RU2610714C1 - Статор мощного турбогенератора - Google Patents

Статор мощного турбогенератора Download PDF

Info

Publication number
RU2610714C1
RU2610714C1 RU2015152595A RU2015152595A RU2610714C1 RU 2610714 C1 RU2610714 C1 RU 2610714C1 RU 2015152595 A RU2015152595 A RU 2015152595A RU 2015152595 A RU2015152595 A RU 2015152595A RU 2610714 C1 RU2610714 C1 RU 2610714C1
Authority
RU
Russia
Prior art keywords
core
stator
channels
winding
pressure plates
Prior art date
Application number
RU2015152595A
Other languages
English (en)
Inventor
Олег Викторович Антонюк
Михаил Анатольевич Амосов
Татьяна Николаевна Карташова
Алексей Григорьевич Филин
Владимир Иванович Шаров
Original Assignee
Публичное акционерное общество "Силовые машины - ЗТЛ, ЛМЗ, Электросила, Энергомашэкспорт" (ПАО "Силовые машины")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Публичное акционерное общество "Силовые машины - ЗТЛ, ЛМЗ, Электросила, Энергомашэкспорт" (ПАО "Силовые машины") filed Critical Публичное акционерное общество "Силовые машины - ЗТЛ, ЛМЗ, Электросила, Энергомашэкспорт" (ПАО "Силовые машины")
Priority to RU2015152595A priority Critical patent/RU2610714C1/ru
Priority to PCT/RU2016/000813 priority patent/WO2017099631A1/ru
Priority to EA201800354A priority patent/EA034316B1/ru
Application granted granted Critical
Publication of RU2610714C1 publication Critical patent/RU2610714C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/20Stationary parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/42Means for preventing or reducing eddy-current losses in the winding heads, e.g. by shielding

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

Изобретение относится к области электромашиностроения, в частности к конструкции статора мощного турбогенератора. Технический результат - повышение эксплуатационной надежности и упрощение конструкции с одновременным обеспечением эффективного охлаждения нажимных плит и электромагнитных экранов. Статор турбогенератора содержит сердечник, в пазы которого уложены стержни обмотки с лобовыми частями, нажимные плиты, установленные по торцам сердечника с образованием радиальных каналов и электромагнитные экраны, закрепленные на нажимных плитах и состоящие из радиальной и наклонной частей. Радиальные каналы сообщаются с проходами между внутренними цилиндрическими поверхностями нажимных плит и поверхностями стержней обмотки, находящимися за пределами торцов сердечника, а также с продольными пазами, выполненными равномерно по окружности на внутренних цилиндрических поверхностях нажимных плит. Проходы и продольные пазы сообщаются с каналами, образованными между наружными поверхностями экранов и поверхностями элементов, ограничивающих каналы со стороны лобовых частей обмотки. 2 з.п. ф-лы, 2 ил.

