RU2607136C2 - Носовая оконечность быстроходного надводного корабля или относительно тихоходного гражданского судна повышенной штормовой мореходности и ледовой проходимости в автономном плавании - Google Patents

Носовая оконечность быстроходного надводного корабля или относительно тихоходного гражданского судна повышенной штормовой мореходности и ледовой проходимости в автономном плавании Download PDF

Info

Publication number
RU2607136C2
RU2607136C2 RU2015107067A RU2015107067A RU2607136C2 RU 2607136 C2 RU2607136 C2 RU 2607136C2 RU 2015107067 A RU2015107067 A RU 2015107067A RU 2015107067 A RU2015107067 A RU 2015107067A RU 2607136 C2 RU2607136 C2 RU 2607136C2
Authority
RU
Russia
Prior art keywords
ship
ice
stem
storm
speed
Prior art date
Application number
RU2015107067A
Other languages
English (en)
Other versions
RU2015107067A (ru
Inventor
Василий Николаевич Храмушин
Original Assignee
Василий Николаевич Храмушин
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Василий Николаевич Храмушин filed Critical Василий Николаевич Храмушин
Priority to RU2015107067A priority Critical patent/RU2607136C2/ru
Publication of RU2015107067A publication Critical patent/RU2015107067A/ru
Application granted granted Critical
Publication of RU2607136C2 publication Critical patent/RU2607136C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/02Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement
    • B63B1/04Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with single hull
    • B63B1/06Shape of fore part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/32Other means for varying the inherent hydrodynamic characteristics of hulls
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/10Measures concerning design or construction of watercraft hulls

Abstract

Изобретение относится к области судостроения и касается проектирования формы носовой оконечности корпуса судна, эксплуатируемого в сложных штормовых и ледовых условиях мореплавания. Улучшение ходовых и маневренных качеств на интенсивном штормовом волнении, умерение всех видов качки, снижение риска обледенения верхних палуб достигается особым устройством форштевня и скуловых обводов: заваленным или вертикальным форштевнем для безударного прорезания гребней штормовых волн, с возможностью движения во льдах в режиме ледореза, со штормовым подрезом в нижней части форштевня для раскрепощения рыскания в условиях интенсивной бортовой и килевой качки, с упрочнением нижней части форштевня и заостренной надводной частью форштевня-ледореза, надводные ветви шпангоутов оптимизируются от небольшого развала, стабилизирующего активный штормовой ход, до их завала со снижением высоты бака для компенсации килевой качки за счет заливаемости носовой палубы тихоходных судов, бульбовое образование задает начало винтовой поверхности на уровне переменных ватерлиний от форштевня до зоны отрыва расходящейся корабельной волны, что компенсирует силовое воздействие встречных штормовых волн и служит уменьшению ходового дифферента, за зоной отрыва корабельной волны начинается выпуклый изгиб шпангоутных контуров с образованием завала борта и подводных булей в средней части корпуса, что снижает бортовую качку в штормовых условиях. 2 ил.

