RU2610074C2 - Композиционный материал - Google Patents

Композиционный материал Download PDF

Info

Publication number
RU2610074C2
RU2610074C2 RU2015109836A RU2015109836A RU2610074C2 RU 2610074 C2 RU2610074 C2 RU 2610074C2 RU 2015109836 A RU2015109836 A RU 2015109836A RU 2015109836 A RU2015109836 A RU 2015109836A RU 2610074 C2 RU2610074 C2 RU 2610074C2
Authority
RU
Russia
Prior art keywords
component
mass
composite material
pms
silicone oligomer
Prior art date
Application number
RU2015109836A
Other languages
English (en)
Other versions
RU2015109836A (ru
Inventor
Николай Юрьевич Ефремов
Василий Дмитриевич Мушенко
Владимир Шалвович Сулаберидзе
Original Assignee
Николай Юрьевич Ефремов
Василий Дмитриевич Мушенко
Владимир Шалвович Сулаберидзе
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Николай Юрьевич Ефремов, Василий Дмитриевич Мушенко, Владимир Шалвович Сулаберидзе filed Critical Николай Юрьевич Ефремов
Priority to RU2015109836A priority Critical patent/RU2610074C2/ru
Publication of RU2015109836A publication Critical patent/RU2015109836A/ru
Application granted granted Critical
Publication of RU2610074C2 publication Critical patent/RU2610074C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/56Organo-metallic compounds, i.e. organic compounds containing a metal-to-carbon bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used

Abstract

Изобретение относится к области теплопроводящих композиционных материалов на полимерной основе, применяемых для отвода избыточного тепла от работающих изделий и устройств. Описан композиционный материал, содержащий силиконовый каучук в качестве полимерного связующего и мелко дисперсные наполнители, который состоит из двух компонентов: компонент А (основа композиционного материала) и компонент Б (отверждающая система), соединяемых в массовых соотношениях компонента А к компоненту Б от 100:4 масс. ч. до 100:8 масс. ч., причем компонент А представляет собой смесь низкомолекулярного силиконового каучука с молекулярной массой 15000-60000 и силиконового олигомера, наполненную нитридом бора гексагональным и кварцем молотым пылевидным, при соотношении составляющих ингредиентов, масс. ч.: каучук низкомолекулярный силиконовый, 100, выбранный из СКТН марки А, СКТН марки Б и СКТНФ марки А, силиконовый олигомер, выбранный из ПМС-50 или ПМС-100 до 40, кварц молотый пылевидный 60-320, нитрид бора гексагональный 20-100, а компонент Б является смесью этилсиликата и оловоорганической соли, выбранной из октоата олова и диэтилдикаприлата олова, а также может дополнительно включать силиконовый олигомер при соотношении составляющих ингредиентов, масс. ч: этилсиликат – 40 - 100, катализатор - оловоорганическая соль, выбранная из октоата олова и диэтилдикаприлата олова 10-30, силиконовый олигомер, выбранный из ПМС-50 или ПМС-100, до 100. Технический результат: разработан композиционный материал, сочетающий технологичность целевого применения и необходимую теплопроводность при эксплуатации включающих его изделий и устройств. 1 з.п. ф-лы, 6 табл., 12 пр.

