RU2610558C1 - Способ бесстандартной оценки количества фосфорорганического вещества в пробе - Google Patents

Способ бесстандартной оценки количества фосфорорганического вещества в пробе Download PDF

Info

Publication number
RU2610558C1
RU2610558C1 RU2015142684A RU2015142684A RU2610558C1 RU 2610558 C1 RU2610558 C1 RU 2610558C1 RU 2015142684 A RU2015142684 A RU 2015142684A RU 2015142684 A RU2015142684 A RU 2015142684A RU 2610558 C1 RU2610558 C1 RU 2610558C1
Authority
RU
Russia
Prior art keywords
mass
substance
sample
organophosphorus
ion
Prior art date
Application number
RU2015142684A
Other languages
English (en)
Inventor
Александр Константинович Жохов
Анатолий Андреевич Брагинец
Павел Викторович Фоменко
Галина Юрьевна Полякова
Анатолий Юрьевич Лоскутов
Евгений Борисович Белоусов
Original Assignee
ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ "33 ЦЕНТРАЛЬНЫЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИСПЫТАТЕЛЬНЫЙ ИНСТИТУТ" Минобороны России
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ "33 ЦЕНТРАЛЬНЫЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИСПЫТАТЕЛЬНЫЙ ИНСТИТУТ" Минобороны России filed Critical ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ "33 ЦЕНТРАЛЬНЫЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИСПЫТАТЕЛЬНЫЙ ИНСТИТУТ" Минобороны России
Priority to RU2015142684A priority Critical patent/RU2610558C1/ru
Application granted granted Critical
Publication of RU2610558C1 publication Critical patent/RU2610558C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

Изобретение относится к исследованию или анализу материалов, в том числе фосфорорганических веществ (ФОВ), путем определения их химических или физических свойств, а именно путем разделения образцов материалов на составные части с использованием адсорбции, абсорбции, хроматографии и масс-спектрометрии, а более конкретно к способам идентификации и количественного определения фосфорорганических веществ методами хромато-масс-спектрометрии. Способ бесстандартной оценки количества фосфорорганического вещества в пробе заключается в подготовке анализируемой пробы, вводе подготовленной пробы в испаритель хроматографа, разделении пробы в хроматографической капиллярной колонке, регистрации сигнала масс-спектрометрического детектора и установлении градуировочной зависимости. Причем при установлении градуировочной зависимости определяют зависимость масс-спектральной характеристики детектора с цилиндрической ионной ловушкой от массы анализируемого фосфорорганического вещества. Далее выделяют диапазоны массы для характеристичных ионов с массовыми числами, равными [М+1]+ и [2М+1]+, где М - молекулярная масса вещества, а также для иона, являющегося характеристичным ионом для анализируемого фосфорорганического вещества при использовании ионизации электронным ударом. Затем в каждом диапазоне масс устанавливают корреляционные зависимости изменения интенсивности нехарактеристичных ионов данного диапазона масс от массы. Далее оценивают количество вещества в пробе, используя установленные корреляционные зависимости. Техническим результатом является расширение функциональных возможностей мобильного хромато-масс-спектрометра и повышение уровня безопасности проведения процесса анализа за счет снижения риска поражения персонала химической лаборатории фосфорорганическими отравляющими веществами при проведении градуировки детектора. 2 табл., 5 ил.

