первого 5 полевого транзистора с управляющим р-n переходом, а эмиттеры соединены со второй 9 шиной источника питания, причем база первого 15 вспомогательного транзистора соединена с базой первого 11 выходного транзистора, а база второго 16 вспомогательного транзистора соединена с базой второго 13 выходного транзистора.
Существенный недостаток известного ОУ состоит в том, что он имеет сравнительно небольшой разомкнутый коэффициент усиления по напряжению (Kу). В конечном итоге это снижает прецизионность известного ОУ при работе в схемах с отрицательной обратной связью. Кроме этого, ОУ с известной архитектурой не могут работать в структуре достаточно нового подкласса активных элементов [8] - мультидифференциальных операционных усилителях, для которых входной дифференциальный каскад 1 (ДК) должен иметь два токовых входа для установления его статического режима [6].
Основная задача предлагаемого изобретения состоит в повышении разомкнутого коэффициента усиления по напряжению ОУ при сохранении высоких показателей по стабильности напряжения смещения нуля. Дополнительная задача - расширение функциональных возможностей ОУ - создание необходимых условий для построения на его основе мультидифференциальных операционных усилителей (МОУ), имеющих ряд неоспоримых преимуществ в сравнении с классическими ОУ [8].
Поставленные задачи достигаются тем, что в операционном усилителе фиг. 1, содержащем входной дифференциальный каскад 1 с первым 2 и вторым 3 противофазными токовыми выходами, первый 4 токовый вход для установления статического режима по току транзисторов входного дифференциального каскада 1, подключенный к стоку первого 5 полевого транзистора с управляющим p-n переходом, затвор которого связан с первой 6 шиной источника питания, а исток подключен к первой 6 шине источника питания через первый 7 вспомогательный токостабилизирующий двухполюсник, первый 8 токостабилизирующий двухполюсник, включенный между первым 2 токовым выходом входного дифференциального каскада 1 и второй 9 шиной источника питания, второй 10 токостабилизирующий двухполюсник, включенный между вторым 3 токовым выходом входного дифференциального каскада 1 и второй 9 шиной источника питания, первый 11 выходной транзистор, эмиттер которого подключен ко второй 9 шине источника питания, а коллектор связан со входом токового зеркала 12, второй 13 выходной транзистор, эмиттер которого подключен ко второй 9 шине источника питания, а коллектор связан с выходом токового зеркала 12 и входом буферного усилителя 14, первый 15 и второй 16 вспомогательные транзисторы, коллекторы которых объединены и подключены к истоку первого 5 полевого транзистора с управляющим p-n переходом, а эмиттеры соединены со второй 9 шиной источника питания, причем база первого 15 вспомогательного транзистора соединена с базой первого 11 выходного транзистора, а база второго 16 вспомогательного транзистора соединена с базой второго 13 выходного транзистора, предусмотрены новые элементы и связи - в схему введены первый 17 и второй 18 дополнительные транзисторы, коллекторы которых связаны с первой 6 шиной источника питания, база первого 17 дополнительного транзистора подключена к первому 2 токовому выходу входного дифференциального каскада 1, эмиттер первого 17 дополнительного транзистора связан со второй 9 шиной источника питания через второй 19 вспомогательный токостабилизирующий двухполюсник и соединен с объединенными базами второго 13 выходного транзистора и второго 16 вспомогательного транзистора, база второго 18 дополнительного транзистора подключена ко второму 3 токовому выходу входного дифференциального каскада 1, эмиттер второго 18 дополнительного транзистора связан со второй 9 шиной источника питания через третий 20 вспомогательный токостабилизирующий двухполюсник и соединен с объединенными базами первого 11 выходного транзистора и первого 15 вспомогательного транзистора.
На чертеже фиг. 1 показана схема ОУ-прототипа, а на чертеже фиг. 2 - схема заявляемого ОУ в соответствии с п. 1 формулы изобретения.