Description

Изобретение относится к области композиционных материалов на полимерной основе, конкретно к области композиционных теплопроводящих материалов, применяемых для отвода избыточного тепла с целью предотвращения перегрева работающих технических изделий и устройств.
Известны различные теплопроводящие материалы, в том числе компаунды и клеи для обеспечения отвода тепла в работающих технических устройствах, способы применения и составы этих материалов. Компаунды предназначены для изделий электронной техники (ИЭТ), электротехнической и радиоэлектронной аппаратуры (РЭА), других изделий специального применения.
Известны теплопроводящие пасты, смазки, фольга с покрытием, заполняющим неровности поверхности изделия (парафины, воски), материалы на стекловолоконной основе, заполненные силиконовым каучуком производства компании Berquist, а также другие рассеивающие тепловую энергию полимерные композиты. («Силовая электроника» №3, 2012, стр. 48-52). Недостатками этих материалов являются: зарубежное происхождение компонентов, ограниченные технологические возможности применения, а также несоответствие ряду эксплуатационных требований к объектам применения и значительные цены.
Известны трехслойные полимерсодержащие структуры для обеспечения теплоотвода от работающих лазерных диодов и сверхярких светодиодов, генерирующих значительную тепловую энергию и содержащие верхний слой в виде медной фольги, средний слой в виде изолирующего диэлектрика и нижний слой в виде теплопроводящей металлической пластины («Силовая электроника» №2, 2008, стр. 118-123). Недостатками этих структур является как их многослойность, так и необходимость в применении зарубежных компонентов.
Известен теплопроводящий состав на основе полифенилсилоксановой и глифталевой смол, содержащий алюминиевую пудру и бериллиевую пудру (АС СССР №395345). Препятствиями для его применения являются как токсичность бериллия и органических растворителей, так и незначительный уровень достигаемой теплопроводности (до 0,3 Вт/м*град.).
Известен теплопроводящий и электропроводящий материал (пат РФ №2200170), содержащий частицы углеродного материала с полипропиленовым покрытием. Его недостатком является как то, что он не является диэлектриком, так и то, что его технологически проблематично использовать при герметизации в большинстве конструкций ИЭТ и РЭА.
Известен электроизоляционный состав (АС СССР №643978) на основе эпоксидных смол, аминного отвердителя и наполнителей: оксида алюминия и нитрида бора. Технологическому применению этого состава препятствует большая исходная вязкость, а также ограниченные возможности разборки и расклейки конструктива.
Известна электроизоляционная композиция (АС СССР №1078470) на основе эпоксидной диановой смолы, содержащая кремний или карбид кремния в качестве наполнителя, для которой достигнуто значение теплопроводности 2,1 Вт/м*К. Эта композиция является диэлектриком и обладает удовлетворительными технологическими свойствами. Однако ее основным недостатком является необходимость применения повышенных температур при нанесении. Другим недостатком является невозможность снятия отвержденной композиции с залитых ею электротехнических элементов (например, дросселей) при технологической ошибке для проведения повторной операции. Это же относится и к композиции для теплопроводящего клеевого состава (пат. РФ №2676169), рекомендуемой для применения в греющихся элементах приборов и узлов.
Известны теплопроводящие пасты, например, Dow Corning 340 со значением теплопроводности 0,68 Вт/м*К или Dow Corning SC 102 со значением теплопроводности 0,85 Вт/м*К. Однако их недостатками являются не всегда достаточный уровень теплопроводности и зарубежное происхождение.
Известен отечественный компаунд КТК-1 (ТУ 2252-037-89021704-2013), предназначенный для заливки изделий радио и электротехнической аппаратуры. Его получают смешением двух компонентов при комнатной температуре в соотношении:
Компонент 1 - 100 в.ч
Компонент 2 - 2 в.ч
При значении коэффициента теплопроводности 1,1 Вт/м*К компаунд имеет в отвержденном состоянии предел прочности при растяжении 0,6 МПа и относительное удлинение при разрыве не более 30%. Таким образом, при достаточной теплопроводности он значительно уступает по физико-механическим характеристикам большинству известных силиконовых компаундов.
Известны компаунды группы КПТД-1/1, выпускаемые фирмой «НОМАКОН» по ТУ РБ 100009933.004-2001. К ним относятся компаунды 1Л--1,00, 1Л-1,50, 1Л-2,50 с хорошими диэлектрическими показателями, но с теплопроводностью не выше 0,50 Вт/м*К, что в большинстве случаев не достаточно. Кроме того, в таблице по данным материалам не приводятся сведения по физико-механическим характеристикам, что заставляет сделать предположение об их недостаточно высоких значениях. Несколько лучшей теплопроводностью обладают компаунды КПТД-1/1, отнесенные к разряду «тяжелых». Это компаунды 1Т-5,50, 1Т-8,50, 1Т-12,5. Однако за счет значительного увеличения вязкости в данном случае удается добиться теплопроводности не более 0,80 Вт/м*К при заметной потере технологичности. Из-за отсутствия необходимых характеристик трудно судить о прочности и эластичности вулканизатов этих компаундов. Тем не менее, по своему составу, принципам целевого применения, технологическим свойствам, основным свойством вулканизатов компаунды КПТД-1/1 наиболее близки к заявляемому компаунду и приняты в качестве прототипа.
Технической задачей настоящей заявки на изобретение является разработка композиционного материала, сочетающего технологичность целевого применения и необходимую теплопроводность при эксплуатации включающих его изделий и устройств. Другой задачей настоящей заявки является достижение импортозамещения в области композиционных теплопроводящих материалов.
