RU2612575C2 - Обработка изображений для спектральной компьютерной томографии - Google Patents

Обработка изображений для спектральной компьютерной томографии Download PDF

Info

Publication number
RU2612575C2
RU2612575C2 RU2014105565A RU2014105565A RU2612575C2 RU 2612575 C2 RU2612575 C2 RU 2612575C2 RU 2014105565 A RU2014105565 A RU 2014105565A RU 2014105565 A RU2014105565 A RU 2014105565A RU 2612575 C2 RU2612575 C2 RU 2612575C2
Authority
RU
Russia
Prior art keywords
noise
voxel
spectral
image
model
Prior art date
Application number
RU2014105565A
Other languages
English (en)
Other versions
RU2014105565A (ru
Inventor
Лиран ГОШЕН
Original Assignee
Конинклейке Филипс Н.В.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Конинклейке Филипс Н.В. filed Critical Конинклейке Филипс Н.В.
Publication of RU2014105565A publication Critical patent/RU2014105565A/ru
Application granted granted Critical
Publication of RU2612575C2 publication Critical patent/RU2612575C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/70Denoising; Smoothing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/481Diagnostic techniques involving the use of contrast agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/482Diagnostic techniques involving multiple energy imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5205Devices using data or image processing specially adapted for radiation diagnosis involving processing of raw data to produce diagnostic data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5258Devices using data or image processing specially adapted for radiation diagnosis involving detection or reduction of artifacts or noise
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2200/00Indexing scheme for image data processing or generation, in general
    • G06T2200/04Indexing scheme for image data processing or generation, in general involving 3D image data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10081Computed x-ray tomography [CT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30008Bone

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Pulmonology (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Image Generation (AREA)
  • Image Processing (AREA)

Abstract

Изобретение относится к области спектральной компьютерной томографии. Технический результат заключается в снижении дозы облучения для заданного качества изображения. Технический результат достигается за счет того, что оценивают локальное шумовое значение для одного или более вокселов спектрального изображения из набора спектральных изображений, соответствующих различным энергетическим диапазонам, создавая шумовую модель для спектрального изображения, и удаляют шум воксела, основываясь на выбранной модели локальной структуры, посредством замены значения воксела на значение, оцененное, основываясь на выбранной модели локальной структуры, причем для множества вокселов множества спектральных изображений из набора спектральных изображений удаляется шум за счет того, что создается набор спектральных изображений с удаленным шумом. 2 н. и 8 з.п. ф-лы, 15 ил.