На чертежах фиг. 3, фиг. 4, фиг. 5 показаны варианты выполнения входного дифференциального каскада 1 на полевых транзисторах (фиг. 3 - классическая схема ДК, фиг. 4 - схема ДК с местной отрицательной обратной связью, фиг. 5 - входной дифференциальный каскад 1 с двумя токовыми входами (4 и 30) для установления его статического режима). На основе схемы фиг. 5 и фиг. 2 реализуются мультидифференциальные ОУ [8].
На чертеже фиг. 6 показана схема заявляемого устройства в соответствии с п. 2 формулы изобретения.
На чертеже фиг. 7 приведена схема заявляемого ОУ фиг. 2 в среде компьютерного моделирования PSpice на моделях интегральных транзисторов ОАО «Интеграл» (г. Минск).
На чертеже фиг. 8 показаны амплитудно-частотные характеристики коэффициента усиления по напряжению схемы фиг. 7 без отрицательной обратной связи (верхний график) и с отрицательной обратной связью (нижний график).
Графики фиг. 9 характеризуют предельные параметры заявляемого устройства по радиационной стойкости и температуре. Данные графики построены для идеальных элементов 12 и 14, при отсутствии разброса параметров элементов, а также при введении симметрирующего элемента 23.
На чертеже фиг. 10 приведена схема ОУ фиг.6 в среде компьютерного моделирования PSpice на моделях интегральных транзисторов ОАО «Интеграл» (г. Минск).
На чертеже фиг. 11 показаны амплитудно-частотные характеристики коэффициента усиления по напряжению схемы фиг. 10 без отрицательной обратной связи (верхний график) и с отрицательной обратной связью (нижний график).
Графики фиг. 12 характеризуют предельные параметры заявляемого устройства по радиационной стойкости и температуре. Данные графики построены для идеальных элементов 12 и 14, при отсутствии разброса параметров транзисторов, а также при введении симметрирующего элемента 23.
Биполярно-полевой дифференциальный операционный усилитель фиг.2 содержит входной дифференциальный каскад 1 с первым 2 и вторым 3 противофазными токовыми выходами, первый 4 токовый вход для установления статического режима по току транзисторов входного дифференциального каскада 1, подключенный к стоку первого 5 полевого транзистора с управляющим p-n переходом, затвор которого связан с первой 6 шиной источника питания, а исток подключен к первой 6 шине источника питания через первый 7 вспомогательный токостабилизирующий двухполюсник, первый 8 токостабилизирующий двухполюсник, включенный между первым 2 токовым выходом входного дифференциального каскада 1 и второй 9 шиной источника питания, второй 10 токостабилизирующий двухполюсник, включенный между вторым 3 токовым выходом входного дифференциального каскада 1 и второй 9 шиной источника питания, первый 11 выходной транзистор, эмиттер которого подключен ко второй 9 шине источника питания, а коллектор связан со входом токового зеркала 12, второй 13 выходной транзистор, эмиттер которого подключен ко второй 9 шине источника питания, а коллектор связан с выходом токового зеркала 12 и входом буферного усилителя 14, первый 15 и второй 16 вспомогательные транзисторы, коллекторы которых объединены и подключены к истоку первого 5 полевого транзистора с управляющим р-n переходом, а эмиттеры соединены со второй 9 шиной источника питания, причем база первого 15 вспомогательного транзистора соединена с базой первого 11 выходного транзистора, а база второго 16 вспомогательного транзистора соединена с базой второго 13 выходного транзистора. В схему введены первый 17 и второй 18 дополнительные транзисторы, коллекторы которых связаны с первой 6 шиной источника питания, база первого 17 дополнительного транзистора подключена к первому 2 токовому выходу входного дифференциального каскада 1, эмиттер первого 17 дополнительного транзистора связан со второй 9 шиной источника питания через второй 19 вспомогательный токостабилизирующий двухполюсник и соединен с объединенными базами второго 13 выходного транзистора и второго 16 вспомогательного транзистора, база второго 18 дополнительного транзистора подключена ко второму 3 токовому выходу входного дифференциального каскада 1, эмиттер второго 18 дополнительного транзистора связан со второй 9 шиной источника питания через третий 20 вспомогательный токостабилизирующий двухполюсник и соединен с объединенными базами первого 11 выходного транзистора и первого 15 вспомогательного транзистора.