Поставленные технические задачи решаются тем, что заявляемый композиционный материал состоит из двух компонентов: компонент А (основа композиционного материала) и компонент Б (отверждающая система), соединяемых в массовых соотношениях компонента А к компоненту Б от 100:4 масс. ч. до 100:8 масс. ч., причем компонент А представляет собой смесь низкомолекулярного силиконового каучука с молекулярной массой 15000-60000 и силиконового олигомера, наполненную нитридом бора гексагональным и кварцем молотым пылевидным, при соотношении составляющих ингредиентов, масс. ч.:
каучук низкомолекулярный силиконовый, 100
выбранный из СКТН марки А, СКТН марки Б
и СКТНФ марки А
силиконовый олигомер, выбранный из ПМС-50 или ПМС-100 до 40
кварц молотый пылевидный 60-320
нитрид бора гексагональный 20-100
а компонент Б является смесью этилсиликата и оловоорганической соли, выбранной из октоата олова и диэтилдикаприлата олова, а также может дополнительно включать силиконовый олигомер при соотношении составляющих ингредиентов, масс. ч:
этилсиликат - 40 100
катализатор - оловоорганическая соль,
выбранная из октоата олова и диэтилдикаприлата олова 10-30
силиконовый олигомер, выбранный из ПМС-50 или ПМС-100 до 100
Состав компонента Б композиционного материала может дополнительно включать силиконовый олигомер ПМС-50 или ПМС-100 в количествах до 50 масс. ч. на 100 масс. ч. этилсиликата.
В составе заявляемого компаунда применяются следующие компоненты (таблица 1).
Figure 00000001
В таблице 2 приведены данные по составу компонента А заявляемого композиционного материала. В таблице 3 приведены данные по составу компонента Б заявляемого композиционного материала. В таблице 4 приведены данные по составу заявляемого композиционного материала. В таблице 5 приведены данные по характеристикам заявляемого композиционного материала. В таблице 6 приведены сравнительные характеристики заявляемого композиционного материала, его прототипа и аналогов.
Далее приведены конкретные примеры получения компонента А, примеры получения компонента Б, примеры получения заявляемого композиционного материала.
Пример 1
Приготовление компонента А композиционного материала. Взвешивают в емкости для смешения 100 г каучука СКТН марки А. Помещают в емкость 30 г силиконового олигомера ПМС-50 и тщательно перемешивают с каучуком 2-3 мин. В полученную смесь вносят 100 г мелкодисперсного нитрида бора гексагонального, перемешивают и выдерживают до выхода основного количества воздушных включений из объема смеси. В полученную суспензию вносят по частям, периодически перемешивая, кварц молотый пылевидный в количестве 60 г. Полученный компонент А переносят в закрывающуюся емкость и хранят в закрытом виде до момента введения в контакт с компонентом Б, но не менее 24 ч.
Пример 2
Приготовление компонента А композиционного материала. Взвешивают в емкости для смешения 100 г каучука СКТН марки А. В емкость вносят 60 г мелкодисперсного нитрида бора гексагонального, перемешивают с СКТН и выдерживают до выхода основного количества воздушных включений из объема смеси. В полученную суспензию вносят по частям, периодически перемешивая, кварц молотый пылевидный в количестве 150 г. Полученный компонент А переносят в закрывающуюся емкость и хранят в закрытом виде до момента введения в контакт с компонентом Б, но не менее 24 ч.
Пример 3
Приготовление компонента А композиционного материала. Взвешивают в емкости для смешения 100 г каучука СКТН марки Б. Помещают в емкость 20 г силиконового олигомера ПМС-100 и тщательно перемешивают с каучуком 2-3 мин. В полученную смесь вносят 80 г мелкодисперсного нитрида бора гексагонального, перемешивают и выдерживают до выхода основного количества воздушных включений из объема смеси. В полученную суспензию вносят по частям, периодически перемешивая, кварц молотый пылевидный в количестве 80 г. Полученный компонент А переносят в закрывающуюся емкость и хранят в закрытом виде до момента введения в контакт с компонентом Б, но не менее 24 ч.
Пример 4
Приготовление компонента А композиционного материала. Взвешивают в емкости для смешения 100 г каучука СКТНФ марки А. Помещают в емкость 30 г силиконового олигомера ПМС-50 и тщательно перемешивают с каучуком 2-3 мин. В полученную смесь вносят 85 г мелкодисперсного нитрида бора гексагонального, перемешивают и выдерживают до выхода основного количества воздушных включений из объема смеси. В полученную суспензию вносят по частям, периодически перемешивая, кварц молотый пылевидный в количестве 120 г. Полученный компонент А переносят в закрывающуюся емкость и хранят в закрытом виде до момента введения в контакт с компонентом Б, но не менее 24 ч.
Пример 5
Приготовление компонента Б композиционного материала. Взвешивают в емкости для смешения 100 г этилсиликата - 40. Добавляют Юг октоата олова и тщательно перемешивают. Полученный компонент Б переносят в закрывающуюся емкость и хранят до момента введения в контакт с компонентом А.
Пример 6
Приготовление компонента Б композиционного материала. Взвешивают в емкости для смешения 100 г этилсиликата - 40. Добавляют 20 г октоата олова и тщательно перемешивают. Добавляют 30 г силиконовый олигомера ПМС-100 и вновь перемешивают. Полученный компонент Б переносят в закрывающуюся емкость и хранят до момента введения в контакт с компонентом А.
Пример 7
Приготовление компонента Б композиционного материала. Взвешивают в емкости для смешения 100 г этилсиликата - 40. Добавляют 30 г диэтилдикаприлата олова и тщательно перемешивают. Затем добавляют 60 г силиконового олигомера ПМС-50, вновь перемешивают. Полученный компонент Б переносят в закрывающуюся емкость и хранят до момента введения в контакт с компонентом А.
Пример 8
Приготовление компонента Б композиционного материала. Взвешивают в емкости для смешения 100 г этилсиликата - 40. Добавляют 30 г диэтилдикаприлата олова и тщательно перемешивают. Затем добавляют 70 г силиконового олигомера ПМС-100 и вновь перемешивают. Полученный компонент Б переносят в закрывающуюся емкость и хранят до момента введения в контакт с компонентом А.