Description

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
Нижеследующее, в целом, относится к компьютерной томографии (CT) и, более конкретно, к спектральной CT.
УРОВЕНЬ ТЕХНИКИ ИЗОБРЕТЕНИЯ
Сканер CT обычно содержит рентгеновскую трубку, излучающую ионизирующее излучение, которое проходит через область исследования и участок объекта или субъекта в ней и освещает детекторную матрицу, расположенную после области исследования напротив рентгеновской трубки. Детектор создает проекционные данные, показывающие обнаруженное излучение. Данные могут быть реконструированы для формирования объемных данных изображения, показывающих участок объекта или субъекта. При спектральной CT проекционные данные содержат сигналы, получаемые одновременно и которые соответствуют различным диапазонам энергии фотонов. Существуют несколько подходов к выполнению спектральной CT. Например, сканер CT может содержать два или более источников, по меньшей мере один источник, выполненный с возможностью переключения по меньшей мере между двумя различными пиковыми напряжениями (kVp), и/или детекторную матрицу с детекторами с разрешающей способностью по энергии.
Для спектральной CT два полученных сигнала могут использоваться для определения вкладов, даваемых фототоком и эффектом Комптона для каждого сигнала, и идентификации неизвестного вещества по значению его вкладов, даваемых фототоком и эффектом Комптона. Обычно, поскольку любые две линейно независимые суммы двух основных функций перекрывают все пространство коэффициента затухания, любое вещество может быть представлено линейной комбинацией двух базисных веществ. Это работает особенно хорошо для таких веществ, как йод, у которых энергия k-края близка к среднему значению диагностического энергетического диапазона. Кроме того, дополнительная спектральная информация улучшает количественную информацию, которая может быть определена в отношении сканированного объекта и составляющих его веществ. Базисное вещество также позволяет формировать монохроматическое изображение, изображение с удаленным веществом, изображение с эффективным атомным номером и изображение электронной плотности.
Также, сканеры СТ излучают ионизирующее излучение. К сожалению, ионизирующее излучение может повреждать или убивать клетки и/или увеличить риск рака. В литературе указывается, что уровни дозы от CT обычно превышают уровни дозы от стандартной радиографии и рентгеноскопии. Однако, доза облучения для конкретной процедуры получения изображения не может быть просто понижена, поскольку более низкая доза приводит к повышенному шуму изображения и, таким образом, более расплывчатому или нечеткому изображению. Кроме того, спектральные СТ-изображения уже по своей сути являются более зашумленными по сравнению со стандартными неспектральными изображениями. Например, при исследовании с двумя энергиями каждое изображение основано примерно на половинной дозе излучения, соответствующей неспектральному традиционному сканированию. Дополнительно, оценка разложения материала основывается на проекциях между двумя векторами с малым углом между ними. Комбинация этих двух факторов, то есть, большой шум и малый угол, значительно усиливают шум разложения оцениваемого вещества.
Исследования с контрастно улучшенной CT захватывают транзит введенного радиоконтрастного вещества через сосудистую ткань. Обычно, для контрастно улучшенной CT болюс радиоконтрастного материала вводится пациенту внутривенно и интересующая область пациента, которая содержит интересующую сосудистую ткань, сканируется. Радиоконтрастное вещество заставляет рентгеновскую плотность в интересующей сосудистой ткани временно увеличиваться по мере того, как радиоконтрастное вещество протекает через сосудистую ткань, приводя в результате к улучшенным данным. Однако, после введения контрастного вещества некоторые пациенты испытывают идиосинкратические эффекты, а некоторые пациенты могут испытывать тяжелые и потенциально опасные для жизни аллергические реакции. Контрастное вещество может также вызывать повреждение почек, а у некоторых пациентов развивалось острое ухудшение их почечной функции. В целом, больший объем контрастного вещества приводит в результате к изображению c более высоким отношением контраста к шуму (CNR), в то время как более низкий объем ведет к снижению CNR изображения. К сожалению, увеличение объема контрастного вещества приводит к увеличению связанных с ним рисков.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Аспекты настоящей заявки обращены к упомянутым выше вопросам и прочему.
В соответствии с одним из аспектов, способ содержит этапы, на которых оценивают локальное шумовое значение для одного или более вокселов спектрального изображения из набора спектральных изображений, соответствующих различным энергетическим диапазонам, создают шумовую модель изображения, оценивают модели локальных структур для воксела спектрального изображения, основываясь на соответствующей шумовой модели, подгоняют набор моделей локальных структур к трехмерному окружению вокселов в изображении вокруг воксела в изображении, выбирают одну из моделей локальных структур для воксела, основываясь на подгонке и заданных критериях выбора модели, и удаляют шум воксела, основываясь на выбранной модели локальной структуры, заменяя значение воксела значением, оцененным на основе выбранной модели локальной структуры, причем из множества вокселов множества спектральных изображений из набора спектральных изображений удаляется шум, создавая набор спектральных изображений с удаленным шумом.
В другом аспекте вычислительное устройство содержит блок оценки шума, который оценивает шумовую структуру спектрального изображения набора спектральных изображений, соответствующих различным энергетическим диапазонам, причем шумовая структура используется для оценки моделей локальных структур для воксела спектрального изображения, блок подгонки модели, который подгоняет набор моделей локальных структур к трехмерному окружению вокселов в изображении вокруг воксела в изображении, и селектор модели, который выбирает одну из моделей локальных структур для воксела, основываясь на подгонке и заданных критериях выбора модели.
В другом аспекте способ содержит этапы, на которых формируют карту вероятности кальция, основываясь на вероятностном разложении спектральных изображений с удаленным шумом, улучшают карту вероятности кальция, выполняя общую вариационную функциональную минимизацию карты вероятности кальция, и формируют двоичную маску, представляющую сегментацию костей и кальция, основываясь на улучшенной карте вероятности кальция и заданном пороге.
В другом аспекте способ содержит этапы, на которых формируют одну или более карт распределения йода, основываясь на векторном разложении спектральных изображений с удаленным шумом, и оценивают карту йода, основываясь на одной или более картах распределения йода и двоичной маске, представляющей сегментацию кальция и костей.
В другом аспекте способ содержит этапы, на которых формируют виртуальное контрастно улучшенное промежуточное изображение для каждого энергетического изображения набора спектральных изображений, соответствующих различным энергетическим диапазонам, основываясь на спектральных изображениях с удаленным шумом, разложенных спектральных изображениях с удаленным шумом, карте йода и коэффициенте улучшения контраста, и формируют конечные виртуальные контрастно улучшенные изображения, вводя имитируемый эффект парциального объема с промежуточными виртуальными контрастно улучшенными изображениями.
В другом аспекте способ содержит этапы, на которых формируют виртуальное неконтрастное промежуточное изображение для каждого энергетического изображения набора спектральных изображений, соответствующих различным энергетическим диапазонам, основываясь на спектральных изображениях с удаленным шумом, разложенных спектральных изображениях с удаленным шумом и карте йода, и формируют окончательные виртуальные неконтрастные изображения, вводя имитируемый эффект парциального объема с промежуточными виртуальными контрастно улучшенными изображениями.
Другие дополнительные варианты настоящего изобретения станут понятны специалистам в данной области техники после прочтения и понимания последующего подробного описания.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Изобретение может принимать форму различных компонент и компоновок компонент и различных этапов и структур этапов. Чертежи предназначаются только для целей иллюстрации предпочтительных вариантов осуществления и не должны рассматриваться как ограничение изобретения.
Фиг.1 схематично показывает систему формирования изображений, соединенную с блоком подавления шума и процессором изображений.
Фиг.2 схематично показывает пример блока удаления шума.
Фиг.3 схематично показывает пример блока удаления спектрального шума блока удаления шума.
Фиг.4 схематично показывает пример процессора изображений.
Фиг.5 показывает пример графика энергетической карты/ энергетического разброса для исследования с двумя энергиями и нескольких векторов отклика вещества.
Фиг.6 показывает два вектора отклика вещества на энергетической карте и более короткие расстояния от точки измерения до двух векторов.
Фиг.7 схематично показывает пример блока сегментации процессора изображений.
Фиг.8 схематично показывает пример генератора карты вещества процессора изображений.
Фиг.9 схематично показывает пример генератора виртуального контрастно улучшенного изображения процессора изображений.
Фиг.10 схематично показывает пример генератора виртуального неконтрастного изображения процессора изображений.
Фиг.11 показывает пример способа для удаления шума спектральных изображений.
Фиг.12 показывает пример способа определения двоичной маски сегментации костей и кальция для спектральных изображений с удаленным шумом.
Фиг.13 показывает пример способа определения карты йода для спектральных изображений с удаленным шумом.
Фиг.14 показывает пример способа для определения виртуальных неконтрастных изображений, основываясь на спектральных изображениях с удаленным шумом.
Фиг.15 показывает пример способа определения виртуальных контрастно улучшенных изображений, основываясь на спектральных изображениях с удаленным шумом.
ПОДРОБНОЕ ОПИСАНИЕ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ
На Фиг.1 представлена система 100 формирования изображений, такая как сканер для компьютерной томографии (CT), выполненный с возможностью формирования изображений спектральной CT. Система 100 формирования изображений содержит неподвижный гентри 102 и вращающийся гентри 104, который с возможностью вращения поддерживается неподвижным гентри 102. Вращающийся гентри 104 вращается вокруг области 106 исследования относительно продольной оси или оси Z.
Система 100 содержит по меньшей мере один источник 108 излучения, такой как рентгеновская трубка, которая поддерживается вращающимся гентри 104 и которая вращается вместе с вращающимся гентри 104 вокруг области 106 исследования. Существует по меньшей мере один источник 108 излучения, излучение которого проходит через область 106 исследования. Когда существуют по меньшей мере два источника 108 излучения, каждый источник может быть выполнен с возможностью излучения, имеющего в среднем различный средний спектр излучения. Дополнительно или альтернативно, один или более из по меньшей мере двух источников 108 может быть выполнен с возможностью управляемого переключения по меньшей мере между двумя различными напряжениями (kVp) излучения во время сканирования. Многочисленные источники и/или переключение между пиковыми напряжениями могут использоваться для получения результатов спектральной CT.
Чувствительная к излучению детекторная матрица 110 располагается напротив по меньшей мере одного источника 108 излучения через область 106 исследования. Чувствительная к излучению детекторная матрица 110 содержит матрицу пикселей детектора, которые обнаруживают излучение, проходящее через область 106 исследования, и формируют показывающие его проекционные данные. Чувствительная к излучению детекторная матрица 110 может содержать стандартные детекторы и/или детекторы с разрешающей способностью по энергии, такие как детекторы с прямым преобразованием и/или мультиспектральный детектор на основе сцинтиллятора, который содержит по меньшей мере два сцинтиллятора с различной чувствительностью к рентгеновской энергии относительно оптически прикрепленных по меньшей мере двух фотодатчиков с соответствующей оптической чувствительностью (например, двухуровневый детектор или детектор слоя). Детекторы с разрешающей способностью по энергии могут использоваться для получения спектральных CT.
Реконструктор 112 реконструирует проекционные данные и формирует объемные данные изображения, указывающие область 106 исследования и участок объекта или субъекта в ней. Там, где спектральные данные получены (например, когда проекционные данные содержат по меньшей мере два результата измерения, полученных одновременно и соответствующих различным энергетическим диапазонам, с помощью многочисленных источников, переключения пикового напряжения и/или детекторов с разрешающей способностью по энергии), реконструктор 112 может реконструировать индивидуальные спектральные изображения для каждого из различных энергетических диапазонов и/или комбинационных изображений, основываясь на отдельных спектральных изображениях, соответствующих двум или более различным энергетическим диапазонам. Реконструктор 112 может также использовать традиционные неспектральные алгоритмы реконструкции.