Description

Изобретение относится к исследованию или анализу материалов, в том числе фосфорорганических веществ (ФОВ), путем определения их химических или физических свойств, а именно путем разделения образцов материалов на составные части с использованием адсорбции, абсорбции, хроматографии и масс-спектрометрии, а более конкретно к способам идентификации и количественного определения фосфорорганических веществ методами хромато-масс-спектрометрии (ХМС).
Изобретение может быть использовано при проведении экологического контроля воздуха на объектах по хранению и уничтожению химического оружия в рамках мероприятий по выполнению Конвенции о запрещении разработки, производства, накопления и применения химического оружия и о его уничтожении (далее Конвенция) [1].
Важной задачей при проведении химического контроля в местах возникновения чрезвычайных ситуаций является установление факта применения противником неизвестных токсичных химикатов.
Для оперативного реагирования на возникновение чрезвычайных ситуаций, связанных с применением отравляющих веществ и промышленных токсичных химикатов, в Российской Федерации, как и в других зарубежных странах, большое внимание уделяется разработке и внедрению мобильных химических лабораторий [2]. Преимущество данных лабораторий заключается в том, что их можно быстро развернуть в районах боевых действий, техногенных катастроф, стихийных бедствий и в местах совершения терактов.
В войсках РХБ защиты Российской Федерации для обеспечения химической безопасности международных спортивных, политических и других крупных мероприятий в мобильных лабораториях используются мобильные хромато-масс-спектрометры «Griffin-460».
Актуальность разработки обусловлена тем, что наряду с установлением факта применения того или иного токсичного химиката немаловажную роль играет задача по установлению их количественного содержания [3, 4]. Опираясь на данные количественного анализа, принимаются решения по проведению мероприятий специальной обработки местности, зданий и сооружений, оборудования и имущества, вооружения и военной техники.
Однако в процессе апробации прибора «Griffin-460» в лабораторных условиях и при анализе литературных данных [6] было установлено, что для одного и того же вещества масс-спектр изменяется в зависимости от его массы в анализируемой пробе, что связано со спецификой ионизации при использовании цилиндрической ионной ловушки. Это затрудняет процессы идентификации и количественного определения вещества по масс-спектральным данным этого прибора, а также исключает возможность использования стандартных методов количественного определения, таких как, например, метод абсолютной градуировки масс-детектора с использованием стандарта определяемого вещества.
Наиболее близким к предлагаемому способу является «Способ определения фосфорорганических веществ», описанный в патенте №2313086 РФ авторов Новикова C.B. и Козлова О.В. [7].
Способ включает подготовку растворов веществ-эталонов для получения градуировочной зависимости детектора, подготовку анализируемой пробы, ввод подготовленной пробы в испаритель хроматографа, разделение пробы в хроматографической капиллярной колонке, регистрацию масс-селективным детектором в режиме сканирования в выбранном диапазоне и определение концентрации фосфорорганических веществ путем сравнения зарегистрированных масс-спектров пробы и масс-спектров веществ-эталонов. Согласно предложению в качестве вещества-эталона используют смесь Ο,Ο,Ο-триметилфосфата, Ο,Ο-диметил-О-этилфосфата, Ο,Ο-диметил-О-изопропилфосфата, O,O-диметил-О-бутилфосфата и Ο,Ο,Ο-триэтилфосфата в соотношении 0,2:0,015:0,05:0,005:1, а концентрацию фосфорорганических веществ определяют по градуировочной зависимости наиболее интенсивного иона в Ο,Ο,Ο-триметилфосфате, Ο,Ο-диметил-О-этилфосфате, Ο,Ο-диметил-О-изопропилфосфате, Ο,Ο-диметил-О-бутилфосфате и Ο,Ο,Ο-триэтилфосфате.
Выбор Ο,Ο,Ο-триметилфосфата, Ο,Ο-диметил-О-этилфосфата, Ο,Ο-диметил-О-изопропилфосфата, Ο,Ο-диметил-О-бутилфосфата и Ο,Ο,Ο-триэтилфосфата в качестве веществ-эталонов обусловлен тем, что значения характеристик удерживания наиболее близки к характеристикам удерживания фосфорорганических веществ и фрагментация веществ обоих классов под действием электронного удара идет по аналогичным направлениям.
Несомненными достоинствами способа, ближайшего из аналогов, является высокие чувствительность (1,0⋅10-8 мг) и достоверность определения, а также использование в качестве градуировочной смеси веществ третьего-четвертого класса опасности, а не самих анализируемых ФОВ.
Однако этот способ, разработанный в условиях ионизации электронным ударом и детектирования в режиме сканирования выбранных ионов, неприменим при использовании мобильного хромато-масс-спектрометра «Griffin-460» с цилиндрической ионной ловушкой, так как масс-спектр изменяется в зависимости от количества анализируемого вещества.
Поэтому задачей настоящего изобретения является разработка бесстандартного способа оценки количества фосфорорганического вещества в пробе для мобильного хромато-масс-спектрометра «Griffin-460» с цилиндрической ионной ловушкой. Это особенно важно для мобильных лабораторий, поскольку необходимость иметь в наличии стандартные образцы ФОВ влечет за собой необходимость оборудования специального места для хранения ФОВ, а также наличия спецтранспорта и оформления разрешений для их транспортировки по территории субъектов Российской Федерации [5], что требует значительных временных и материальных затрат.