Description

Изобретение относится к электромашиностроению, а именно к конструкции статора мощной электрической машины, в частности турбогенератора.
Известно, что электромагнитный экран устанавливается для защиты торцевой зоны сердечника статора от проникновения магнитных полей рассеивания лобовых частей обмотки статора, которые вызывают повышенные потери и нагревы крайних пакетов, нажимных плит и электромагнитных экранов сердечника статора. По этой причине для повышения эксплуатационной надежности требуется эффективное охлаждение не только крайних пакетов сердечника статора, но и нажимных плит и электромагнитных экранов, особенно вблизи расположения лобовых частей обмотки статора, где выделяются максимальные потери.
Известен статор мощного турбогенератора (Титов В.В. и др. Турбогенераторы. Расчет и конструкция. Л., Энергия, 1967, с. 776), в котором применяется электропроводный экран, выполненный в виде медного плоского кольца, устанавливаемого между нажимной плитой и крайним пакетом сердечника статора на нажимных пальцах. Наибольшая плотность вихревых токов наблюдается на «носике» нажимного кольца и экрана вблизи расположения стержней обмотки статора. В этой зоне возможны наибольшие нагревы и термические деформации экрана и плиты.
Известен «Статор электрической машины переменного тока» (Авторское свидетельство СССР №907705, H02K 1/16, опубл. 23.02.1982 г.), который содержит шихтованный сердечник с установленными по торцам массивными нажимными плитами и электропроводными экранами. Каждый экран состоит из двух соединенных между собой частей, одна из которых установлена на наружной боковой поверхности нажимной плиты, другая часть установлена на поверхности нажимной плиты, обращенной к расточке статора. Экраны выполнены из листовой меди, при этом толщина экрана вблизи расположения лобовых частей обмотки статора в 1,5-3,5 раза превышает толщину части экрана, расположенную на боковой поверхности нажимной плиты. Такая конструкция экрана различной толщины предложена с целью снижения удельных потерь в напряженной в тепловом отношении зоне.
Известно изобретение «Reverse flow ventilation system with stator core center discharge duct and/or end region cooling system» (патент US 5652469, H02K 9/00, H02K 9/12, опубл. 29.07.1997 г.), в котором статор содержит шихтованный сердечник с уложенной в его пазы обмоткой, нажимные плиты, электромагнитные экраны и лобовые части обмотки статора, размещенные в осевом направлении с обеих сторон сердечника. Внутренняя сторона электромагнитного экрана обращена к нажимной плите, а наружная к лобовым частям обмотки статора. Электромагнитный экран состоит из двух частей: наклонной и радиальной. Между крайним пакетом сердечника и нажимной плитой, между нажимной плитой и электромагнитным экраном размещены проходы для охлаждающего газа. В описанной конструкции внутренняя цилиндрическая часть нажимной плиты охлаждается неэффективно. Такая конструкция не может применяться в мощных электрических машинах.
Наиболее близкой является конструкция, описанная в изобретении «Flux screen» (патент US 8022591, H02K 1/12, опубл. 20.09.2011). Согласно изобретению статор содержит шихтованный сердечник с уложенной в его пазы обмоткой, лобовые части стержней обмотки, расположенные в осевом направлении с обеих сторон сердечника, установленные по торцам сердечника массивные нажимные плиты (нажимные кольца), экраны, выполненные из электропроводного материала. Внутренняя поверхность электромагнитного экрана обращена к нажимной плите, а наружная поверхность экрана к лобовым частям обмотки статора. Электромагнитный экран состоит из трех частей: цилиндрической, наклонной и радиальной. Между крайним пакетом (торцом) сердечника и нажимной плитой, между нажимной плитой и экраном выполнены каналы для циркуляции охлаждающей среды, которые сообщаются между собой посредством канала, образованного внутренней цилиндрической поверхностью нажимной плиты и поверхностью цилиндрической части экрана. На внутренней поверхности цилиндрической части электромагнитного экрана расположены пазы или канавки, размещенные равномерно по всей окружности и предназначенные для интенсификации охлаждения нажимной плиты и экрана в этой зоне.
Конструкция, заявленная в патенте US 8022591, позволяет обеспечить эффективное охлаждение нажимной плиты и электромагнитного экрана в зонах, где возникают повышенные потери, обусловленные магнитными потоками рассеивания. Но выполнение экрана с дополнительной цилиндрической частью, которая соединяется пайкой с наклонной частью экрана, а также размещение экрана на некотором расстоянии от нажимной плиты для организации охлаждающего канала является значительным усложнением и снижением эксплуатационной надежности всей конструкции.
Технический результат, на достижение которого направлено предлагаемое техническое решение, состоит в повышении эксплуатационной надежности и упрощении конструкции с одновременным обеспечением эффективного охлаждения нажимных плит и электромагнитных экранов.
Указанный технический результат достигается за счет того, что статор электрической машины содержит сердечник, в пазах которого уложены стержни обмотки с закрепленными лобовыми частями. Статор содержит нажимные плиты, установленные по торцам сердечника с образованием радиальных каналов между торцевыми поверхностями сердечника и внутренними боковыми поверхностями нажимных плит. Статор содержит экраны, закрепленные на наружных боковых поверхностях нажимных плит, выполненные из электропроводного материала и состоящие из радиальной части и наклонной части. Радиальные каналы сообщаются с проходами, образованными между поверхностями участков стержней, находящимися за пределами торцов сердечника, и внутренними цилиндрическими поверхностями нажимных плит. Радиальные каналы также сообщаются с продольными пазами, выполненными равномерно по окружности на внутренних цилиндрических поверхностях нажимных плит. Проходы и продольные пазы сообщаются с каналами, образованными между наружными поверхностями экранов и поверхностями элементов, ограничивающих каналы со стороны лобовых частей обмотки.