Опора 114 для субъекта, такая как кушетка, поддерживает субъекта (например, человека или животное) или объект в области 106 исследования и может использоваться для расположения субъекта относительно оси x, y и/или z области 106 исследования до, во время и/или после сканирования. Универсальная вычислительная система служит в качестве консоли 116 оператора и содержит устройство вывода данных, такое как дисплей, и устройство ввода данных, такое как клавиатура, мышь и/или что-либо подобное. Программное обеспечение, постоянно присутствующее на консоли 116, позволяет оператору управлять работой системы 100, например, разрешая оператору выбирать протокол обработки спектральных изображений, инициировать сканирование и т.д.
Вычислительное устройство 118 содержит один или более процессоров, которые выполняют одну или более исполняемых компьютером команд, зашитых или закодированных на считываемом компьютером носителе, таком как блок физической памяти. Дополнительно или альтернативно, одна или более исполняемых компьютером команд могут переноситься с помощью сигнала или несущей и исполняться посредством одного или более процессоров. В представленном на чертеже варианте осуществления исполняемые компьютером команды содержат команды для реализации блока 120 удаления шума и/или процессора 122 изображений. В другом варианте осуществления блока 120 удаления шума и/или процессор 122 изображений реализуются через консоль 116 и/или другое устройство.
Блок 120 удаления шума выполнен с возможностью удаления спектрального шума из реконструированных спектральных изображений, удаляя или уменьшая их спектральный шум, и создания реконструированных спектральных изображений с удаленным шумом. Как описано ниже более подробно, в одном случае блок 120 удаления шума удаляет или уменьшает спектральный шум, сохраняя базовую спектральную информацию и структуру объекта. В одном из случаев, это позволяет снижать дозу облучения для заданного качества изображения. Альтернативно, для данной дозы качество изображения может быть улучшено. Альтернативно, может быть достигнута комбинация снижения дозы и повышения качества изображения. Дополнительно или альтернативно, блок 120 удаления шума может уменьшать шум в оцененных монохроматических изображениях, которые могут быть имитированы, чтобы оценить любое килоэлектронвольт-изображение, используя соответствующую комбинацию компонент фототока и эффекта Комптона.
Процессор 122 изображений обрабатывает реконструированные спектральные изображения с удаленным шумом и/или монохроматические изображения. Как описано ниже более подробно, это содержит выполнение одного или более из сегментации костей и/или кальция, создания карты йода для количественного распределения йода в исследовании, формирования виртуального контрастно улучшенного (VCE) изображения и/или формирования виртуального неконтрастного (VNC) изображения. Такая сегментация костей и кальцификации может интенсивно использовать дополнительную количественную спектральную информацию, использоваться в пределах алгоритма коррекции увеличения жесткости излучения, использоваться с алгоритмом реконструкции монохроматического изображения и т.д. Карта йода обеспечивает улучшенное количественное распределение йода в исследовании.
Виртуальное улучшение контраста позволяет уменьшить количество контрастного вещества, вводимого пациенту для заданного качества изображения. Альтернативно, это позволяет сохранить исследование, в котором синхронизация сканирования от момента введения отсутствовала и результирующее изображение имеет субоптимальное качество изображения, которое может привести в результате к повторному сканированию и дополнительному введению контрастного вещества. Альтернативно, это позволяет клиническому врачу вручную настраивать параметры обработки изображений через мышь, клавиатуру и т.п., чтобы исследовать изображения в режиме реального времени и получать требуемый результат визуализации. Изображение VNC может избавить от необходимости неконтрастного сканирования, что может уменьшать радиоактивное облучение, сэкономить время и увеличить срок службы трубки.
Вычислительное устройство 118 также содержит интерфейс 124 пользователя, позволяющий пользователю взаимодействовать с вычислительным устройством 118. В одном случае он содержит разрешение клиническому врачу выбрать, какой из упомянутых выше признаков обработки изображений (то есть сегментация костей и кальция, формирование карты йода, формирование изображения VNC и/или формирование изображения VCE) использовать для данного исследования. Интерфейс 124 пользователя также позволяет клиническому врачу устанавливать и/или изменять различные параметры обработки изображений. Например, клинический врач может использовать интерфейс 124 пользователя для изменения объема удаления шума при исследовании. Это может быть сделано динамически в режиме реального времени с результатами, представляемыми в реальном времени.
То есть клинический врач, просматривая результаты, может изменить параметр, который в ответ побуждает вычислительное устройство обработать реконструированные спектральные изображения с удаленным шумом, основываясь на измененном параметре, и визуально представить результаты. Другие параметры, которые могут конфигурироваться пользователем, содержат, без ограничения, коэффициент повышения контраста для обработки изображений VCE, параметры, влияющие на агрессивность имитированного эффекта парциального объема для формирования изображения VCE и VNC, пороги для выбора делокализованных моделей структуры для удаления шума, масштабные коэффициенты для сегментации костей и кальция, весовые коэффициенты для подгонки моделей локальных структур к вокселам и т.д.
Хранилище 126 данных может использоваться для хранения реконструированных изображений, реконструированных изображений с удаленным шумом и/или обработанных реконструированных изображений и/или реконструированных изображений с удаленным шумом и к нему может получать доступ одна или более консолей 116, процессор 122 изображений, блок 120 удаления шума и/или другое устройство. Хранилище 126 данных может быть локальным для системы 100, удаленным от системы 100, распределенным и т.д. Хранилище 126 данных может содержать базу данных, сервер, архивирование изображений и систему (PACS) связи, информационную систему рентгенологии (RI), больничную информационную систему (HIS), электронный медицинский отчет (EMR) и/или другое электронный блок хранения или блок памяти.
На Фиг.2 схематично показан пример блока 120 удаления шума. Обычно в этом варианте осуществления блок 120 удаления шума выполнен с возможностью определения шумовой структуры спектрального изображения в наборе спектральных изображений, соответствующих различным энергетическим диапазонам, и уменьшения спектрального шума спектральных изображений, основываясь на структуре шума. Показанный блок 120 удаления шума принимает в качестве входных данных набор спектральных изображений, которые могут содержать набор реконструированных спектральных изображений от сканера 100, хранилища 126 и/или другого места и/или набора предполагаемых монохроматических изображений.
Блок 202 оценки шума оценивает локальное значение шума для каждого воксела спектрального изображения и формирует шумовую модель или структуру для спектрального изображения, основываясь на локальных шумовых значениях, и шумовая модель используется, чтобы оценить структуры в спектральном изображении. Для оценки шума блок 202 оценки шума может использовать известные и/или другие подходы. Соответствующие подходы содержат, в частности, оценку Монте-Карло, аналитический подход, который обсуждался в работе авторов Wunderlich и Noo, Phys. Med. Biol. 53 (2008), 2472-2493, подход на основе изображения, такой как описан в заявке на патент PCT с номером PCT/IB2009/054913, поданной 29 октября 2010 г. под названием "ENHANCED IMAGE DATA/DOSE REDUCTION", которые посредством ссылки включены сюда полностью, и/или другой подход.
Блок 204 удаления спектрального шума удаляет спектральный шум изображения из спектральных изображений, основываясь на предполагаемой шумовой модели, формируя спектральные изображения с удаленным шумом, в то же время сохраняя базовую спектральную информацию и/или анатомическую структуру в различных энергетических изображениях, улучшая, таким образом, отношение "сигнал/шум" спектральных изображений. Пример этого описывается в сочетании с Фиг.3, где блок 204 удаления спектрального шума содержит блок 302 подгонки модели, которая соответствует локальным моделям структуры, определяемым, основываясь на оцененной шумовой структуре, под трехмерную область или окружение вокселов вокруг воксела для одного или более вокселов в спектральном изображении.
Устройство 204 удаления шума также содержит селектор 304 модели, который выбирает модель локальной структуры для каждого воксела в изображении, основываясь на заданных критериях выбора, хранящихся в памяти 306 критериев. Когда модель выбрана для каждого воксела, она используется устройством 204 удаления шума, чтобы удалить шум в спектральных изображениях, где новое расчетное значение воксела является значением, определяемым выбранной моделью, и заменяет первоначальное значение воксела. Результирующие спектральные изображения содержат спектральные изображения с удаленным шумом или спектральное изображение с улучшенным качеством изображения для различных энергетических диапазонов.
Со ссылкой на Фиг.1, 2 и 3 приводится пример подхода удаления шума для устройства 120 удаления шума. Для этого примера,
Figure 00000001
представляет воксел в объеме
Figure 00000002
, где объем получен посредством энергии
Figure 00000003
. Уравнение 1 содержит подход с наименьшими квадратами, который может использоваться для подгонки моделей локальных структур.
Уравнение 1:
Figure 00000004
где
Figure 00000005
является значением модели для (i+i’ j+j’, k+k’)-го воксела в объеме и wi’,j’, k’ являются весовыми коэффициентами. Весовые коэффициенты могут считать ядром локализации, которая является умножением двух весовых функций, как показано в уравнении 2.
Уравнение 2:
Figure 00000006
,
где
Figure 00000007
Figure 00000008
представляет веса для соседей согласно их пространственному расстоянию до воксела, и
Figure 00000009
представляет веса соседям в соответствии с их интенсивностью-расстоянием до воксела в пространстве блока Хоунсфилда (HU).
Функция
Figure 00000007
может быть определена на основе уравнения 3.
Уравнение 3:
Figure 00000010
где dx - размер пикселя в миллиметрах (мм), dz - ширина среза в мм, и σspatial - параметр алгоритма, который управляет агрессивностью весов.
Функция
Figure 00000011
может быть определена на основе уравнения 4.
Уравнение 4:
Figure 00000012
где m - параметр алгоритма, который управляет агрессивностью весов и
Figure 00000013
- оценка локального уровня шума воксела vi,j,k, который оценивается блоком 202 оценки шума, как описано выше.
Соответствующие модели содержат, в частности, постоянную модель (то есть Mi’,j’,k’(c)=c), которая моделирует однородные области, и полиномную модель второго порядка, которая моделирует неоднородные области (то есть, области, содержащие кривизну). Другие модели могут использоваться дополнительно или альтернативно. Селектор 304 модели может использовать различные известные и/или другие классификаторы, чтобы выбрать соответствующую модель. В этом примере представленный селектор 304 модели использует неравенство 1.
Неравенство 1:
Figure 00000014
где
Figure 00000015
- бесшумный оцененный воксел первой модели, и порог соответствует критериям, хранящимся в памяти 306 критериев. В этом примере, если неравенство 1 удовлетворяется, удаление шума выполняется, используя второй параметр модели.
Когда модель выбрана, блок 204 удаления спектрального шума применяет модель к спектральным изображениям с удаленным шумом, формируя, таким образом, спектральные изображения с удаленным шумом. В одном случае, тот же самый тип модели шума и те же самые веса подгонки используются для всех различных энергетических изображений. Это позволяет удалить шум, в то же время сохраняя соответствующие результаты в спектральных изображениях для различных энергетических диапазонов. В другом случае, различные типы модели шума и/или веса подгонки используются для одного или более различных энергетических изображений.
На Фиг.4 схематично показан пример процессора изображений 120. В этом варианте осуществления видеопроцессор 120 содержит анализатор 402 вещества, блок 404 памяти для алгоритмов разложения, блок 406 сегментации, генератор 408 карты, генератор 410 виртуального контрастно улучшенного (VCE) изображения и генератор 412 виртуального неконтрастного (VNC) изображения.