Description

Изобретение относится к областям наук о кораблестроении и судовождении в сложных, штормовых и ледовых условиях мореплавания, и представляется результатом математических и экспериментальных исследований в области целевого непротиворечивого проектирования корабля для штормовых и ледовых условий мореходства на Дальнем востоке России, в полярных акваториях Арктики и Антарктики.
Назначение
Настоящим изобретением устанавливаются варианты построения носовой оконечности быстроходного корабля и относительно тихоходного транспортного судна повышенной мореходности, способных к поддержанию активного хода заданными курсом относительно интенсивного волнения открытого моря, адаптированных к штормовому маневрированию в условиях ураганных ветров и интенсивного волнения, предохраненных от опасности ветрового набрызгового обледенения верхних палуб и обладающих возможностью автономного ледового плавания во льдах со средней (не сплошной) сплоченностью.
Океанский флот повышенной штормовой мореходности и ледовой проходимости должен создаваться по специальным проектам для дальневосточных морей России, что необходимо для организации эффективного ведения морских работ и поддержания транспортных коммуникаций во все сезоны года в любых погодных условиях, и что в немалой степени обусловливается практическим отсутствием портов-убежишь для укрытия от штормов кораблей и судов, предназначенных к ведению морских работ в обширных акваториях Сахалина и Курильских островов.
Уровень техники
Непротиворечивое проектирование морской техники оперирует инженерными подходами к оптимизации обводов, формы корпуса и общекорабельной архитектуры всепогодного судна, способного к активному использованию палубных устройств и высокотехнологичного бортового оборудования в условиях штормовой качки и холодных ветров северных морей [1, 2].
Предпосылками поисковых математических и экспериментальных исследований, приведших к формулированию инженерно-технических решений настоящего изобретения, стали исторические зарисовки формы носовой оконечности древнего китайского корабля, изображенного на «Карте с кораблем» Марко Поло в XIII веке; а также построение форштевня и скулы кораблей и судов конца XIX - начала XX веков, носовые оконечности которых во многом согласуется с настоящими инженерно-техническими решениями.
В соответствии с этапами целевого проектирования и построения нового судна, ключевые инженерно-технические разработки должны строго соответствовать исходному эксплуатационному заданию на создание перспективных кораблей и судов для достижения наивысшей эффективности исполнения задач по предназначению корабля и ведения морских работ [3] и поддержания морских транспортных коммуникаций во все сезоны года в любых погодных условиях длительного автономного плавания в удаленных штормовых и ледовых акваториях дальневосточных морей России и северной части Тихого океана.
В качестве ведущей концепции проектирования обводов и формы корпуса корабля используются инженерно-технические принципы [4] непротивления силовому воздействию со стороны штормовых волн и снижения ударных ледовых нагрузок, что способствует гидродинамической взаимокомпенсации всех видов качки, обеспечению комфортности обитания экипажа и безусловной безопасности крепления грузов и оборудования. Согласованность режимов гидродинамического влияния формы, инерции и гравитационной массы судна на ходу в условиях крупного волнения, так же как и отсутствие в носовой части корабля чего бы то ни было лишнего, создают условия всепогодной работы в соответствии с предназначением.
Оптимальность выбора обводов носовой оконечности корабля поверена серией расчетов [5] с использованием интеграла Джона Генри Мичелла [6, Michell J.H. 1898], физическая и геометрическая интерпретация которого выявляет взаимосвязь между корабельным волнообразованием на больших скоростях хода [7] и силовым воздействием на корпус корабля со стороны морского волнения:
Figure 00000001
Figure 00000002
Rx - волновое сопротивление корабля при скорости движения V0. Все величины в интеграле Мичелла приведены к размерным физическим функциям и аргументам: А(λ) - амплитуда излучаемой корабельной волны;
Figure 00000003
- соотношение длин для максимальной поперечной волны Λ к расчетной фазовой волне λ; k=2⋅π/λ - волновое число для данной фазовой волны;
Figure 00000004
- круговая частота расчетной волны во времени.
Физико-геометрическая интерпретация гидродинамических процессов в интеграле Мичелла показывает механизм отражения от корпуса корабля внешних волн, набегающих на корпус корабля под косыми углами ϑ в диапазоне длин:
Figure 00000005
, где Λ - длина поперечной корабельной волны, соответствующая скорости хода V0. В оконечностях корабельной волне не хватает скорости для отрыва от корпуса, и волновые процессы заменяются ударным суммированием амплитуд коротких волн в форме простого источника жидкости вблизи судовой обшивки.
В частном случае оптимизация обводов сводится к поиску геометрических форм с минимальным ходовым дифферентом и корабельным образованием на всех, включая закритически высоких, скоростях хода по тихой воде, при основных посадках, возникающих в процессе вертикальной качки в штормовом море, что согласно гипотезе об обратимости физических процессов излучения и отражения корабельных и штормовых трохоидальных волн, ожидается построение обводов, обладающих свойством пропуска штормовой трохоидальной волны через корпус корабля с минимальными искажениями, что должно обеспечиваться в условиях интенсивной вертикальной и килевой качки на крупном штормовом волнении. Вычислительные эксперименты и мореходные испытания по моделированию корабельного волнообразования и воздействия на корпус трохоидальных штормовых волн [8] показывают результаты чувствительные к изменению носовых обводов, что и позволяет математически определиться с экстремальными функционалами и осмысленными инженерными решениями в оптимизационной задаче о наилучшем построении носовой части корпуса корабля. Вычислительные эксперименты по моделированию корабельного волнообразования от кормовой части корабля крайне зависимы от продольного и вертикального распределения источников волнового излучения, что формально делает оптимизационную задачу плохо обусловленной, и потому в расчетах использовались более жесткие оптимизационные функционалы, раздельно для носовой и кормовой оконечностей корабля, в которых не учитывается интерференция корабельных волн, излучаемых от источников в носовой оконечности, и стоков - в кормовой.