В схеме фиг. 2 входной дифференциальный каскад 1 имеет противофазные потенциальные входы 21 и 22, а также симметрирующий элемент 23, который может выполняться на основе резисторов, источников опорного напряжения и т.п., обеспечивающий минимизацию систематической составляющей напряжения смещения нуля ОУ, обусловленной эффектом Эрли первого 11 и второго 13 выходных транзисторов.
В схеме фиг. 3 входной дифференциальный каскад 1 реализован на полевых транзисторах 25 и 26.
В схеме фиг. 4 входной дифференциальный каскад 1 выполнен на основе резистора местной отрицательной обратной связи 27, полевых транзисторах 28 и 29, а также имеет второй 30 токовый вход для установления статического режима по току транзисторов входного дифференциального каскада 1.
В схеме фиг. 5 входной дифференциальный каскад 1 реализован как элемент мультидифференциального ОУ [8] и содержит первый 31 и второй 32 дополнительные входы ОУ, а также полевые транзисторы 33, 34 и 35, 36. Статический режим транзисторов 35, 36 устанавливается здесь по второму 30 токовому входу.
На чертеже фиг. 6, в соответствии с п. 2 формулы изобретения, входной дифференциальный каскад 1 содержит второй 30 токовый вход для установления статического режима по току транзисторов входного дифференциального каскада 1, подключенный к стоку второго 37 полевого транзистора с управляющим p-n переходом, затвор которого связан с первой 6 шиной источника питания, а исток подключен к первой 6 шине источника питания через четвертый 38 вспомогательный токостабилизирующий двухполюсник, причем исток второго 37 полевого транзистора с управляющим p-n переходом соединен с объединенными коллекторами третьего 39 и четвертого 40 дополнительных транзисторов, эмиттеры которых связаны со второй 9 шиной источника питания, база третьего 39 дополнительного транзистора соединена с базами первого 15 вспомогательного и первого 11 выходного транзисторов, а база четвертого 40 дополнительного транзистора соединена с базами второго 13 выходного и второго 16 вспомогательного транзисторов.
Рассмотрим работу ОУ фиг.2.
Статический режим транзисторов схемы фиг. 2 устанавливается за счет цепи отрицательной обратной связи по синфазному сигналу, которая организуется первым 15 и вторым 16 вспомогательными транзисторами и источником опорного тока на первом 5 полевом транзисторе, а также первым 17 и вторым 18 дополнительными транзисторами. При этом выходные токи узлов 2 и 3 (I2, I3) и токи коллекторов (Iкi) транзисторов определяются уравнениями
Figure 00000001
Figure 00000002
где I8, I10 - токи первого 8 и второго 10 токостабилизирующих двухполюсников;
Figure 00000003
- статический ток коллектора первого 11 и второго 13 выходных транзисторов и первого 15 и второго 16 вспомогательных транзисторов;
Uзи.5 - статическое напряжение между затвором и истоком первого 5 полевого транзистора при токе стока, равном Iс=2I0;
I0 - некоторый заданный разработчиком опорный ток, равный, например, 1 мА.
Таким образом, статический режим схемы ОУ фиг. 2 зависит от токов первого 8 и второго 10 токостабилизирующих двухполюсников, которые могут быть выполнены на основе n-p-n транзисторов. В конечном итоге это повышает радиационную стойкость ОУ [6].
Коэффициент усиления по напряжению (Kу) схемы фиг. 2 определяется произведением
Figure 00000004
где u23 - напряжение между первым 2 и вторым 3 токовыми выходами ОУ;
u21.22 - входное дифференциальное напряжение ОУ (напряжение между входами 21, 22);
Kу2.3 - коэффициент преобразования входного дифференциального напряжения ОУ (u21.22) в напряжение между первым 2 и вторым 3 токовыми выходами; Kу2.3=u2.3/u21.22;
Kу17.18 - коэффициент преобразования напряжения между первым 2 и вторым 3 токовыми выходами в напряжение uбб между базами первого 11 и второго 13 выходных транзисторов; Kу17.18=uбб/u2.3;
Kу11.13 - коэффициент преобразования напряжения между базами первого 11 и второго 13 выходных транзисторов в напряжение u∑1 на входе буферного усилителя 14; Kу=u∑1/uбб;
Kу14 - коэффициент передачи по напряжению буферного усилителя 14.
Причем Kу17.18≈1, Kу14≈1.