Анализатор 402 вещества раскладывает на части спектральные изображения с шумом удаленным посредством блока 118 удаления шума и/или другие спектральные изображения с удаленным шумом согласно различным базам веществ, поскольку каждое вещество имеет уникальную спектральную характеристику затухания, то есть, каждое вещество обладает уникальным вектором реакции вещества на энергетической карте, основанной на изображении. Сканер, использующий две энергии способен, в принципе, делать различие между тканями или веществом переменной плотности с большей разрешающей способностью, чем традиционный CT-сканер. Это показано в сочетании с Фиг.5, где демонстрируется пример графика энергетической карты/энергетического разброса в исследовании с двумя энергиями и для нескольких векторов реакции веществ.
Анализатор 402 вещества раскладывает реконструированные спектральные изображения с удаленным шумом, анализируемые на основе различных известных и/или других алгоритмов разложения, таких как один или более алгоритмов разложения, хранящихся в блоке 404 памяти для алгоритмов разложения. Примеры не ограничивающих алгоритмов разложения дополнительно обсуждаются здесь далее. Один из приемлемых алгоритмов разложения основан на подходе с векторным разложением.
Например, анализатор 402 веществ может оценить карты распределения веществ, решая линейные уравнения для уравнения 5.
Уравнение 5:
Figure 00000016
где
Figure 00000017
- вектор вещества, связанный с веществом m,
Figure 00000018
- объем, связанный с энергией e, полученной после удаления шума посредством блока 118 удаления шума, n - количество энергетических уровней, и am - оценочная карта распределения вещества, связанная с веществом m. Другой подходящий алгоритм разложения основан на подходе с вероятностным разложением. Например, анализатор 402 вещества может оценить карты распределения вещества, основываясь на уравнении 6.
Уравнение 6:
Figure 00000019
где f(pi|Mm) является функцией плотности вероятности точки pi, которая должна содержать вещество Mm, и di,m является самым коротким расстоянием на энергетической карте между точкой pi и вектором вещества, связанным с веществом Mm. Это можно видеть на Фиг.6, где показаны два вектора 602 и 604 реакции вещества на энергетической карте 606 и более короткие расстояния 608 и 610 от точки измерений pi 612 до этих двух векторов 602 и 604.
Оценка карты вероятности вещества может быть определена на основе уравнения 7.
Уравнение 7:
Figure 00000020
где Pm - карта вероятности вещества Mm. Обычно этот подход использует распределение расстояний на энергетической карте вокселов в векторах реакции вещества как вероятностную модель смеси из нескольких веществ. Результат этого разложения содержит вероятностные карты веществ, которые представляют вероятность каждого воксела, содержащего конкретное вещество.
Возвращаясь к Фиг.4 и обращаясь к Фиг.7, блок 406 сегментации выполнен с возможностью по меньшей мере сегментации костей и кальцификаций, основываясь на разложенных спектральных изображениях с удаленным шумом.
Как показано на Фиг.7, блок 406 сегментации принимает в качестве входных данных карту Pm вероятности кальция, которая оценивается анализатором 402 веществ, основываясь на кальции, йоде и мягкой ткани и/или других веществах, используя вероятностный алгоритм разложения веществ (Уравнения 6 и 7) из блока 404 памяти.
Усиливающий блок 704 усиливает вероятностное разложение вещества, используя полную вариационную функциональную минимизацию или другой подход. В этом примере усиливающий блок 702 выполняет полную вариационную функциональную минимизацию, основываясь на уравнении 8.
Уравнение 8:
Figure 00000021
где λ - положительный параметр, управляющий масштабом решения для сегментации. Параметр λ может быть значением по умолчанию или указываемым пользователем значением. Для решения уравнения 8 могут использоваться различные подходы. Подход, не создающий ограничений, можно найти в работе авторов Tony F. Chan, Jianhong Shen, «Image Processing and Analysis», SIAM Books 2005.
Блок 406 сегментации дополнительно содержит блок 704 оценки маски, который оценивает двоичную карту изображения, представляющую сегментацию костей и кальцификации. В этом примере блок 706 оценки маски формирует карту В, основываясь на Уравнении 9.
Уравнение 9:
β = û>Порог
Как замечено выше, результирующая сегментация костей и кальцификации может в высокой степени использовать дополнительную количественную спектральную информацию, использоваться в алгоритме коррекции увеличения жесткости излучения, использоваться с алгоритмом реконструкции монохроматического изображения, и т.д.
Возвращаясь к Фиг.4 и обращаясь к Фиг.8, показанный генератор 408 карт выполнен с возможностью формирования карты йода. Обычно генератор 408 карт выполняется с возможностью оценки карты йода, основываясь на разложенных спектральных изображениях с удаленным шумом и на маске кальция и костей. Для этого примера карта йода содержит кальций, жир, мягкую ткань и йод. В другом варианте осуществления может использоваться больше, меньше веществ и/или другие вещества.
Как показано на Фиг.8, генератор 408 карт принимает в качестве входных данных карты распределения йода, сформированные на основе векторного разложения (уравнение 5) анализатора 402 вещества и карты костей и кальцификации от блока 406 сегментации. В этом примере с двумя энергиями генератор 408 карт принимает первую карту распределения йода,
Figure 00000022
, основанную на йоде и мягкой ткани, и вторую карту распределения йода
Figure 00000023
, основанную на йоде и жире. В случаях с тремя или больше различными энергетическими диапазонами может быть сформирована единая карта йода для йода, мягкой ткани и жира и/или может быть сформировано больше карт для йода.
Блок 802 оценки карты йода оценивает карту йода, IM, основываясь на уравнении 10.
Уравнение 10:
Figure 00000024
где q - постоянный масштабный коэффициент, зависящий от требуемого количественного блока. Как замечено выше, окончательная карта IM йода обеспечивает улучшенное количественное распределение йода в исследовании.
Возвращаясь к Фиг.4 и обращаясь к Фиг.9, показанный генератор 410 VCE-изображения выполнен с возможностью компенсации уменьшения контрастного вещества посредством виртуального улучшения спектральных изображений. Генератор 410 VCE-изображения принимает в качестве входных спектральных изображений с удаленным шумом разложенные спектральные изображения с удаленным шумом и карту йода, сформированную генератором 408 карт.
Промежуточное VCE-изображение 902 формирует для каждой энергии, e, предварительное VCE-изображение, основываясь на уравнении 11.
Уравнение 11:
Figure 00000025
где γ - коэффициент улучшения. В одном случае, γ = 1/х - 1, чтобы компенсировать снижение объема контрастного вещества на коэффициент x. В других случаях, γ может иметь другое значение, такое как значение по умолчанию или определяемое пользователем значение. Блок 904 окончательной оценки VCE-изображения оценивает окончательное изображение, основываясь на промежуточном изображении, и имитированный эффект парциального объема, основываясь на уравнении 12.
Уравнение 12:
Figure 00000026
где LPF - фильтр низких частот для изображения и β и δ - параметры, управляющие агрессивностью имитированного эффекта парциального объема.
Как замечено выше, фактическое улучшение контраста позволяет уменьшить количество контрастного вещества, вводимого пациенту для заданного качества изображения. Альтернативно, оно позволяет сохранить исследование, в котором время сканирования после введения пропускается, и результирующее изображение имеет субоптимальное качество изображения, которое может привести в результате к повторному сканированию и дополнительному использованию контрастного вещества. Альтернативно, это позволяет клиническому врачу вручную настраивать параметры обработки изображений через мышь, клавиатуру и т.п., чтобы исследовать изображения в режиме реального времени и получить требуемый результат визуализации.
Возвращаясь к Фиг.4 и со ссылкой на Фиг.10, генератор 412 VNC-изображения выполнен с возможностью оценки VNC-изображений. Генератор 412 VNC-изображений принимает в качестве входных данных разложенные данные, сформированные анализатором 402 веществ, и карту йода, IM, сформированную генератором 408 карт.
Промежуточный генератор 1002 VNC-изображения формирует для каждой энергии, e, предварительное VNC-изображение, как следует из уравнения 13.
Уравнение 13:
Figure 00000027
Блок 1004 оценки конечного VNC-изображения оценивает конечное изображение, основываясь на промежуточном изображении, и имитированный эффект парциального объема, основываясь на уравнении 14.
Уравнение 14:
Figure 00000028
где LPF - фильтр низких частот для изображения и β и δ - параметры, управляющие агрессивностью имитированного эффекта парциального объема. VNC-изображение может избавить от необходимости неконтрастного сканирования, что может уменьшить воздействие, сэкономить время и продлить срок службы трубки.
На Фиг.11, 12, 13, 14 и 15 показаны различные способы обработки набора реконструированных спектральных CT-изображений и/или ряда оцененных монохроматических изображений.
Следует понимать, что порядок перечисленных ниже действий служит для целей объяснения, но не ограничения. Также, здесь подразумеваются и другие порядки. Кроме того, одно или более действий может быть пропущено и/или может быть введено одно или более других действий.
Снова обратимся к Фиг.11, где показан способ удаления шума спектральных изображений.
На этапе 1102 получают набор спектральных изображений.
На этапе 1104 шумовая модель оценивается для спектрального изображения из набора спектральных изображений.
На этапе 1106 структуры в изображении оцениваются на основе шумовой модели, создавая модели локальных структур.
На этапе 1108 набор моделей локальных структур, соответствующих вокселу в изображении, подгоняется к трехмерному окружению вокселов вокруг воксела.
На этапе 1110 модель структуры из набора моделей локальных структур выбирается для воксела, основываясь на подгонке и заданных критериях выбора.
На этапе 1112 из воксела удаляется шум, основываясь на выбранной модели, в которой значение воксела заменяется значением, определенным выбранной моделью.
Вышесказанное может быть повторено для одного или более других вокселов одного или более других спектральных изображений, создавая спектральные изображения с удаленным шумом для различных энергетических диапазонов.
На Фиг.12 показан примерный способ формирования сегментации костей и кальция для спектральных изображений.
На этапе 1202 формируется карта вероятности кальция, основываясь на вероятностном разложении спектральных изображений с удаленным шумом.
На этапе 1204 карта вероятности кальция улучшается, выполняя полную функциональную вариационную минимизацию карты вероятности кальция.
На этапе 1206 определяется двоичная карта, представляющая сегментацию костей и кальция, основываясь на улучшенной карте вероятности кальция и заданном пороге.
Затем на Фиг.13 показан пример способа формирования карты йода для спектральных изображений.
На этапе 1302 формируются одна или более карт распределения йода, основываясь на векторном разложении спектральных изображений с удаленным шумом.
На этапе 1304 формируется двоичная маска сегментации костей и кальция, например, как описано в связи с Фиг.12.
На этапе 1306 карта йода оценивается, основываясь на картах распределения йода и двоичной маске сегментации костей и кальция.
На Фиг.14 показан примерный способ формирования виртуального неконтрастного (VNC) изображения для спектральных изображений.
На этапе 1402 карта йода оценивается, например, как описано в связи с Фиг.13.
На этапе 1404 промежуточные VNC-изображения оцениваются для каждой энергии, основываясь на изображении с удаленным шумом, векторно разложенных изображений с удаленным шумом и карте йода.
На этапе 1406 формируются окончательные VNC-изображения посредством имитированного эффекта парциального объема с помощью промежуточных VNC-изображений.
На Фиг.15 представлен пример способа для формирования виртуальных контрастно улучшенных (VCE) изображений для спектральных изображений.
На этапе 1502 оценивается карта йода, например, как описано в связи с Фиг.13.
На этапе 1504 получают коэффициент улучшения контрастности.
На этапе 1506 промежуточные VCE-изображения оцениваются для каждой энергии, основываясь на изображениях с удаленным шумом, векторно разложенных изображениях с удаленным шумом, карте йода, и коэффициенте улучшения контраста.
На этапе 1508 конечные VCE-изображения формируются посредством имитированного эффекта парциального объема с помощью промежуточных VCE-изображений.
Вышесказанное может быть реализовано посредством одного или более процессоров, выполняющих одну или более считываемых компьютером команд, закодированных или сохраненных на считываемом компьютером носителе, таком как физическая память, которые предписывают одному или более процессорам совершать различные действия и/или другие функции и/или действия. Дополнительно или альтернативно, один или более процессоров могут исполнять команды, переносимые временным носителем, таким как сигнал или несущая волна.
Изобретение было здесь описано со ссылкой на различные варианты осуществления. После прочтения приведенного здесь описания специалисты в данной области техники могут внести модификации и изменения. Подразумевается, что изобретение рассматривается как содержащее в себе все такие модификации и изменения в той мере, в которой они попадают в объем приложенной формулы изобретения или ее эквивалентов.