Предлагаемая в настоящем изобретении носовая оконечность корабля оптимизирована преимущественно для автономного плавания в условиях интенсивного волнения под ураганными ветрами открытого океана [3, 10] с возможностью автономного хода во льдах (класс УЛ или УЛА) средней сплоченности до 8-9 баллов, в том числе со скоростью шесть и более узлов под проводкой ледокола.
Прототипом настоящего инженерного решения следует полагать изобретение RU-2384456 - «Корабль гидрографической и патрульной службы» [9], в котором определяется назначение и эксплуатационные особенности корабля повышенной штормовой мореходности. Аналогом для варианта тихоходного судна представляется изобретение RU-2535382 - «Рыболовное судно северных морей» [10], с форштевнем, обеспечивающим режим ледореза и не теряющим остойчивости при давлении форштевнем на тяжелые ледовые поля, что очень важно для судов с предельно малой начальной остойчивостью по условиям минимизации качки в штормовом плавании. Историческими аналогами для избранных технических решений по форме форштевня, скулы и носовых обводов корпуса являются добротные корабли и суда конца XIX - начала XX веков, в построении формы носовых обводов у которых можно отметить промежуточные технические решения между определенными в настоящем изобретении вариантами быстроходного корабля и тихоходного судна.
Осуществление изобретения
Форштевень и скуловые обводы быстроходного надводного корабля (фиг. 1) или относительно тихоходного гражданского судна (фиг. 2) устанавливают главные особенности взаимодействия корпуса со штормовым волнением и создают условия для практического обеспечения автономного плавания судна в ледовых полях средней сплоченности.
Для достижения оптимальной ходкости и уверенной маневренности на интенсивном штормовом волнении, во избежание опасного обледенения верхних палуб и обеспечения возможности автономного плавания в ледовых условиях дальневосточных морей России носовая часть корпуса быстроходного надводного корабля (фиг. 1) или относительно тихоходного гражданского судна (фиг. 2) должны строиться с использованием следующих инженерно-технических и конструктивных элементов в устройстве форштевня, скуловых обводов и надводной части носовой оконечности корпуса:
- установка вертикального (фиг. 2) или немного заваленного в корму (фиг. 1) заостренного штевня на высотах от палубы бака до подводного уровня в диапазоне переменных ватерлиний, при плавании на умеренном волнении моря (примерно на одну треть осадки), для безударного прорезания гребней штормовых волн и удержания в надводном положении контактной кромки разламываемых ходом корабля ледовых полей, с недопущением заныривания обломков льдин под скулу и днище корпуса;
- устройство штормового подреза в нижней части форштевня (фиг. 1, поз. 2-6) на протяжении от гладкого слияния с линией киля и наклоном около 20-30 градусов от горизонтали в области сопряжения с вертикальным (таранным) упрочнением форштевня на уровне от основной линии порядка двух третей осадки, что необходимо для предотвращения рыскания в условиях интенсивной бортовой и килевой качки при активном движении и маневрировании корабля на крупном волнении;
- особое упрочнение таранной части форштевня на уровнях непосредственного воздействия ледовых полей и торосов (фиг. 1, поз. 2-4), рассчитанное на предельные усилия при ударных нагрузках для раскола ледового поля на скоростях хода до 6 узлов (например, при движении с тралом), или с возможной полной остановкой корабля на скоростях до 3-4 узлов для последующего создания максимальной упорной нагрузки с вектором усилия на небольшой подъем ближайшей кромки ледового поля для предотвращения ухода под днище корабля контактной кромки ледовых обломков, что также способствует сохранению начальной остойчивости, которая для снижения бортовой качки в штормовых условиях должна поддерживаться на предельно низком или нулевом уровне;
- форштевень естественным образом создает упор отчасти затупленной и очень прочной частью форштевня в нижних слоях ледового поля (фиг. 1, поз. 2-4), где лед разогрет до температуры воды, а заостренный форштевень в надводной части (фиг. 1, поз. 2-3) создает критические колющие напряжения на поверхности крупных льдин, где особая твердость и колкость ледового покрытия обусловливается низкими температурами охлаждающего сверху воздуха;
- надводные ветви носовых шпангоутов могут иметь небольшой развал (фиг. 1) для гидродинамической компенсации возможного зарывания носовой части корпуса под гребни встречных волны при движении корабля на большой скорости хода, или же иметь завал верхней части шпангоутных контуров и заниженную высоту до точки сопряжения с ширстречным поясом верхней палубы тихоходных судов (фиг. 2), что требуется для компенсации килевой и вертикальной качки за счет приема на носовую палубу больших потоков воды из гребней штормовых волн;
- за счет слабовыраженного бульбового образования в нижней части таранного форштевня (фиг. 1, поз. 2-4) бортовая обшивка в диапазоне переменных ватерлиний образует винтообразную поверхность (фиг. 1, поз. 2-5) по спрямленным фрагментам шпангоутов на протяжении от форштевня до зоны отрыва от корпуса гребней расходящейся корабельной волны (в том числе соизмеримой по длине с внешними штормовыми волнами), что затягивает встречные потоки воды и волновые гребни под носовую скулу и днище корпуса, обеспечивая динамическую стабилизацию корабля на больших скоростях хода, и, как следствие, способствует лучшей ходкости и меньшей качке в условиях интенсивного штормового волнения;
- сразу за участком ватерлиний в зоне отрыва расходящейся корабельной волны может начинаться выпуклый изгиб шпангоутных контуров с образованием булей и завала борта на уровне действующей ватерлинии в средней части корпуса (фиг. 1, поз. 2-7), что необходимо для гидродинамической компенсации бортовой качки при плавании произвольным курсом относительно штормового волнения, а также создает условия для расталкивания крупных плавающих льдин под окружающие ледовые поля и, как следствие, предотвращение затягивания ледовых обломков в зону винторулевого комплекса по кормовым подзором, с возможностью создания ледового канала за кормой корабля.