Основное усиление в схеме фиг. 2 обеспечивается первым (Kу2.3) и вторым (Kу11.13) каскадами. При этом
Figure 00000005
где SДК - крутизна преобразования напряжения между входами 21, 22 входного ДК 1 в выходные токи токовых выходов 2 и 3;
Ri2 - эквивалентное сопротивление в цепи первого 2 токового выхода;
Ri3 - эквивалентное сопротивление в цепи второго 3 токового выхода.
Численные значения Ri2 и Ri3 определяются формулами
Figure 00000006
где yвх.17 - входная проводимость первого 17 дополнительного транзистора по цепи базы;
yДК.2 - выходная проводимость входного дифференциального каскада 1 по цепи первого 2 токового выхода;
y8 - выходная проводимость первого 8 токостабилизирующего двухполюсника.
Аналогично для узла 3 можно найти
Figure 00000007
где yВх.18 - входная проводимость второго 18 дополнительного транзистора по цепи базы;
yДК.3 - выходная проводимость входного дифференциального каскада 1 по цепи второго 3 токового выхода;
y10 - выходная проводимость второго 10 токостабилизирующего двухполюсника.
Если считать, что yДК.1≈0, yДК.2≈0, y8≈0, y10≈0, то из формул (4)-(6) можно найти
Figure 00000008
Figure 00000009
где Rвх.15≈β15rэ15, Rвх.11≈β11rэ11, Rвх.13≈β13rэ13, Rвх.16≈ β16rэ16,
rэi, βi - сопротивление эмиттерного перехода и коэффициент усиления по току базы i-го транзистора.
За счет надлежащего выбора сопротивления второго 19 (R19) и третьего 20 (R20) вспомогательных токостабилизирующих двухполюсников можно минимизировать их влияние на Kу2.3. Поэтому для данного случая
Figure 00000010
где ϕт≈26 мВ - температурный потенциал;
β=β1311, rэ=rэ13=rэ11;
Icm - статический ток эмиттера первого 11 и второго 13 выходных транзисторов.
Аналогично можно найти коэффициент усиления по току Kу11.13 промежуточного каскада (первый 11 и второй 13 выходные транзисторы)
Figure 00000011
где Rн - эквивалентное сопротивление в цепи коллектора (∑1) второго 13 выходного транзистора.
Таким образом, коэффициент усиления разомкнутого ОУ фиг. 2
Figure 00000012
Приближенно можно считать, что эквивалентное сопротивление Rн на входе буферного усилителя 14
Figure 00000013
где μ13 - коэффициент внутренней обратной связи второго 13 выходного транзистора.
Таким образом, в схеме фиг. 2 разомкнутый коэффициент усиления определяется произведением
Figure 00000014
Если считать, что μ13≈10-3, β=β17≈β13=100,
Figure 00000015
, то в заявляемом ОУ реализуется коэффициент усиления по напряжению не менее чем 90÷100 дБ.
Данный вывод подтверждается результатами компьютерного моделирования фиг. 8, фиг. 11.
Анализ графиков фиг. 8 показывает, что введение дополнительных элементов в схеме фиг. 2 в соответствии с формулой изобретения повышает коэффициент усиления по напряжению ОУ до 101 дБ. Этого достаточно для его многих применений в устройствах автоматики и телекоммуникаций. Причем заявляемая схема ОУ характеризуется высокой стабильностью нулевого уровня (фиг. 12).
Реализация ОУ в соответствии с п. 2 формулы изобретения позволяет создавать на его основе так называемые мультидифференциальные операционные усилители (например, фиг. 5, фиг. 2), имеющие уникальные схемы включения [8], не реализуемые на основе классических ОУ.
Таким образом, заявляемое устройство имеет существенные преимущества в сравнении с прототипом.
БИБЛИОГРАФИЧЕСКИЙ СПИСОК
1. Патент US №3.959.733.
2. Патент US №6.157.255.
3. Патент RU №2331970 fig. 1.
4. Патентная заявка US 2007/0096814.
5. Патент US №5.610.547.
6. Элементная база радиационно-стойких информационно-измерительных систем: монография / Н.Н. Прокопенко, О.В. Дворников, С.Г. Крутчинский; под общ. ред. д.т.н. проф. Н.Н. Прокопенко; ФГБОУ ВПО «Южно-Рос. гос. ун-т. экономики и сервиса». - Шахты: ФГБОУ ВПО «ЮРГУЭС», 2011. - 208 с.
7. Операционные усилители с непосредственной связью каскадов / В.И. Анисимов, М.В. Капитонов, Н.Н. Прокопенко, Ю.М. Соколов - Л.: Энергия. Ленингр. отд-ние, 1979. - 151 с.
8. Основные свойства, параметры и базовые схемы включения мультидифференциальных операционных усилителей с высокоимпедансным узлом / Н.Н. Прокопенко, О.В. Дворников, П.С. Будяков // Электронная техника. Серия 2. Полупроводниковые приборы. Выпуск 2 (233), МоскваЮ ОАО «Пульсар», 2014 г. С. 53-64.