Claims (24)

1. Способ удаления шума изображения, содержащий этапы, на которых:
оценивают локальное шумовое значение для одного или более вокселов спектрального изображения из набора спектральных изображений, соответствующих различным энергетическим диапазонам, создавая шумовую модель для спектрального изображения;
оценивают модели локальных структур для воксела спектрального изображения, основываясь на соответствующей шумовой модели;
выбирают одну из моделей локальных структур для воксела, основываясь на заданных критериях выбора модели; и
удаляют шум воксела, основываясь на выбранной модели локальной структуры, заменяя значение воксела значением, оцененным на основе выбранной модели локальной структуры, в которой для множества вокселов множества спектральных изображений из набора спектральных изображений удален шум, создавая набор спектральных изображений с удаленным шумом.
2. Способ по п. 1, дополнительно содержащий этапы, выполняемые перед выбором одной из моделей локальных структур для воксела, основываясь на заданных критериях выбора модели, на которых:
подгоняют набор моделей локальных структур к трехмерному окружению вокселов в изображении вокруг воксела в изображении; и
выбирают одну из моделей локальных структур для воксела, основываясь на подгонке и заданных критериях выбора модели.
3. Способ по любому из пп. 1 и 2, в котором спектральные изображения формируются с использованием данных, полученных во время первого сканирования дозы, и удаление шума спектральных изображений создает набор изображений, которые имеют некоторое количество шума изображения, которое находится на том же самом уровне шума изображения, что и для спектральных изображений, сформированных с помощью данных, полученных во время второго сканирования дозы, причем доза для второго сканирования дозы выше, чем доза первого сканирования дозы.
4. Способ по любому из пп. 1 и 2, дополнительно содержащий этапы, на которых:
используют минимизацию методом наименьших квадратов для подгонки моделей; и
взвешивают минимизацию методом наименьших квадратов с весовым коэффициентом, причем весовой коэффициент содержит первый весовой компонент, который взвешивает трехмерное окружение вокселов вокруг воксела, основываясь на расстоянии интенсивности воксела между соседними вокселами и вокселом.
5. Способ по п. 4, в котором первый весовой компонент является функцией локального шумового значения воксела.
6. Способ по п. 4, в котором веса весовых коэффициентов содержат второй компонент взвешивания, который взвешивает трехмерное окружение вокруг воксела, основываясь на пространственном расстоянии между соседними вокселами и вокселом.
7. Способ по любому из пп. 1 и 2, в котором модели локальных структур содержат по меньшей мере две шумовых модели, в котором по меньшей мере две модели локальных структур содержат по меньшей мере постоянную модель, которая моделирует однородные области, и полиномную модель второго порядка, которая моделирует неоднородные области.
8. Способ по п. 6, дополнительно содержащий этап, на котором:
выбирают модель локальной структуры из числа подогнанных шумовых моделей для удаления шумов воксела, основываясь на заданном соотношении между отношением локальных стандартных отклонений по меньшей мере двух моделей локальных структур и заданным порогом.
9. Вычислительное устройство (118), содержащее:
блок (202) оценки шума, выполненный с возможностью оценки шумовой структуры спектрального изображения из набора спектральных изображений, соответствующих различным энергетическим диапазонам, причем шумовая структура используется для оценки моделей локальных структур воксела спектрального изображения;
селектор (304) модели, выполненный с возможностью выбирать одну из моделей локальных структур для воксела, основываясь на заданных критериях выбора модели; и
блок (204) удаления спектрального шума, выполненный с возможностью удалять шум воксела, основываясь на выбранной модели локальной структуры, посредством замены значения воксела на значение, оцененное, основываясь на выбранной модели локальной структуры, причем для множества вокселов множества спектральных изображений из набора спектральных изображений удаляется шум, создавая набор спектральных изображений с удаленным шумом.
10. Вычислительное устройство по п. 9, дополнительно содержащее:
блок (302) подгонки модели, выполненный с возможностью подгонять набор моделей локальных структур к трехмерному окружению вокселов в изображении вокруг воксела в изображении,
причем селектор модели выполнен с возможностью выбирать одну из моделей локальных структур для воксела, основываясь на подгонке и заданных критериях выбора модели.
RU2014105565A 2011-07-15 2012-07-10 Обработка изображений для спектральной компьютерной томографии RU2612575C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161508178P 2011-07-15 2011-07-15
US61/508,178 2011-07-15
PCT/IB2012/053520 WO2013011418A2 (en) 2011-07-15 2012-07-10 Spectral ct