Вышеперечисленные конструктивные особенности в едином комплексе инженерно-технических решений способствуют улучшению ходкости, маневренности и умерению качки в условиях интенсивного штормового волнения, а также предотвращают опасное набрызговое обледенение судовых устройств на верхней палубе корабля и обусловливают возможность автономного плавания в режиме ледореза во льдах средней тяжести, при котором длительным по времени упором главных машин разделяются ледовые поля без опасных ударных нагрузок на корпус корабля. Безопасность плавания во льдах обеспечивается особой прочностью заостренного форштевня и, возможно, устройством двойных бортов с малыми герметичными отсеками в носовой части корпуса на случай аварийной разгерметизации конструкций форштевня или прорыва обшивки корпуса в сопряженной зоне ударных ледовых нагрузок.
Краткое описание чертежей
Фиг. 1. Носовая часть корпуса быстроходного корабля, способного активно маневрировать в условиях ураганных ветров, штормового волнения и автономного плавания в обстановке средней ледовой сплошности.
Фиг. 2. Носовая часть корпуса тихоходного транспортного судна, способного удерживать заданное направление движения относительно малыми ходами в условиях ураганных ветров, штормового волнения и автономного судоходства в обстановке средней ледовой сплошности.
На чертежах цифрами отмечены следующие конструктивные особенности судовых обводов в носовой части корпуса:
1. Волнолом быстроходного корабля (фиг. 1) и лобовая переборка шельтердечной надстройки тихоходного транспортного судна (фиг. 2), укрывающих экипаж от прямых ударов волн при необходимости работы на верхней палубе в свежую погоду;
2. Существенное уменьшение надводного объема в носовой части корпуса устраивается из принципа гидродинамической (фиг. 1) и гидростатической (фиг. 2) компенсации килевой и вертикальной качки, что достигается за счет приема на низкую палубу бака больших по объему потоков воды из встречных гребней штормовых волн. Уменьшение высоты и площади верхней палубы бака предотвращает накопление больших масс льда в условиях ветрового обледенения, интенсивность накопления которого снижена или вовсе исключается при интенсивном заливании штормовыми волнами.
3. Заострение форштевня на уровне действующей ватерлинии позволяет создавать плавно закрученную винтовою поверхность (геликоид) из спрямленных шпангоутных контуров для закручивания набегающего потока под днище корпуса, что требуется для гашения обрушающегося гребня расходящейся корабельной волны и аналогичного подтапливания и пропуска через корпус гребней штормовых волн, вовлекаемых в скуловой круговорот со всех видимых встречных курсов.
4. Таранное упрочнение форштевня, достаточное для ударного разрушения крупных льдин без остановки корабля на скорости до 6 узлов, или безопасно останавливающее корабль при столкновении с непроходимыми льдами или торосами на скорости до 3-4 узлов, с последующим созданием упорного усилия для подвижки ледовых полей и создания трещин или разводий для поиска путей прохода корабля в сплошных льдах.
5. Скуловые обводы корпуса корабля повышенной штормовой мореходности образуются плавно закрученной винтовой поверхностью и оптимизируются по условиям минимизации расходящейся корабельной волны и ходового дифферента на больших скоростях хода на тихой воде с последующей отработкой формы и высоты надводных ветвей шпангоутов для гидродинамической и гидростатической компенсации килевой и вертикальной качки в условиях интенсивного регулярного и ветрового волнения с групповой структурой пакетов волн и ярко выраженными гребнями девятых валов.
6. Штормовой подрез форштевня для раскрепощения свободного рыскания и обеспечения удовлетворительной маневренности корабля в условиях крупного штормового волнения.
7. Завал борта на уровне действующей ватерлинии способствует гидродинамической компенсации бортовой качки корабля, а также перехватывает приподнятые гребнем корабельной волны ледовые поля и не допускает их затопление и затягивание в район винторулевого комплекса в кормовой части корпуса.
Список использованных источников
1. Храмушин В.Н. Штормовые мореходные изыскания в проектировании дальневосточного флота // Доклады научно-технической конференции «Проблемы мореходных качеств судов и корабельной гидромеханики» (XLIV Крыловские чтения 2013 г.). 22-23 сентября 2013. г. Санкт-Петербург. С. 98-101.
2. Vastly Khramushin. Features architecture of mean ship to navigation in heavy, stormy and ice conditions on the northern seas // Proceedings of the 14th International Ship Stability Workshop / Session 2A Naval Ship Stability, 29th September - 1st October 2014, Kuala Lumpur, Malaysia. P. 47-57.
3. Кроленко С.И., Храмушин В. К. Ключевые проектные решения и особенности штормового кораблевождения // Доклады научно-технической конференции: «Проблемы мореходных качеств судов, корабельной гидромеханики и освоения шельфа» (XLIV Крыловские чтения). СПб: ЦНИИ им. А.Н. Крылова, Центральное Правление РосНТО судостроителей им А.Н. Крылова, секция мореходных качеств судов. 15-16 ноября 2011 г., Санкт-Петербург. С. 72-85.
4. Храмушин В.Н. Исследования по оптимизации формы корпуса корабля. Вестник ДВО РАН. 2003, №1(107). С. 50-65.
5. «Hull» - Построение аналитической формы корпуса корабля, расчеты волнового сопротивления, кривых элементов теоретического чертежа и диаграмм остойчивости морских судов. Программа для ЭВМ, №2010615849 от 8.09.2010 г. (shipdesign.ru/SoftWare/2010615849.html)
6. Mr. J.Н. Michell on the Wave-Resistance of a Ship.Philosophical Magazine, 1898, vol. 45, Ser. 5, pp. 106-123.
7. Храмушин В.H. Поисковые исследования штормовой мореходности корабля. Владивосток: Дальнаука, 2003. 172 с.
8. Храмушин В.Н. Поисковые исследования штормовой мореходности корабля (История эволюционного развития инженерно-технических решений об обводах и архитектуре корабля, о единении морских наук и хорошей морской практики). LAMBERT Academic Publishing GmbH & Co. Germany, 2011. 288 c.
9. Храмушин B.H. Корабль гидрографической и патрульной службы. Патент №2384456 от 2010.03.20. shipdesign.ru/Invent/05.html
10. Храмушин В.Н. Рыболовное судно северных морей. Патент М 2535382 от 2014.07.28 shipdesign.ru/Invent/07.html