Пример 9
Для приготовления композиционного материала в технологическую емкость вносят 100 г компонента А, композиция 6 (таблица 2). Добавляют 6 г компонента Б, композиция 5 (таблица 3). Тщательно перемешивают 2-3 мин и передают для технологического применения.
Пример 10
Для приготовления композиционного материала в технологическую емкость вносят 100 г компонента А, композиция 3 (таблица 2). Добавляют 8 г компонента Б, композиция 4 (таблица 3). Тщательно перемешивают 2-3 мин и передают для технологического применения.
Пример 11
Для приготовления композиционного материала в технологическую емкость вносят 100 г компонента А, композиция 2 (таблица 2). Добавляют 7 г компонента Б, композиция 2 (таблица 3). Тщательно перемешивают 2-3 мин и передают для технологического применения.
Пример 12
Для приготовления композиционного материала в технологическую емкость вносят 100 г компонента А, композиция 6 (таблица 2). Добавляют 4 г компонента Б, композиция 8 (таблица 3). Тщательно перемешивают 2-3 мин и передают для технологического применения.
При разработке композиционного материала требовалось, чтобы его теплопроводящие свойства были бы не ниже, чем у аналогов и прототипа, а также обеспечен необходимый уровень физико-механических и диэлектрических свойств. При этом должны быть соблюдены требования к технологичности композиционного материала в условиях применения, то есть достигнуто сочетание вязкотекучих свойств, «жизнеспособности» и времени полного отвердения материала. Решение задачи заключается в соединении заранее подготовленных компонентов: компонента А и компонента Б в количественном соотношении от 100:4 масс. ч. до 100:8 масс. ч.. Выход количественных соотношений за указанные пределы приводит к заметному ухудшению достигаемых характеристик и требуемого уровня эксплуатационных свойств. Снижение содержания компонента Б (таблица 4, колонка 8) не только неоправданно увеличивает время отверждения, но и приводит к ухудшению физико-механических свойств вулканизата. При содержании компонента Б выше заявляемых пределов (таблица 4, колонки 6, 7), хотя и удается сохранить требуемые характеристики вулканизатов композиционного материала, наблюдается быстрая потеря текучести, утрата технологических свойств, преждевременная вулканизация материала. При разработке заявляемого композиционного материала представленные в заявке соотношения многократно проверены экспериментальным путем. Экспериментальным путем установлено, что превышение содержания нитрида бора в составе компонента А выше указанных пределов приводит к скачкообразному увеличению исходной вязкости компонента А и приводит к потере технологических свойств. Уменьшение содержания нитрида бора ниже указанных пределов может привести к потере высоких значений теплопроводности заявляемого материала. При содержании в составе компонента А кварца молотого пылевидного наблюдается снижение требуемого уровня физико-механических характеристик.
При разработке композиционного материала достигнута физическая и химическая совместимость входящих в него компонентов, а также определены как ингредиенты, входящие в состав компонента А и компонента Б, так и их количественные соотношения, необходимые и достаточные для одновременного обеспечения уровня требуемых характеристик композиционного материала.
Применение в качестве исходной полимерной основы низкомолекулярных каучуков СКТН и СКТНФ позволяет обеспечить сочетание термической стабильности и морозостойкости вулканизата композиционного материала при сохранении высокой эластичности в широком интервале температур. При применении каучуков молекулярной массы со значением менее 15000 не достигается необходимая прочность вулканизата. При применении каучуков молекулярной массой со значением более 60000 в виду повышения их вязкости не удается ввести в состав необходимое количество теплопроводящего наполнителя.
Общее содержание наполнителя в количествах ниже приведенных пределов не позволяет обеспечить им необходимой теплопроводности, необходимой степени прочности и эластичности. С другой стороны содержание наполнителей, превышающее указанные количественные пределы не позволяет добиться необходимой технологичности применения компаунда, поскольку большая степень исходной вязкости будет препятствовать сохранению вязкотекучих свойств и возможности бездефектного нанесения на сложнопрофильные поверхности изделий. Применение силиконовых олигомеров способствует улучшению вязкотекучих свойств композиционного материала и позволяет повысить эластичность его вулканизата. Однако превышение содержания силиконовых олигомеров может отрицательно сказаться на термической стойкости композиционного материала, а также может привести к частичному выделению олигомера на его поверхности. В свою очередь это вызвало бы частичную потерю работоспособности изделий, в составе которых применен композиционный материал.
Все компоненты заявляемого композиционного материала имеют отечественное происхождение и доступны. Исходя из приведенных доводов, следует считать, что свойства компонентов заявляемого композиционного материала и пределы их содержания в составе, а также количественные соотношения частей композиционного материала являются оптимальными. При этом обеспечен требуемый уровень теплопроводности, других технических и эксплуатационных характеристик. Учитывая приведенные данные по заявляемому компаунду и достигнутые количественные характеристики, техническую задачу изобретения следует считать решенной. Задачу изобретения связанную с необходимостью импортозамещения полимерных составов также следует считать решенной.
Figure 00000002
Figure 00000003
Figure 00000004
Figure 00000005
Figure 00000006