Claims (2)

1. Биполярно-полевой дифференциальный операционный усилитель, содержащий входной дифференциальный каскад (1) с первым (2) и вторым (3) противофазными токовыми выходами, первый (4) токовый вход для установления статического режима по току транзисторов входного дифференциального каскада (1), подключенный к стоку первого (5) полевого транзистора с управляющим р-n переходом, затвор которого связан с первой (6) шиной источника питания, а исток подключен к первой (6) шине источника питания через первый (7) вспомогательный токостабилизирующий двухполюсник, первый (8) токостабилизирующий двухполюсник, включенный между первым (2) токовым выходом входного дифференциального каскада (1) и второй (9) шиной источника питания, второй (10) токостабилизирующий двухполюсник, включенный между вторым (3) токовым выходом входного дифференциального каскада (1) и второй (9) шиной источника питания, первый (11) выходной транзистор, эмиттер которого подключен ко второй (9) шине источника питания, а коллектор связан со входом токового зеркала (12), второй (13) выходной транзистор, эмиттер которого подключен ко второй (9) шине источника питания, а коллектор связан с выходом токового зеркала (12) и входом буферного усилителя (14), первый (15) и второй (16) вспомогательные транзисторы, коллекторы которых объединены и подключены к истоку первого (5) полевого транзистора с управляющим р-n переходом, а эмиттеры соединены со второй (9) шиной источника питания, причем база первого (15) вспомогательного транзистора соединена с базой первого (11) выходного транзистора, а база второго (16) вспомогательного транзистора соединена с базой второго (13) выходного транзистора, отличающийся тем, что в схему введены первый (17) и второй (18) дополнительные транзисторы, коллекторы которых связаны с первой (6) шиной источника питания, база первого (17) дополнительного транзистора подключена к первому (2) токовому выходу входного дифференциального каскада (1), эмиттер первого (17) дополнительного транзистора связан со второй (9) шиной источника питания через второй (19) вспомогательный токостабилизирующий двухполюсник и соединен с объединенными базами второго (13) выходного транзистора и второго (16) вспомогательного транзистора, база второго (18) дополнительного транзистора подключена ко второму (3) токовому выходу входного дифференциального каскада (1), эмиттер второго (18) дополнительного транзистора связан со второй (9) шиной источника питания через третий (20) вспомогательный токостабилизирующий двухполюсник и соединен с объединенными базами первого (11) выходного транзистора и первого (15) вспомогательного транзистора.
2. Биполярно-полевой дифференциальный операционный усилитель по п. 1, отличающийся тем, что входной дифференциальный каскад (1) содержит второй (30) токовый вход для установления статического режима по току транзисторов входного дифференциального каскада (1), подключенный к стоку второго (37) полевого транзистора с управляющим р-n переходом, затвор которого связан с первой (6) шиной источника питания, а исток подключен к первой (6) шине источника питания через четвертый (38) вспомогательный токостабилизирующий двухполюсник, причем исток второго (37) полевого транзистора с управляющим р-n переходом соединен с объединенными коллекторами третьего (39) и четвертого (40) дополнительных транзисторов, эмиттеры которых связаны со второй (9) шиной источника питания, база третьего (39) дополнительного транзистора соединена с базами первого (15) вспомогательного и первого (11) выходного транзисторов, а база четвертого (40) дополнительного транзистора соединена с базами второго (13) выходного и второго (16) вспомогательного транзисторов.
RU2015153927A 2015-12-15 2015-12-15 Биполярно-полевой дифференциальный операционный усилитель RU2615068C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015153927A RU2615068C1 (ru) 2015-12-15 2015-12-15 Биполярно-полевой дифференциальный операционный усилитель