Claims (1)

  1. Носовая оконечность быстроходного надводного корабля или относительно тихоходного гражданского судна повышенной штормовой мореходности и ледовой проходимости в автономном плавании, сформированная форштевнем и скуловыми обводами, отличающаяся вертикальным или заваленным в корму прочным и заостренным штевнем от уровня палубы бака вниз до таранного упрочения на глубине порядка половины осадки; со штормовым подрезом в нижней части форштевня от гладкого слияния с килем и наклоном порядка 20-30° от горизонтали в таранной точке вертикального сопряжения; с особым упрочнением таранной части форштевня для безопасной остановки корабля при столкновении с ледовыми полями и торосами; надводные ветви носовых шпангоутов могут иметь небольшой развал для быстроходного корабля, либо заниженную высоту с повсеместным завалом борта для тихоходных судов; начиная от таранного упрочнения или бульбового утолщения формируется винтовая поверхность обшивки до зоны отрыва расходящейся корабельной волны, соизмеримой по длине с внешними штормовыми волнами; далее винтовая поверхность уходит под днище, а на уровне переменных ватерлиний начинается выпуклый изгиб шпангоутов с образованием булей и завала борта в средней части корпуса.
RU2015107067A 2015-03-02 2015-03-02 Носовая оконечность быстроходного надводного корабля или относительно тихоходного гражданского судна повышенной штормовой мореходности и ледовой проходимости в автономном плавании RU2607136C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015107067A RU2607136C2 (ru) 2015-03-02 2015-03-02 Носовая оконечность быстроходного надводного корабля или относительно тихоходного гражданского судна повышенной штормовой мореходности и ледовой проходимости в автономном плавании