Для упрощения конструкции элементы, ограничивающие каналы со стороны лобовых частей обмотки, выполнены в виде фиксирующих лобовые части обмотки элементов.
В предлагаемом техническом решении эксплуатационная надежность и упрощение конструкции достигаются за счет установки электромагнитных экранов непосредственно на наружные боковые поверхности нажимных плит без образования канала между нажимной плитой и электромагнитным экраном, а также за счет изменения конструкции электромагнитных экранов. При такой конструкции эффективное охлаждение электромагнитных экранов и нажимных плит достигается за счет выполнения известных радиальных каналов, образованных между торцевыми поверхностями сердечника и внутренними боковыми поверхностями нажимных плит, сообщающимися с каналами, образованными между наружными поверхностями экранов и поверхностями элементов, ограничивающих каналы со стороны лобовых частей обмотки. Радиальные каналы сообщаются с каналами, образованными между наружными поверхностями экранов и поверхностями элементов, ограничивающими каналы со стороны лобовых частей обмотки, через проходы, расположенные между поверхностями участков стержней, находящимися за пределами торцов сердечника, и внутренними цилиндрическими поверхностями нажимных плит, а также через продольные пазы, выполненные равномерно по окружности на внутренних цилиндрических поверхностях нажимных плит.
На фиг. 1 показан фрагмент статора электрической машины (стрелками показано направление движения охлаждающего газа). На фиг. 2 изображен фрагмент радиального сечения - вид А.
Статор 1 электрической машины, например турбогенератора, содержит сердечник 2, который состоит из листов, выполненных из электротехнической стали и собранных в пакеты. В пазы сердечника 2 уложены стержни 3 обмотки. Лобовые части 4 стержней 3 размещены в осевом направлении с обеих сторон сердечника 2.
На фиг. 1 показана одна сторона статора 1, вторая - расположена симметрично.
Лобовые части 4 стержней 3 жестко закреплены между коническими поверхностями внутреннего опорного элемента (внутреннего опорного кольца) (не показан) и наружного опорного элемента 5 (наружного опорного кольца), выполненного из диэлектрического материала.
Нажимные плиты 6 установлены с торцов сердечника 2 с образованием радиальных каналов 7 между торцевыми поверхностями сердечника 2 и внутренними боковыми поверхностями нажимных плит 6. Статор 1 содержит экраны 8, выполненные из электропроводного материала, например меди. Экран 8 своей внутренней стороной закреплен без зазора непосредственно на наружной боковой поверхности нажимной плиты 6, а наружная сторона экрана 8 обращена к лобовым частям 4 обмотки статора. Экран 8 состоит из двух частей: радиальной и наклонной. Радиальные каналы 7 сообщаются с проходами 9, образованными между поверхностями стержней 3, находящимися за пределами торцов сердечника 2, и внутренними цилиндрическими поверхностями нажимных плит 6. Радиальные каналы 7 также сообщаются с продольными пазами 10, выполненными равномерно по окружности на внутренних цилиндрических поверхностях нажимных плит 6. Продольные пазы 10 выполнены вдоль оси вала электрической машины от одного до другого края на нажимной плите 6. Проход 9 и продольные пазы 10 сообщаются с каналами 11, образованными между наружными поверхностями экрана 8 и поверхностями элементов, ограничивающих каналы 11 со стороны лобовых частей 4 стержней 3.
Элементы, ограничивающие каналы 11 со стороны лобовых частей 4 стержней 3, могут быть выполнены в виде фиксирующих элементов, закрепляющих лобовые части 4 стержней 3 обмотки. Например, как описано в изобретении «Устройство крепления лобовых частей обмотки статора турбогенератора» (патент РФ №2550085, опубл. 10.05.2015). В известном устройстве фиксирующие элементы, ограничивающие каналы 11 со стороны лобовых частей 4 стержней 3, выполнены в виде наружных опорных элементов 5, жестко прикрепленных к нажимной плите 6 посредством плоского кольцевого пружинящего элемента 12, выполненного из металлического немагнитного материала, через дистанционный элемент (не показан), установленный между плоским кольцевым пружинящим элементом 12 и электромагнитным экраном 8, на расстоянии, определяемом дистанционным элементом в аксиальном направлении.
При работе электрической машины, например турбогенератора, в экране 8 и нажимной плите 6 выделяются электромагнитные потери, обусловленные магнитными потоками рассеяния лобовых частей 4 обмотки статора 1. Наибольшие потери выделяются в областях экрана 8 и нажимной плиты 6, расположенных вблизи лобовых частей 4 обмотки статора 1. Эти области экрана 8 и нажимной плиты 6 являются наиболее напряженными в тепловом отношении. Из газоохладителя статора 1 (не показан) охлаждающий газ направляется в радиальные каналы 7. Далее охлаждающий газ перемещается в радиальном направлении в сторону расточки сердечника 2, проходит через проходы 9 и продольные пазы 10. Затем охлаждающий газ поступает в каналы 11. Из каналов 11 охлаждающий газ направляется к вентилятору (не показан) и далее снова к газоохладителю.
В результате реализации предлагаемого технического решения, как показали механические, аэродинамические и тепловые расчеты, выполненные авторами, обеспечивается простая и надежная в эксплуатации конструкция турбогенератора с эффективным охлаждением электромагнитных экранов и нажимных плит.