Решение поставленной задачи предполагает технический результат, заключающийся в расширении функциональных возможностей мобильного хромато-масс-спектрометра и повышении уровня безопасности проведения процесса анализа за счет снижения риска поражения персонала химической лаборатории фосфорорганическими отравляющими веществами при проведении градуировки детектора.
Поставленная задача решается тем, что в способе бесстандартной оценки количества фосфорорганического вещества в пробе, заключающемся в подготовке анализируемой пробы, вводе подготовленной пробы в испаритель хроматографа, разделении пробы в хроматографической капиллярной колонке, регистрации сигнала масс-спектрометрического детектора и установлении градуировочной зависимости, согласно предлагаемому техническому решению при установлении градуировочной зависимости определяют зависимость масс-спектральной характеристики детектора с цилиндрической ионной ловушкой от массы анализируемого фосфорорганического вещества; выделяют диапазоны массы для характеристичных ионов с массовыми числами, равными [М+1]+ и [2М+1]+, где М - молекулярная масса вещества, а также для иона, являющегося характеристичным ионом для анализируемого фосфорорганического вещества при использовании ионизации электронным ударом; в каждом диапазоне масс устанавливают корреляционные зависимости изменения интенсивности нехарактеристичных ионов данного диапазона масс от массы; оценивают количество вещества в пробе, используя установленные корреляционные зависимости.
Таким образом, поскольку в мобильном хромато-масс-спектрометре «Griffin-460» масс-спектр меняется в зависимости от количества вещества, что не позволяет использовать известные методы градуировки детектора по стандартам ФОВ при их количественном определении, при установлении градуировочной зависимости в предлагаемой пробе определяют зависимость масс-спектральной характеристики от массы и в каждом выделенном диапазоне масс устанавливают корреляционную зависимость интенсивности нехаректеристичного пика-иона от массы. Это позволяет недостаток прибора превратить в возможность расширения его функциональных возможностей и избежать использования ФОВ-стандартов.
При разработке способа были проведены следующие экспериментально-теоретические исследования.
В работе [6] сообщается, что в отличие от стандартных ХМС с электронным ударом 70 эВ в ХМС «Griffin-460» ионизация молекул осуществляется энергией в 13,8 эВ, что приводит к образованию псевдомолекулярных ионов [М+1]+ и [2М+1]+. В то же время в отличие от химической ионизации в масс-спектрах, регистрируемых на ХМС «Griffin-460», наблюдаются пики-ионы, характерные для воздействия на молекулу пучка электронов в 70 эВ.
На фигуре 1 представлен механизм димеризации нейтрально заряженной молекулы ФОВ типа О-алкилалкилфторфосфоната (О-ААФФ) и [М+1]+ [6].
Процессы, происходящие при мягкой ионизации в цилиндрической ионной ловушке ограниченного объема, зависят от количества анализируемого вещества, что и вызывает искажение масс-спектра. На фигуре 2 приведены масс-спектры одного из ФОВ на примере О-ААФФ (зомана) для различного количества введенного вещества. Как видно на фигуре 2, масс-спектры сильно изменяются в зависимости от анализируемой массы вещества. В масс-спектре появляются псевдомолекулярные ионы, кроме того, изменяются соотношения интенсивностей регистрируемых ион-фрагментов. Искажение масс-спектральных данных существенно осложняет решение задач идентификации и количественного анализа.
При изучении литературных данных и по результатам собственных исследований нами была замечена закономерность в изменении пиков-ионов на масс-спектрах. На фигуре 3 представлен графический вид изменения интенсивностей пиков-ионов 99 а.е.м. и псевдомолекулярного иона [2М+1]+ в зависимости от количества введенного вещества на примере О-алкилалкилфторфосфонатов [8].
Как видно на фигуре 3, пик иона с массовым числом, m/z, равным 99 а.е.м., характерный для О-алкилалкилфторфосфонатов, уменьшается в зависимости от анализируемой массы исследуемого вещества, при этом псевдомолекулярный ион [2М+1]+ увеличивается. Отметим, что изменения интенсивности пика иона с массовым числом, m/z, равным 99 а.е.м., и для псевдомолекулярного иона подчиняются прямо пропорциональной зависимости от массы вещества.
Аналогичная картина имеет место и для вещества типа VX; отличие будет заключаться в массовом числе иона, характеристичного при ионизации электронным ударом, составляющем 114 а.е.м.
Наличие диапазонов массы, для которых наблюдается постоянство интенсивности характеристичного иона и линейная зависимость интенсивности нехарактеристичного иона в этом диапазоне от массы вещества, позволяет в выделенных диапазонах использовать линейную зависимость по нехарактеристичному иону для расчета массы анализируемого вещества. Дополнительную информацию несет псевдомолекулярный ион с массовым числом, равным [М+1]+.
Изучение зависимостей интенсивности всех трех ионов от массы вещества позволит, выделяя диапазоны характеристичных ионов, рассмотреть весь диапазон масс и получить градуировочные зависимости по нехарактеристичным ионам в каждом диапазоне массы.
Пример осуществления способа
В качестве примера осуществления способа рассмотрим возможность оценки количества зарина в пробе. Пробу зарина вводят в испаритель хроматографа, разделяют на хроматографической капиллярной колонке и регистрируют сигнал масс-детектора «Griffin-460» с цилиндрической ионной ловушкой. На фигуре 4 приведены масс-спектры зарина для различного количества введенного вещества. Как видно на фигуре 4, характер спектра изменяется в зависимости от количества введенного вещества.