Claims (5)

1. Композиционный материал, содержащий силиконовый каучук в качестве полимерного связующего и мелкодисперсные наполнители, отличающийся тем, что состоит из двух компонентов: компонент А (основа композиционного материала) и компонент Б (отверждающая система), соединяемых в массовых соотношениях компонента А к компоненту Б от 100:4 масс. ч. до 100:8 масс. ч., причем компонент А представляет собой смесь низкомолекулярного силиконового каучука с молекулярной массой 15000-60000 и силиконового олигомера, наполненную нитридом бора гексагональным и кварцем молотым пылевидным, при соотношении составляющих ингредиентов, масс. ч.:
каучук низкомолекулярный силиконовый, 100 выбранный из СКТН марки А, СКТН марки Б и СКТНФ марки А силиконовый олигомер, выбранный из ПМС-50 или ПМС-100 до 40 кварц молотый пылевидный 60-320 нитрид бора гексагональный 20-100
а компонент Б является смесью этилсиликата и оловоорганической соли, выбранной из октоата олова и диэтилдикаприлата олова, а также может дополнительно включать силиконовый олигомер при соотношении составляющих ингредиентов, масс. ч:
этилсиликат - 40 100 катализатор - оловоорганическая соль, выбранная из октоата олова и диэтилдикаприлата олова 10-30 силиконовый олигомер, выбранный из ПМС-50 или ПМС-100 до 100
2. Композиционный материал по п. 1, отличающийся тем, что состав компонента Б композиционного материала дополнительно включает силиконовый олигомер ПМС-50 или ПМС-100 в количествах до 50 масс. ч. на 100 масс. ч. этилсиликата.
RU2015109836A 2015-03-20 2015-03-20 Композиционный материал RU2610074C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015109836A RU2610074C2 (ru) 2015-03-20 2015-03-20 Композиционный материал