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015107067A RU2607136C2 (ru) 2015-03-02 2015-03-02 Носовая оконечность быстроходного надводного корабля или относительно тихоходного гражданского судна повышенной штормовой мореходности и ледовой проходимости в автономном плавании

Publications (2)

Publication Number Publication Date
RU2015107067A RU2015107067A (ru) 2016-09-20
RU2607136C2 true RU2607136C2 (ru) 2017-01-10

Family

ID=56891861

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015107067A RU2607136C2 (ru) 2015-03-02 2015-03-02 Носовая оконечность быстроходного надводного корабля или относительно тихоходного гражданского судна повышенной штормовой мореходности и ледовой проходимости в автономном плавании

Country Status (1)

Country Link
RU (1) RU2607136C2 (ru)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2672225C1 (ru) * 2017-12-07 2018-11-12 Федеральное государственное бюджетное образовательное учреждение высшего образования "Калининградский государственный технический университет" Корпус судна
RU2672227C1 (ru) * 2017-12-07 2018-11-12 Федеральное государственное бюджетное образовательное учреждение высшего образования "Калининградский государственный технический университет" Корпус судна
RU2682385C1 (ru) * 2017-12-25 2019-03-19 Федеральное государственное бюджетное образовательное учреждение высшего образования "Калининградский государственный технический университет" Корпус судна
RU2685369C1 (ru) * 2018-04-13 2019-04-17 Федеральное государственное бюджетное образовательное учреждение высшего образования "Калининградский государственный технический университет" Корпус судна
RU2690642C1 (ru) * 2018-06-27 2019-06-04 Федеральное государственное бюджетное образовательное учреждение высшего образования "Калининградский государственный технический университет" Носовая оконечность корпуса судна
RU2728476C1 (ru) * 2019-09-30 2020-07-29 Олег Игоревич Братухин Рыбопромысловое судно ледового плавания
RU2740325C2 (ru) * 2019-05-28 2021-01-13 Федеральное государственное бюджетное образовательное учреждение высшего образования "Калининградский государственный технический университет" Корпус судна
RU2743677C2 (ru) * 2019-07-09 2021-02-24 Федеральное государственное бюджетное образовательное учреждение высшего образования "Калининградский государственный технический университет" Корпус судна
RU2753031C1 (ru) * 2020-12-25 2021-08-11 Олег Игоревич Братухин Морское судно ледового плавания
RU2774987C1 (ru) * 2021-09-13 2022-06-24 Олег Игоревич Братухин Морское судно

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008000838A1 (en) * 2006-06-30 2008-01-03 Technische Universiteit Delft Ship
RU2374120C2 (ru) * 2005-03-09 2009-11-27 Ульстейн Дизайн Ас Конструкция передней части судна вытеснительного типа
RU2384456C2 (ru) * 2008-05-04 2010-03-20 Василий Николаевич Храмушин Корабль гидрографической и патрульной службы
RU2535382C2 (ru) * 2012-10-24 2014-12-10 Министерство образования и науки Российской Федерации. Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "САХАЛИНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ" Рыболовное судно северных морей