Согласно предлагаемому техническому решению при установлении градуировочной зависимости определяют зависимость масс-спектральной характеристики детектора от массы зарина, введенного в испаритель. На фигуре 5 приведены зависимости изменения интенсивности пиков ионов с массовыми числами, равными [М+1]+ и [2М+1]+, где М - молекулярная масса вещества, а также для иона, являющегося характеристичным ионом для зарина при использовании ионизации электронным ударом. Как видно на фигуре 5, это ионы с массовыми числами 141,281 и 99 а.е.м. соответственно.
Далее выделяют диапазоны масс зарина, в которых интенсивности рассматриваемых ионов составляет 100%, то есть они являются характеристичными. Как видно на фигуре 5, интенсивность иона с массовым числом, равным 99 а.е.м., имеет значение 100% в диапазоне масс зарина от 1 до 11 нг. С увеличением массы зарина его интенсивность убывает, но при этом возрастает интенсивность иона с массовым числом, равным 281 а.е.м., которая достигает максимального значения 100% при массе зарина, равной 57 нг.
В диапазоне масс от 11 до 57 нг характеристичным является псевдомолекулярный ион с массовым числом, равным 141 а.е.м. Можно предположить, что пик иона с m/z=141 а.е.м является промежуточным, или компенсационным, и образуется именно в момент изменения интенсивности характеристичного пика с m/z=99 а.е.м, поскольку в приведенном масс-спектре не может отсутствовать характеристичный ион [8].
Это объясняет стремительное увеличение интенсивности до 100% пика иона с m/z=141 а.е.м. в диапазоне масс зарина от 1 до 11 нг.
Таким образом, можно выделить три диапазона масс зарина: первый - от 1 до 11 нг, для которого характеристичным ионом является ион с массовым числом, равным 99 а.е.м., второй - от 11 до 57 нг, в котором псевдомолекулярный ион с массовым числом, равным 141 а.е.м., является характеристичным, а третий - от 57 до 150 нг, интенсивность 100% имеет псевдомолекулярный ион с массовым числом 281 а.е.м.
После этого в каждом диапазоне масс зарина устанавливают корреляционные зависимости интенсивности нехарактеристичных ионов в данном диапазоне масс от массы зарина. Для первого диапазона масс нехарактеристичным является ион с массовым числом, равным 141 а.е.м.; для второго - ионы с массовыми числами, равными 99 и 281 а.е.м., для третьего диапазона - ион с массовым числом, равным 141 а.е.м.
В таблице 1 приведены математические выражения для установленных зависимостей.
Figure 00000001
Математические выражения, приведенные в таблице 1, используют для оценки количества зарина в пробе.
Для проверки работоспособности способа были приготовлены рабочие пробы с массой зарина от 1 до 150 нг. В таблице 2 приведены результаты определения массы зарина в рабочих пробах по предлагаемому способу.
Как видно из данных, приведенных в таблице 2, разработанный способ бесстандартной оценки массы фосфорорганического вещества, несмотря на большую погрешность для минимального значения массы, позволяет оценивать массу зарина без использования стандартных токсичных образцов сравнения, что повышает безопасность проведения анализа и расширяет функциональные возможности мобильного хромато-масс-спектрометра «Griffin-460» с цилиндрической ионной ловушкой.
Figure 00000002
В результате проведенных исследований было показано, что при увеличении массы зарина от 150 до 1000 нг интенсивность пика иона с массовым числом, равным m/z=141 а.е.м., продолжает убывать до 5%. Однако на данном этапе работы мы ограничиваемся диапазоном анализируемой массы зарина от 1 до 150 нг.
Известно, что пороговая концентрация зарина в воздухе составляет 5⋅10-4 мг/л при экспозиции вдыхаемого воздуха, равной 1 минуте. В ХМС «Griffin-460» для отбора проб воздуха используется пробоотборное устройство X-Sorber, в котором с помощью встроенного насоса осуществляется просасывание воздуха через сорбционную трубку. За одну минуту максимально можно отобрать 0,67 л воздуха. Как правило, отбор пробы воздуха с помощью X-Sorber осуществляется в течение времени до 30 секунд. Соответственно при сорбции паров зарина в воздухе на уровне пороговой концентрации масса зарина будет составлять не более 160 нг.
Поэтому выбранный диапазон массы зарина от 1 до 150 нг позволит при проведении специального химического контроля определять в воздухе зарин на уровне от 150 ПДКрз до значения пороговой концентрации.
Литература
1. Конвенция о запрещении разработки, производства, накопления и применения химического оружия и о его уничтожении. - М.: Комитет по конвенциальным проблемам химического и биологического оружия при Президенте Российской Федерации, 1994. - 133 с.
2. Царёв А. Мобильные радиационные, химические и биологические лаборатории зарубежных стран [Текст] / А. Царёв // Зарубежное военное обозрение. - 2012. - №9. - С. 41-48.
3. Золотова Ю.А. Основы аналитической химии: Книга 1. Общие вопросы. Методы разделения [Текст] / Ю.А. Золотов - М.: Высшая школа, 1999 - 351 с.
4. Vindevogel J. Introduction to MEKC, in: Chromatographic Methods [Текст] / J. Vindevogel, P. Sandra - Heidelberg, 1992. - 354 c.
5. Федеральный закон №76 «Об уничтожении химического оружия» от 02.02.97 г.
6. Patterson G.Е. Miniature Cylindrical Ion Trap Mass Spectrometer [Текст] / G. Patterson, A. Guymon, L. Riter [и др.] // Anal. Chem. - 2002. - V. 74. - P. 6145-6153.
7 Пат. №2313086 РФ МКИ G01N 30/72. Способ определения фосфорорганических веществ [Текст] / Новиков Сергей Васильевич (RU), Козлов Олег Владимирович (RU) Заявл. 02.07.2006. Опубл. 20.12.2007.
8. Карасек Ф. Введение в хромато-масс-спектрометрию [Текст] / пер. с англ. / Ф. Карасек, Р. Клемент. - М.: Мир, 1993. - 237 с.