Publications (2)

Publication Number Publication Date
RU2014105565A RU2014105565A (ru) 2015-08-27
RU2612575C2 true RU2612575C2 (ru) 2017-03-09

Family

ID=46750380

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014105565A RU2612575C2 (ru) 2011-07-15 2012-07-10 Обработка изображений для спектральной компьютерной томографии

Country Status (6)

Country Link
US (2) US9547889B2 (ru)
EP (1) EP2732431B1 (ru)
JP (1) JP6100772B2 (ru)
CN (1) CN103649990B (ru)
RU (1) RU2612575C2 (ru)
WO (1) WO2013011418A2 (ru)

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6100772B2 (ja) * 2011-07-15 2017-03-22 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 画像処理方法及びコンピューティング装置
EP2923332B1 (en) * 2012-11-26 2019-01-16 Koninklijke Philips N.V. Projection data de-noising
WO2014128595A1 (en) * 2013-02-21 2014-08-28 Koninklijke Philips N.V. Structure propagation restoration for spectral ct
US9842414B2 (en) 2013-07-30 2017-12-12 Koninklijke Philips N.V. Monochromatic attenuation contrast image generation by using phase contrast CT
EP3077993A1 (en) * 2013-12-04 2016-10-12 Koninklijke Philips N.V. Image data processing
EP3077990A1 (en) * 2013-12-06 2016-10-12 Koninklijke Philips N.V. Bone segmentation from image data
WO2015092588A2 (en) * 2013-12-17 2015-06-25 Koninklijke Philips N.V. Spectral image data processing
US9713452B2 (en) * 2014-03-31 2017-07-25 General Electric Company Generation of monochromatic images
WO2015156711A1 (en) 2014-04-07 2015-10-15 Prismatic Sensors Ab Spectral x-ray imaging
EP3134867B1 (en) * 2014-04-23 2019-09-11 Koninklijke Philips N.V. Restoration of low contrast structure in de-noise image data
CN106659456B (zh) * 2014-06-12 2021-03-12 皇家飞利浦有限公司 对比剂剂量模拟
US10451568B2 (en) * 2014-08-22 2019-10-22 Canon Medical Systems Corporation Photon counting X-ray CT apparatus
EP3210192B1 (en) * 2014-10-20 2018-12-12 Koninklijke Philips N.V. Start image for spectral image iterative reconstruction
CN107111883B (zh) * 2014-10-30 2020-12-08 皇家飞利浦有限公司 用于图像数据的纹理分析图
US10420519B2 (en) * 2014-11-06 2019-09-24 Koninklijke Philips N.V. Computed tomography system
KR101725099B1 (ko) * 2014-12-05 2017-04-26 삼성전자주식회사 컴퓨터 단층 촬영장치 및 그 제어방법
US9330443B1 (en) * 2015-02-13 2016-05-03 Kabushiki Kaisha Toshiba Noise reduction in image domain for spectral computed tomography
WO2016158234A1 (ja) * 2015-03-30 2016-10-06 株式会社日立製作所 画像生成装置、画像生成方法及びx線ct装置
DE102016221684B4 (de) 2015-11-27 2024-06-27 Siemens Healthineers Ag Verfahren und Bilddatenverarbeitungseinrichtung zum Verarbei-ten eines Multi-Energie-Computertomographie-Bilddatensatzes mit Basismaterialzerlegung und Bildwerte-Tupel-Abbildung
CN108475419B (zh) 2015-12-15 2022-04-26 皇家飞利浦有限公司 用于计算机断层摄影的数据处理的方法
US10360677B2 (en) 2016-10-07 2019-07-23 Toshiba Medical Systems Corporation Apparatus and method for joint-edge-preserving regularization to reduce noise in four-dimensional computed tomography images
JP2019537482A (ja) * 2016-11-16 2019-12-26 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 位相コントラスト像形成データから多エネルギーデータを生成するための装置
EP3475916B1 (en) * 2016-11-30 2019-10-23 Koninklijke Philips N.V. Bone and hard plaque segmentation in spectral ct
US11049295B2 (en) 2016-12-19 2021-06-29 Koninklijke Philips N.V. Detection and/or correction of residual iodine artifacts in spectral computed tomography (CT) imaging
US10580132B2 (en) * 2017-04-13 2020-03-03 Canon Kabushiki Kaisha Medical image processing apparatus, control method therefor, and non-transitory storage medium storing program
EP3431007B1 (en) * 2017-07-21 2020-06-17 Koninklijke Philips N.V. Creation of electron density datasets from spectral ct datasets
CN107569250A (zh) * 2017-08-08 2018-01-12 沈阳东软医疗系统有限公司 双能量ct图像处理方法、装置以及图像处理设备
US10311548B2 (en) 2017-09-05 2019-06-04 Microsoft Technology Licensing, Llc Scaling render targets to a higher rendering resolution to display higher quality video frames
EP3695251A1 (en) 2017-10-09 2020-08-19 Koninklijke Philips N.V. Material-selective adaptive blending of volumetric image data
US11417034B2 (en) 2018-01-16 2022-08-16 Koninklijke Philips N.V. Spectral imaging with a non-spectral imaging system
JP2021517058A (ja) 2018-01-22 2021-07-15 センスラボ エルエルシーXenselab, Llc 多重エネルギー弁別を用いた被検体のx線イメージング方法
CN111684486B (zh) 2018-01-31 2024-05-21 皇家飞利浦有限公司 谱计算机断层摄影成像系统和计算机可读存储介质
EP3768167A2 (en) 2018-03-19 2021-01-27 Xenselab Llc X-ray tomography
CN111971710B (zh) * 2018-03-26 2024-09-10 皇家飞利浦有限公司 根据谱成像数据来生成谱炎症图
US11221255B2 (en) 2018-04-18 2022-01-11 Hewlett-Packard Development Company, L.P. Storing spectroscopy data in layers
JP2021525639A (ja) * 2018-06-08 2021-09-27 ケイエイ イメージング インコーポレイテッド マルチエネルギx線撮影装置の仮想出力を決定するための方法およびシステム
EP3616620A1 (en) * 2018-08-28 2020-03-04 Koninklijke Philips N.V. Spectral dual-layer ct-guided interventions
US11295487B2 (en) * 2018-09-07 2022-04-05 Canon Medical Systems Corporation X-ray CT apparatus, medical image processing apparatus, and X-ray CT system
GB201818647D0 (en) * 2018-11-15 2019-01-02 Spectral Edge Ltd Image enhancement system and method
WO2020127031A1 (en) * 2018-12-18 2020-06-25 Agfa Nv Method of decomposing a radiographic image into sub-images of different types
US10973472B2 (en) 2019-03-05 2021-04-13 Siemens Healthcare Gmbh Artificial intelligence-based material decomposition in medical imaging
CN109919873B (zh) * 2019-03-07 2020-12-29 电子科技大学 一种基于图像分解的眼底图像增强方法
US20200294288A1 (en) * 2019-03-13 2020-09-17 The Uab Research Foundation Systems and methods of computed tomography image reconstruction
EP3901898A1 (en) * 2020-04-24 2021-10-27 Koninklijke Philips N.V. Apparatus for determining decomposed spectral image data
KR102555598B1 (ko) * 2021-05-10 2023-07-14 고려대학교 산학협력단 석회화 지도 생성 방법 및 이를 수행하기 위한 컴퓨팅 장치
US11756285B2 (en) 2021-06-10 2023-09-12 Bank Of America Corporation Image processing system and method for image noise removal
USD981565S1 (en) 2021-06-21 2023-03-21 Xenselab Llc Medical imaging apparatus
CN113706419B (zh) * 2021-09-13 2024-07-19 上海联影医疗科技股份有限公司 一种图像处理方法和系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040102688A1 (en) * 2002-11-27 2004-05-27 Walker Matthew Joseph Methods and apparatus for facilitating a reduction in artifacts
US20080063135A1 (en) * 2006-09-08 2008-03-13 General Electric Company Method and system for generating a multi-spectral image of an object
WO2009055818A1 (en) * 2007-10-25 2009-04-30 Research Foundation Of State University Of New York A spectral biomarker and algorithm for the identification and detection of neural stem and progenitor cells and their use in studying mammalian brains
RU2409313C2 (ru) * 2008-11-27 2011-01-20 Амиран Шотаевич РЕВИШВИЛИ Способ неинвазивного электрофизиологического исследования сердца
WO2011064683A2 (en) * 2009-11-25 2011-06-03 Koninklijke Philips Electronics N.V. Enhanced image data/dose reduction