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015109836A RU2610074C2 (ru) 2015-03-20 2015-03-20 Композиционный материал

Publications (2)

Publication Number Publication Date
RU2015109836A RU2015109836A (ru) 2016-10-10
RU2610074C2 true RU2610074C2 (ru) 2017-02-07

Family

ID=57122169

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015109836A RU2610074C2 (ru) 2015-03-20 2015-03-20 Композиционный материал

Country Status (1)

Country Link
RU (1) RU2610074C2 (ru)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2645533C1 (ru) * 2017-01-09 2018-02-21 Василий Дмитриевич Мушенко Теплопроводящий герметик

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2223296C1 (ru) * 2002-11-18 2004-02-10 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" Герметизирующая композиция
RU2288925C1 (ru) * 2005-09-22 2006-12-10 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Герметизирующая композиция
RU2502772C1 (ru) * 2012-04-19 2013-12-27 Закрытое акционерное общество "Комплексный технический сервис" Композиционный материал для герметизации

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2223296C1 (ru) * 2002-11-18 2004-02-10 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" Герметизирующая композиция
RU2288925C1 (ru) * 2005-09-22 2006-12-10 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Герметизирующая композиция
RU2502772C1 (ru) * 2012-04-19 2013-12-27 Закрытое акционерное общество "Комплексный технический сервис" Композиционный материал для герметизации

Also Published As

Publication number Publication date
RU2015109836A (ru) 2016-10-10

Similar Documents

Publication Publication Date Title
US9745498B2 (en) Heat-storage composition
CN105754346B (zh) 导热性有机硅组合物和固化物以及复合片材
JP6497291B2 (ja) 絶縁放熱シート
KR102334773B1 (ko) 열전도성 폴리오가노실록산 조성물
JP6217588B2 (ja) 熱伝導性シリコーンポッティング組成物
JP2013189625A (ja) 高熱伝導性樹脂硬化物、高熱伝導性半硬化樹脂フィルム及び高熱伝導性樹脂組成物
JP2011144234A (ja) 熱伝導性樹脂組成物
JP2014193965A (ja) 高熱伝導性樹脂組成物、高熱伝導性半硬化樹脂フィルム及び高熱伝導性樹脂硬化物
JP2013053218A (ja) 熱硬化性樹脂組成物及び半導体封止用樹脂組成物
CN106753208A (zh) 一种氧化石墨烯改性的led导热灌封胶及其制备方法
JP2019073730A (ja) 熱伝導性ポリオルガノシロキサン組成物
CN101775216A (zh) 一种高导热有机硅复合物的生产方法
JP2018188559A (ja) 熱伝導性シリコーン組成物
JP7082563B2 (ja) 熱伝導性シリコーン組成物の硬化物
JP6333929B2 (ja) エポキシ樹脂組成物およびこれを含むサーマルインターフェース材料
WO2021256391A1 (ja) シリコーン組成物、及び高熱伝導性を有する熱伝導性シリコーン硬化物
RU2645533C1 (ru) Теплопроводящий герметик
JP2012162664A (ja) 熱硬化性樹脂組成物及び半導体封止用樹脂組成物
RU2610074C2 (ru) Композиционный материал
JP2012224684A (ja) 熱硬化性樹脂組成物及び半導体封止用樹脂組成物
WO2021109730A1 (zh) 一种双组份有机硅灌封胶及其应用方法
JP6925147B2 (ja) 熱硬化型シリコーンレジンペースト組成物およびその使用
JP2014189701A (ja) 高熱伝導性樹脂硬化物、高熱伝導性半硬化樹脂フィルム及び高熱伝導性樹脂組成物
KR20160067890A (ko) 필름용 수지 조성물, 절연 필름 및 반도체 장치
RU2651178C1 (ru) Теплопроводящий компаунд для герметизации

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170511