Claims (1)

  1. Способ бесстандартной оценки количества фосфорорганического вещества в пробе, заключающийся в подготовке анализируемой пробы, вводе подготовленной пробы в испаритель хроматографа, разделении пробы в хроматографической капиллярной колонке, регистрации сигнала масс-спектрометрического детектора и установлении градуировочной зависимости, отличающийся тем, что при установлении градуировочной зависимости определяют зависимость масс-спектральной характеристики детектора с цилиндрической ионной ловушкой от массы анализируемого фосфорорганического вещества; выделяют диапазоны массы для характеристичных ионов с массовыми числами, равными [М+1]+ и [2М+1]+, где М - молекулярная масса вещества, а также для иона, являющегося характеристичным ионом для анализируемого фосфорорганического вещества при использовании ионизации электронным ударом; в каждом диапазоне масс устанавливают корреляционные зависимости изменения интенсивности нехарактеристичных ионов данного диапазона масс от массы; оценивают количество вещества в пробе, используя установленные корреляционные зависимости.
RU2015142684A 2015-10-07 2015-10-07 Способ бесстандартной оценки количества фосфорорганического вещества в пробе RU2610558C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015142684A RU2610558C1 (ru) 2015-10-07 2015-10-07 Способ бесстандартной оценки количества фосфорорганического вещества в пробе