Family Cites Families (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6704437B1 (en) * 1999-10-29 2004-03-09 Acuson Corporation Noise estimation method and apparatus for noise adaptive ultrasonic image processing
WO2001078005A2 (en) * 2000-04-11 2001-10-18 Cornell Research Foundation, Inc. System and method for three-dimensional image rendering and analysis
EP1451753A2 (en) * 2001-11-24 2004-09-01 Image Analysis, Inc. Automatic detection and quantification of coronary and aortic calcium
US6754298B2 (en) 2002-02-20 2004-06-22 The Regents Of The University Of Michigan Method for statistically reconstructing images from a plurality of transmission measurements having energy diversity and image reconstructor apparatus utilizing the method
GB2416223A (en) * 2004-07-15 2006-01-18 Medicsight Plc Quantification of coronary artery calcification
US7355182B2 (en) * 2004-10-06 2008-04-08 Harold Szu Infrared multi-spectral camera and process of using infrared multi-spectral camera
US20060103892A1 (en) * 2004-11-18 2006-05-18 Schulze Mark A System and method for a vector difference mean filter for noise suppression
US20080292194A1 (en) * 2005-04-27 2008-11-27 Mark Schmidt Method and System for Automatic Detection and Segmentation of Tumors and Associated Edema (Swelling) in Magnetic Resonance (Mri) Images
KR20060124824A (ko) * 2005-05-26 2006-12-06 주식회사 메디슨 초음파 스펙트럼 영상을 처리하는 방법 및 초음파 진단시스템
US7561727B2 (en) * 2005-06-02 2009-07-14 Nordic Bioscience Imaging A/S Method of deriving a quantitative measure of a degree of calcification of an aorta
WO2007002406A2 (en) * 2005-06-20 2007-01-04 The Trustees Of Columbia University In The City Of New York Interactive diagnostic display system
EP1924709A1 (en) * 2005-08-10 2008-05-28 Arena Pharmaceuticals, Inc. Methods for determining probability of an adverse or favorable reaction to a niacin receptor agonist
DE102005038940B4 (de) * 2005-08-17 2007-08-30 Siemens Ag Verfahren zur Filterung tomographischer 3D-Darstellungen nach erfolgter Rekonstruktion von Volumendaten
US7867998B2 (en) 2005-09-12 2011-01-11 Hong Kong Jockey Club Institute Of Chinese Medicine Limited Method of making antitussive medicine and relieving cough
DE102005049602B3 (de) * 2005-10-17 2007-04-19 Siemens Ag Verfahren und Vorrichtung zur Segmentierung zumindest einer Substanz in einem Röntgenbild
US7982747B1 (en) * 2005-12-19 2011-07-19 Adobe Systems Incorporated Displaying generated changes to an image file
CA2640683C (en) * 2006-01-31 2014-10-21 Canadian Space Agency Method and system for increasing signal-to-noise ratio
DE102006005804A1 (de) * 2006-02-08 2007-08-09 Siemens Ag Verfahren zur Rauschreduktion in tomographischen Bilddatensätzen
CN101410871A (zh) * 2006-03-29 2009-04-15 皇家飞利浦电子股份有限公司 双能x射线成像中的噪声降低
DE102006015451A1 (de) * 2006-03-31 2007-10-11 Siemens Ag Verfahren und Vorrichtung zur automatischen Differenzierung von Knochen oder anderen kalziumhaltigen Materialien und Kontrastmittel in Weichteilgewebe
US8594770B2 (en) * 2006-06-29 2013-11-26 Accuvein, Inc. Multispectral detection and presentation of an object's characteristics
US7533000B2 (en) * 2006-07-28 2009-05-12 Oxford Instruments Analytical Limited Method and apparatus for analysing a dataset of spectra
US7734076B2 (en) 2006-12-11 2010-06-08 General Electric Company Material decomposition image noise reduction
JP2008246022A (ja) 2007-03-30 2008-10-16 Fujifilm Corp 放射線撮影装置
US7724865B2 (en) * 2007-08-22 2010-05-25 General Electric Company System and method of optimizing a monochromatic representation of basis material decomposed CT images
US9070181B2 (en) * 2007-12-21 2015-06-30 General Electric Company System and method for extracting features of interest from an image
KR20100133950A (ko) * 2008-01-30 2010-12-22 더 리전츠 오브 더 유니버시티 오브 캘리포니아 동적인 제약들에 따른 오브젝트 주변의 사용을 통한 단층 촬영에 있어서의 양 감소 및 이미지 강화
US8254718B2 (en) * 2008-05-15 2012-08-28 Microsoft Corporation Multi-channel edge-aware chrominance noise reduction
US7983382B2 (en) * 2008-11-26 2011-07-19 General Electric Company System and method for material segmentation utilizing computed tomography scans
DE102008063311A1 (de) * 2008-12-30 2010-07-08 Siemens Aktiengesellschaft Verfahren zur Rauschreduktion von CT-Bilddaten und Bildbearbeitungssystem
US8965078B2 (en) * 2009-02-20 2015-02-24 Mayo Foundation For Medical Education And Research Projection-space denoising with bilateral filtering in computed tomography
US8294717B2 (en) * 2009-06-26 2012-10-23 Kabushiki Kaisha Toshiba Advanced clustering method for material separation in dual energy CT
DE102009039987A1 (de) * 2009-09-03 2011-03-17 Siemens Aktiengesellschaft Iterativer CT-Bildfilter zur Rauschreduktion
US8355555B2 (en) * 2009-09-17 2013-01-15 Siemens Aktiengesellschaft System and method for multi-image based virtual non-contrast image enhancement for dual source CT
JP5478328B2 (ja) * 2009-09-30 2014-04-23 富士フイルム株式会社 診断支援システム、診断支援プログラムおよび診断支援方法
US8346007B2 (en) * 2009-12-22 2013-01-01 Carestream Health, Inc. Noise suppression in cone beam CT projection data
US20110188715A1 (en) * 2010-02-01 2011-08-04 Microsoft Corporation Automatic Identification of Image Features
US9795301B2 (en) * 2010-05-25 2017-10-24 The General Hospital Corporation Apparatus, systems, methods and computer-accessible medium for spectral analysis of optical coherence tomography images
US8913121B2 (en) * 2010-07-11 2014-12-16 Spynsite, LLC System for image rendering or spectral recognition
WO2012012907A1 (en) * 2010-07-29 2012-02-02 Valorbec Société En Commandite, Représentée Par Gestion Valeo S.E.C. Minimal iterativity anisotropic diffusion method for reducing image or video noises
DE102010034099B4 (de) * 2010-08-12 2017-04-06 Siemens Healthcare Gmbh Iterative Bildfilterung mit anisotropem Rauschmodell für ein CT-Bild
US8634630B2 (en) * 2010-10-07 2014-01-21 Texas Instruments Incorporated Method and apparatus for enhancing representations of micro-calcifications in a digital mammogram image
DE102010043975B4 (de) * 2010-11-16 2021-07-29 Siemens Healthcare Gmbh Verfahren zur Reduktion der verwendeten Strahlendosis im Rahmen einer bildgebenden Röntgenuntersuchung und Computersystem
US9159124B2 (en) * 2010-12-01 2015-10-13 Koninklijke Philips N.V. Contrast to noise ratio (CNR) enhancer
US8311301B2 (en) * 2010-12-10 2012-11-13 Carestream Health, Inc. Segmenting an organ in a medical digital image
GB201102614D0 (en) * 2011-02-15 2011-03-30 Oxford Instr Nanotechnology Tools Ltd Material identification using multiple images
EP2677935A1 (en) * 2011-02-22 2014-01-01 Koninklijke Philips N.V. Detection apparatus
US8705827B2 (en) * 2011-04-15 2014-04-22 Georgia Tech Research Corporation Scatter correction methods
RU2013152742A (ru) * 2011-04-28 2015-06-10 Конинклейке Филипс Н.В. Мультиэнергетическая визуализация
JP6100772B2 (ja) * 2011-07-15 2017-03-22 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 画像処理方法及びコンピューティング装置
JP5723249B2 (ja) * 2011-09-13 2015-05-27 日本電子株式会社 信号処理方法、及び信号処理装置
US8867822B2 (en) * 2011-10-14 2014-10-21 Fujifilm Corporation Model-based coronary artery calcium scoring
JP2013212024A (ja) 2012-03-30 2013-10-10 Mitsubishi Electric Corp リニアモータ
US20130294669A1 (en) * 2012-05-02 2013-11-07 University Of Louisville Research Foundation, Inc. Spatial-spectral analysis by augmented modeling of 3d image appearance characteristics with application to radio frequency tagged cardiovascular magnetic resonance
EP2916738B1 (en) * 2012-09-13 2018-07-11 The Regents of the University of California Lung, lobe, and fissure imaging systems and methods
BR112015007654A2 (pt) * 2012-10-09 2017-07-04 Koninklijke Philips Nv método e sistema
DE102012220028A1 (de) * 2012-11-02 2014-05-08 Friedrich-Alexander-Universität Erlangen-Nürnberg Angiographisches Untersuchungsverfahren
WO2014110025A1 (en) * 2013-01-10 2014-07-17 Caliper Life Sciences, Inc. Whole slide multispectral imaging systems and methods
WO2015092588A2 (en) * 2013-12-17 2015-06-25 Koninklijke Philips N.V. Spectral image data processing
US9460485B2 (en) * 2014-12-11 2016-10-04 General Electric Company Systems and methods for guided de-noising for computed tomography
US9330443B1 (en) * 2015-02-13 2016-05-03 Kabushiki Kaisha Toshiba Noise reduction in image domain for spectral computed tomography
US10657679B2 (en) * 2015-03-09 2020-05-19 Koninklijke Philips N.V. Multi-energy (spectral) image data processing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040102688A1 (en) * 2002-11-27 2004-05-27 Walker Matthew Joseph Methods and apparatus for facilitating a reduction in artifacts
US20080063135A1 (en) * 2006-09-08 2008-03-13 General Electric Company Method and system for generating a multi-spectral image of an object
WO2009055818A1 (en) * 2007-10-25 2009-04-30 Research Foundation Of State University Of New York A spectral biomarker and algorithm for the identification and detection of neural stem and progenitor cells and their use in studying mammalian brains
RU2409313C2 (ru) * 2008-11-27 2011-01-20 Амиран Шотаевич РЕВИШВИЛИ Способ неинвазивного электрофизиологического исследования сердца
WO2011064683A2 (en) * 2009-11-25 2011-06-03 Koninklijke Philips Electronics N.V. Enhanced image data/dose reduction