Claims (3)

1. Статор электрической машины, характеризующийся тем, что содержит сердечник, в пазы которого уложены стержни обмотки с закрепленными лобовыми частями, нажимные плиты, установленные по торцам сердечника с образованием радиальных каналов между торцевыми поверхностями сердечника и внутренними боковыми поверхностями нажимных плит, экраны, закрепленные на наружных боковых поверхностях нажимных плит, выполненные из электропроводного материала и состоящие из радиальной и наклонной частей, при этом радиальные каналы сообщаются с проходами, образованными между поверхностями участков стержней, находящимися за пределами торцов сердечника, и внутренними цилиндрическими поверхностями нажимных плит, и с продольными пазами, выполненными равномерно по окружности на внутренних цилиндрических поверхностях нажимных плит, причем проходы и продольные пазы сообщаются с каналами, образованными между наружными поверхностями экранов и поверхностями элементов, ограничивающих каналы со стороны лобовых частей обмотки.
2. Статор электрической машины по п. 1, характеризующийся тем, что элементы, ограничивающие каналы со стороны лобовых частей, выполнены в виде фиксирующих элементов, закрепляющих лобовые части обмотки.
3. Статор электрической машины по п. 2, характеризующийся тем, что фиксирующие элементы, ограничивающие канал со стороны лобовых частей обмотки, выполнены в виде наружного опорного элемента, выполненного из диэлектрического материала, и плоского кольцевого пружинящего элемента, прикрепленного к наружному опорному элементу и нажимной плите и выполненного из металлического немагнитного материала.
RU2015152595A 2015-12-08 2015-12-08 Статор мощного турбогенератора RU2610714C1 (ru)

Priority Applications (3)

Application Number Priority Date Filing Date Title
RU2015152595A RU2610714C1 (ru) 2015-12-08 2015-12-08 Статор мощного турбогенератора
PCT/RU2016/000813 WO2017099631A1 (ru) 2015-12-08 2016-11-24 Статор мощного турбогенератора
EA201800354A EA034316B1 (ru) 2015-12-08 2016-11-24 Статор мощного турбогенератора

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015152595A RU2610714C1 (ru) 2015-12-08 2015-12-08 Статор мощного турбогенератора

Publications (1)