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2374120C2 (ru) * 2005-03-09 2009-11-27 Ульстейн Дизайн Ас Конструкция передней части судна вытеснительного типа
WO2008000838A1 (en) * 2006-06-30 2008-01-03 Technische Universiteit Delft Ship
RU2384456C2 (ru) * 2008-05-04 2010-03-20 Василий Николаевич Храмушин Корабль гидрографической и патрульной службы
RU2535382C2 (ru) * 2012-10-24 2014-12-10 Министерство образования и науки Российской Федерации. Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "САХАЛИНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ" Рыболовное судно северных морей

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2672225C1 (ru) * 2017-12-07 2018-11-12 Федеральное государственное бюджетное образовательное учреждение высшего образования "Калининградский государственный технический университет" Корпус судна
RU2672227C1 (ru) * 2017-12-07 2018-11-12 Федеральное государственное бюджетное образовательное учреждение высшего образования "Калининградский государственный технический университет" Корпус судна
RU2682385C1 (ru) * 2017-12-25 2019-03-19 Федеральное государственное бюджетное образовательное учреждение высшего образования "Калининградский государственный технический университет" Корпус судна
RU2685369C1 (ru) * 2018-04-13 2019-04-17 Федеральное государственное бюджетное образовательное учреждение высшего образования "Калининградский государственный технический университет" Корпус судна
RU2690642C1 (ru) * 2018-06-27 2019-06-04 Федеральное государственное бюджетное образовательное учреждение высшего образования "Калининградский государственный технический университет" Носовая оконечность корпуса судна
RU2740325C2 (ru) * 2019-05-28 2021-01-13 Федеральное государственное бюджетное образовательное учреждение высшего образования "Калининградский государственный технический университет" Корпус судна
RU2743677C2 (ru) * 2019-07-09 2021-02-24 Федеральное государственное бюджетное образовательное учреждение высшего образования "Калининградский государственный технический университет" Корпус судна
RU2728476C1 (ru) * 2019-09-30 2020-07-29 Олег Игоревич Братухин Рыбопромысловое судно ледового плавания
RU2753031C1 (ru) * 2020-12-25 2021-08-11 Олег Игоревич Братухин Морское судно ледового плавания
RU2774987C1 (ru) * 2021-09-13 2022-06-24 Олег Игоревич Братухин Морское судно
RU221944U1 (ru) * 2023-09-05 2023-12-01 Публичное акционерное общество "Нефтяная компания "Роснефть" (ПАО "НК "Роснефть") Арктическое амфибийное средство с роторно-винтовыми движителями

Also Published As

Publication number Publication date
RU2015107067A (ru) 2016-09-20

Similar Documents

Publication Publication Date Title
RU2607136C2 (ru) Носовая оконечность быстроходного надводного корабля или относительно тихоходного гражданского судна повышенной штормовой мореходности и ледовой проходимости в автономном плавании
US3063397A (en) Sub-surface craft
Umeda et al. Model experiments of ship capsize in astern seas
US20140378012A1 (en) Vessel
Broad Rogue giants at sea
CN106627984A (zh) 船首抑波减摇附体
CN113320655B (zh) 一种半潜式平台底部的浮箱及其设计方法
RU2535382C2 (ru) Рыболовное судно северных морей
RU2535346C1 (ru) Способ разрушения ледяного покрова и полупогружное ледокольное судно
US2837049A (en) River ferry driven by two sail-wheel propellers
Conolly Paper 26. Stability and Control in Waves: A Survey of the Problem
RU2612343C1 (ru) Полупогружной ледокол
RU2154002C1 (ru) Движитель, использующий энергию волн
RU2533376C1 (ru) Самоходное буровое судно для работы в арктических условиях
RU2607135C2 (ru) Кормовая оконечность стабилизированного для штормового плавания корабля
RU2475407C1 (ru) Морская полупогружная вертолетная платформа
EP2977311A1 (en) Dual mode oscillating foil propulsion system and method for oscillating at least one movable foil
JP2008230439A (ja) フィンスラスター
RU2603709C1 (ru) Универсальное транспортное судно
RU2603818C1 (ru) Морской спасатель - научно-исследовательское судно
RU2719739C1 (ru) Способ разрушения ледяного покрова
Khramushin Target ship design and features of navigation for motion stabilization and high propulsion in strong storms and icing
Khramushin Features architecture of mean ship to navigation in heavy, stormy and ice conditions on the northern seas
RU182682U1 (ru) Судно с туннельными водоводами в носовой части
AU2021105432A4 (en) A Marina

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170303