Also Published As

Publication number Publication date
CN103649990A (zh) 2014-03-19
WO2013011418A3 (en) 2013-05-02
US9547889B2 (en) 2017-01-17
JP2014522693A (ja) 2014-09-08
EP2732431A2 (en) 2014-05-21
US20140133729A1 (en) 2014-05-15
WO2013011418A2 (en) 2013-01-24
EP2732431B1 (en) 2019-03-13
RU2014105565A (ru) 2015-08-27
US20170124686A1 (en) 2017-05-04
CN103649990B (zh) 2017-06-06
JP6100772B2 (ja) 2017-03-22
US10147168B2 (en) 2018-12-04

Similar Documents

Publication Publication Date Title
RU2612575C2 (ru) Обработка изображений для спектральной компьютерной томографии
US9959640B2 (en) Iterative image reconstruction with a sharpness driven regularization parameter
US10282820B2 (en) Structure propagation restoration for spectral CT
US8938110B2 (en) Enhanced image data/dose reduction
US7782996B2 (en) Method for combined bone hardening and scattered radiation correction in X-ray computed tomography
US20170135659A1 (en) System, method and computer readable medium for preview of low-dose x-ray projection and tomographic images
Wang et al. Low‐dose preview for patient‐specific, task‐specific technique selection in cone‐beam CT
CN105793894B (zh) 根据图像数据来进行骨骼分割
CN110574073B (zh) 能谱计算机断层摄影(ct)成像中的残余碘伪影的探测和/或校正
US10169848B2 (en) Restoration of low contrast structure in de-noise image data
EP3472804B1 (en) Determining calcium content from spectral ct data
Gomi et al. Development of a novel algorithm for metal artifact reduction in digital tomosynthesis using projection-based dual-energy material decomposition for arthroplasty: A phantom study
WO2016097981A1 (en) Penalized maximum likelihood material decomposition
Gomi et al. Development of a denoising convolutional neural network-based algorithm for metal artifact reduction in digital tomosynthesis for arthroplasty: A phantom study
CN111201452B (zh) 体积图像数据的材料选择性自适应混合
US20240237956A1 (en) Systems, Methods, and Media for Generating Low-Energy Virtual Monoenergetic Images from Multi-Energy Computed Tomography Data

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200711