Publication Number Publication Date
RU2610714C1 true RU2610714C1 (ru) 2017-02-15

Family

ID=58458699

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015152595A RU2610714C1 (ru) 2015-12-08 2015-12-08 Статор мощного турбогенератора

Country Status (3)

Country Link
EA (1) EA034316B1 (ru)
RU (1) RU2610714C1 (ru)
WO (1) WO2017099631A1 (ru)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114825783A (zh) * 2022-05-04 2022-07-29 哈尔滨理工大学 汽轮发电机结构件电磁屏蔽及冷却系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU907705A1 (ru) * 1980-05-22 1982-02-23 Институт Электродинамики Ан Усср Статор электрической машины переменного тока
SU983899A2 (ru) * 1981-07-02 1982-12-23 Институт Электродинамики Ан Усср Статор электрической машины
SU1201960A1 (ru) * 1984-06-25 1985-12-30 Институт Электродинамики Ан Усср Статор электрической машины
RU2034391C1 (ru) * 1990-11-19 1995-04-30 Вячеслав Иванович Смородин Статор электрической машины
US5652469A (en) * 1994-06-16 1997-07-29 General Electric Company Reverse flow ventilation system with stator core center discharge duct and/or end region cooling system
US8022591B2 (en) * 2008-01-22 2011-09-20 Alstom Technology Ltd. Flux screen for generators

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU907705A1 (ru) * 1980-05-22 1982-02-23 Институт Электродинамики Ан Усср Статор электрической машины переменного тока
SU983899A2 (ru) * 1981-07-02 1982-12-23 Институт Электродинамики Ан Усср Статор электрической машины
SU1201960A1 (ru) * 1984-06-25 1985-12-30 Институт Электродинамики Ан Усср Статор электрической машины
RU2034391C1 (ru) * 1990-11-19 1995-04-30 Вячеслав Иванович Смородин Статор электрической машины
US5652469A (en) * 1994-06-16 1997-07-29 General Electric Company Reverse flow ventilation system with stator core center discharge duct and/or end region cooling system
US8022591B2 (en) * 2008-01-22 2011-09-20 Alstom Technology Ltd. Flux screen for generators

Also Published As

Publication number Publication date
WO2017099631A1 (ru) 2017-06-15
EA201800354A1 (ru) 2018-11-30
EA034316B1 (ru) 2020-01-28

Similar Documents

Publication Publication Date Title
US11791694B2 (en) Stator for an electric motor and cooling thereof
US9806572B2 (en) Rotor for rotary electric machine and rotary electric machine
JP6302736B2 (ja) 回転電機
CN105978188B (zh) 电机器和制造方法
US11258322B2 (en) High speed induction machine
EP1557929B1 (en) Method and apparatus for reducing hot spot temperatures on stacked field windings
US7514827B2 (en) Self-cooled rotor for an electrical machine
US8203252B2 (en) Clamp and lock permanent magnets within a rotating electrical machine using pitched focused flux magnets
US10418872B2 (en) Rotary electric machine
JP2007306689A (ja) 回転電機
CN102136770A (zh) 具有增强冷却能力的用于旋转电机的定子
CN101499686B (zh) 改进的发电机磁通屏蔽设计
RU2610714C1 (ru) Статор мощного турбогенератора
US8203249B1 (en) Reducing the core-end heating in large power generators
RU2570834C1 (ru) Магнитопровод статора электромеханических преобразователей энергии с интенсивным охлаждением (варианты) и способ его изготовления
US10128717B2 (en) Ring for an electric machine
JP2019205254A (ja) 回転電機
WO2016171079A1 (ja) 回転電機の回転子および回転電機
US11146145B2 (en) Rotor assembly for an electrodynamic machine that minimizes mechanical stresses in cooling ducts
JP2016086602A (ja) 回転電機
JP7184729B2 (ja) 回転電機ステータコアの誘導加熱装置及び誘導加熱方法
US20130300238A1 (en) Dynamoelectric machine flange
JP2021068595A (ja) 回転電機ステータコアの誘導加熱装置及び誘導加熱方法
JP2019050698A (ja) 回転電機
JP2005168109A (ja) 回転電機