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015142684A RU2610558C1 (ru) 2015-10-07 2015-10-07 Способ бесстандартной оценки количества фосфорорганического вещества в пробе

Publications (1)

Publication Number Publication Date
RU2610558C1 true RU2610558C1 (ru) 2017-02-13

Family

ID=58458579

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015142684A RU2610558C1 (ru) 2015-10-07 2015-10-07 Способ бесстандартной оценки количества фосфорорганического вещества в пробе

Country Status (1)

Country Link
RU (1) RU2610558C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2690705C1 (ru) * 2018-06-27 2019-06-05 Федеральное государственное бюджетное учреждение "33 Центральный научно-исследовательский испытательный институт" Министерства обороны Российской Федерации Способ оценки термостойкости фосфорорганических пестицидов при выполнении дезинсекции

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0634616A (ja) * 1992-07-13 1994-02-10 Japan Pionics Co Ltd 微量不純物の分析方法
GB2409102A (en) * 2003-12-10 2005-06-15 Bruker Daltonik Gmbh A method for the identification of a substance by mass spectrometry
RU2313086C2 (ru) * 2006-02-07 2007-12-20 Сергей Васильевич Новиков Способ определения фосфорорганических веществ
RU2469314C2 (ru) * 2011-02-10 2012-12-10 Федеральное государственное учреждение "33 Центральный научно-исследовательский испытательный институт Министерства обороны Российской Федерации" Способ идентификации органических соединений на основе метода высокоэффективной жидкостной хроматографии и масс-спектрометрии
JP6034616B2 (ja) * 2011-09-09 2016-11-30 キヤノン株式会社 導波路及びその製造方法、ならびに電磁波分析装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0634616A (ja) * 1992-07-13 1994-02-10 Japan Pionics Co Ltd 微量不純物の分析方法
GB2409102A (en) * 2003-12-10 2005-06-15 Bruker Daltonik Gmbh A method for the identification of a substance by mass spectrometry
RU2313086C2 (ru) * 2006-02-07 2007-12-20 Сергей Васильевич Новиков Способ определения фосфорорганических веществ
RU2469314C2 (ru) * 2011-02-10 2012-12-10 Федеральное государственное учреждение "33 Центральный научно-исследовательский испытательный институт Министерства обороны Российской Федерации" Способ идентификации органических соединений на основе метода высокоэффективной жидкостной хроматографии и масс-спектрометрии
JP6034616B2 (ja) * 2011-09-09 2016-11-30 キヤノン株式会社 導波路及びその製造方法、ならびに電磁波分析装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2690705C1 (ru) * 2018-06-27 2019-06-05 Федеральное государственное бюджетное учреждение "33 Центральный научно-исследовательский испытательный институт" Министерства обороны Российской Федерации Способ оценки термостойкости фосфорорганических пестицидов при выполнении дезинсекции