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015153927A RU2615068C1 (ru) 2015-12-15 2015-12-15 Биполярно-полевой дифференциальный операционный усилитель

Publications (1)

Publication Number Publication Date
RU2615068C1 true RU2615068C1 (ru) 2017-04-03

Family

ID=58505684

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015153927A RU2615068C1 (ru) 2015-12-15 2015-12-15 Биполярно-полевой дифференциальный операционный усилитель

Country Status (1)

Country Link
RU (1) RU2615068C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2659476C1 (ru) * 2017-09-12 2018-07-02 федеральное государственное бюджетное образовательное учреждение высшего образования "Донской государственный технический университет" (ДГТУ) Быстродействующий дифференциальный операционный усилитель
RU2668981C1 (ru) * 2017-11-09 2018-10-05 федеральное государственное бюджетное образовательное учреждение высшего образования "Донской государственный технический университет" (ДГТУ) Выходной каскад bijfet операционного усилителя

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3959733A (en) * 1975-02-12 1976-05-25 National Semiconductor Corporation Differential amplifier
RU2292633C1 (ru) * 2005-06-08 2007-01-27 ГОУ ВПО "Южно-Российский государственный университет экономики и сервиса" (ЮРГУЭС) Дифференциальный усилитель
RU2331970C1 (ru) * 2007-05-07 2008-08-20 ГОУ ВПО "Южно-Российский государственный университет экономики и сервиса" (ЮРГУЭС) Дифференциальный усилитель класса ав
RU2416155C1 (ru) * 2009-09-03 2011-04-10 Государственное образовательное учреждение высшего профессионального образования "Южно-Российский государственный университет экономики и сервиса" (ГОУ ВПО "ЮРГУЭС") Дифференциальный операционный усилитель

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3959733A (en) * 1975-02-12 1976-05-25 National Semiconductor Corporation Differential amplifier
RU2292633C1 (ru) * 2005-06-08 2007-01-27 ГОУ ВПО "Южно-Российский государственный университет экономики и сервиса" (ЮРГУЭС) Дифференциальный усилитель
RU2331970C1 (ru) * 2007-05-07 2008-08-20 ГОУ ВПО "Южно-Российский государственный университет экономики и сервиса" (ЮРГУЭС) Дифференциальный усилитель класса ав
RU2416155C1 (ru) * 2009-09-03 2011-04-10 Государственное образовательное учреждение высшего профессионального образования "Южно-Российский государственный университет экономики и сервиса" (ГОУ ВПО "ЮРГУЭС") Дифференциальный операционный усилитель

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2659476C1 (ru) * 2017-09-12 2018-07-02 федеральное государственное бюджетное образовательное учреждение высшего образования "Донской государственный технический университет" (ДГТУ) Быстродействующий дифференциальный операционный усилитель
RU2668981C1 (ru) * 2017-11-09 2018-10-05 федеральное государственное бюджетное образовательное учреждение высшего образования "Донской государственный технический университет" (ДГТУ) Выходной каскад bijfet операционного усилителя

Similar Documents

Publication Publication Date Title
RU2523124C1 (ru) Мультидифференциальный операционный усилитель
RU2615068C1 (ru) Биполярно-полевой дифференциальный операционный усилитель
RU2684489C1 (ru) Буферный усилитель на комплементарных полевых транзисторах с управляющим p-n переходом для работы при низких температурах
RU2595927C1 (ru) Биполярно-полевой операционный усилитель
RU2615070C1 (ru) Прецизионный двухкаскадный дифференциальный операционный усилитель
RU2568384C1 (ru) Прецизионный операционный усилитель на основе радиационно стойкого биполярно-полевого технологического процесса
RU2615066C1 (ru) Операционный усилитель
RU2624585C1 (ru) Низкотемпературный радиационно-стойкий мультидифференциальный операционный усилитель
RU2583760C1 (ru) Биполярно-полевой операционный усилитель
RU2642337C1 (ru) Биполярно-полевой операционный усилитель
RU2621289C1 (ru) Двухкаскадный дифференциальный операционный усилитель с повышенным коэффициентом усиления
RU2589323C1 (ru) Биполярно-полевой операционный усилитель
RU2595926C1 (ru) Биполярно-полевой операционный усилитель
RU2452077C1 (ru) Операционный усилитель с парафазным выходом
RU2687161C1 (ru) Буферный усилитель для работы при низких температурах
RU2571579C1 (ru) Прецизионный операционный усилитель для радиационно-стойкого биполярно-полевого техпроцесса
RU2613842C1 (ru) Дифференциальный операционный усилитель с малым напряжением питания
RU2616573C1 (ru) Дифференциальный операционный усилитель
RU2439780C1 (ru) Каскодный дифференциальный усилитель
RU2441316C1 (ru) Дифференциальный усилитель с малым напряжением питания
RU2419187C1 (ru) Каскодный дифференциальный усилитель с повышенной стабильностью нулевого уровня
RU2568318C1 (ru) Мультидифференциальный операционный усилитель с малым напряжением смещения нуля
RU2432666C1 (ru) Дифференциальный операционный усилитель с малым напряжением питания
RU2627094C1 (ru) Низкотемпературный радиационно-стойкий мультидифференциальный операционный усилитель
RU2615071C1 (ru) Биполярно-полевой мультидифференциальный операционный усилитель

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20171216