Similar Documents

Publication Publication Date Title
Mol et al. Evaluation of gas chromatography–electron ionization–full scan high resolution Orbitrap mass spectrometry for pesticide residue analysis
Fedorova et al. Comparison of the quantitative performance of a Q‐Exactive high‐resolution mass spectrometer with that of a triple quadrupole tandem mass spectrometer for the analysis of illicit drugs in wastewater
Wille et al. Rapid quantification of pharmaceuticals and pesticides in passive samplers using ultra high performance liquid chromatography coupled to high resolution mass spectrometry
Hamelin et al. Comparison of high‐resolution and tandem mass spectrometry for the analysis of nerve agent metabolites in urine
de Andrade et al. Electroanalytical identification of 25I-NBOH and 2C-I via differential pulse voltammetry: a rapid and sensitive screening method to avoid misidentification
You et al. Determination of pyrethroid insecticides in sediment by gas chromatography—Ion trap tandem mass spectrometry
Pilolli et al. Orbitrap™ monostage MS versus hybrid linear ion trap MS: application to multi‐allergen screening in wine
Forbes et al. Ion mobility spectrometry nuisance alarm threshold analysis for illicit narcotics based on environmental background and a ROC-curve approach
Vichi et al. Determination of volatile thiols in lipid matrix by simultaneous derivatization/extraction and liquid chromatography–high resolution mass spectrometric analysis. Application to virgin olive oil
Dumlao et al. Real-time detection of chemical warfare agent simulants in forensic samples using active capillary plasma ionization with benchtop and field-deployable mass spectrometers
WO2020194582A1 (ja) クロマトグラフ質量分析装置
JP2005331421A (ja) 質量分析装置および異性体分析方法
Neugebauer et al. Determination of halogenated flame retardants by GC-API-MS/MS and GC-EI-MS: a multi-compound multi-matrix method
Yamaguchi et al. Dimethoxytriadinylation LC–MS/MS of Novichok A-series degradation products in human urine
Schepens et al. Rapid confirmation and quantitation of drugs-of-abuse in oral fluid using a low cost, small footprint mass spectrometer
Hernando et al. Determination of traces of five antifouling agents in water by gas chromatography with positive/negative chemical ionisation and tandem mass spectrometric detection
Liu et al. Development of a liquid chromatography-quadrupole-time-of-flight-mass spectrometry based method for the targeted and suspect screening of contaminants in the pearl oyster Pinctada imbricata radiata
RU2610558C1 (ru) Способ бесстандартной оценки количества фосфорорганического вещества в пробе
Kogan et al. A portable mass spectrometer for direct monitoring of gases and volatile compounds in air and water samples
Halme et al. Development and validation of efficient stable isotope dilution LC–HESI–MS/MS method for the verification of β-lyase metabolites in human urine after sulfur mustard exposure
Sokol et al. Rapid hydrocarbon analysis using a miniature rectilinear ion trap mass spectrometer
Crimmins et al. Non-targeted screening in environmental monitoring programs
Moeder Gas chromatography-mass spectrometry
RU2313086C2 (ru) Способ определения фосфорорганических веществ
Xu et al. A multiresidue analytical method for the detection of seven triazolopyrimidine sulfonamide herbicides in cereals, soybean and soil using the modified QuEChERS method and UHPLC-MS/MS

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20171008