RU2606814C2 - Теплозащитное нанокомпозитное покрытие и способ его формирования - Google Patents
Теплозащитное нанокомпозитное покрытие и способ его формирования Download PDFInfo
- Publication number
- RU2606814C2 RU2606814C2 RU2014108807A RU2014108807A RU2606814C2 RU 2606814 C2 RU2606814 C2 RU 2606814C2 RU 2014108807 A RU2014108807 A RU 2014108807A RU 2014108807 A RU2014108807 A RU 2014108807A RU 2606814 C2 RU2606814 C2 RU 2606814C2
- Authority
- RU
- Russia
- Prior art keywords
- nickel alloy
- zirconium
- layer
- transition layer
- target
- Prior art date
Links
Landscapes
- Other Surface Treatments For Metallic Materials (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Изобретение относится к напылению теплозащитных покрытий и может быть использовано в авиастроении и других областях машиностроения при производстве деталей турбинных двигателей и установок. Теплозащитное нанокомпозитное покрытие, содержащее оксид циркония, нанесенное на поверхность изделия из никелевого сплава с использованием магнетронной системы, содержит первичный сплошной слой, градиентный переходный слой и пленку из оксида циркония. Первичный сплошной слой состоит из никелевого сплава, соответствующего составу упомянутого изделия, с цирконием и с добавками стабилизирующего элемента. Градиентный переходный слой содержит две фазы в виде диэлектрической фазы из оксида циркония и металлической фазы из никелевого сплава, соответствующего составу упомянутой поверхности изделия, и циркония с добавкой стабилизирующего элемента, при этом доля оксидной фазы в переходном слое возрастает по мере увеличения его толщины. Способ формирования упомянутого теплозащитного нанокомпозитного покрытия на поверхности изделия из никелевого сплава характеризуется тем, что осуществляют формирование на поверхности изделия первичного сплошного слоя из никелевого сплава, соответствующего составу упомянутого изделия, с цирконием и с добавкой стабилизирующего элемента, градиентного переходного слоя и напыление пленки из оксида циркония до достижения ею требуемой толщины покрытия. Формирование упомянутого первичного слоя и градиентного переходного слоя осуществляют с использованием магнетронной системы с двумя магнетронами. С помощью первого магнетрона распыляют мишень из упомянутого никелевого сплава, а с помощью второго магнетрона распыляют вторую мишень из циркония с добавкой стабилизирующего элемента. Упомянутый первичный слой формируют путем совместного распыления указанных мишеней в атмосфере аргона с интенсивностью атомного потока, сформированного от упомянутой первой мишени, превышающей интенсивность атомного потока от упомянутой второй мишени. Затем осуществляют формирование упомянутого градиентного переходного слоя путем распыления упомянутых мишеней в присутствии кислорода с образованием в переходном слое оксида циркония и неокисленного никелевого сплава. Парциальное давление кислорода при распылении плавно увеличивают до давления 1,5*10-3 Па, а мощность первого магнетрона, распыляющего первую мишень из упомянутого никелевого сплава, уменьшают вплоть до его полного отключения. В частном случае осуществления изобретения в качестве стабилизирующего элемента используют иттрий. Обеспечивается механическая прочность покрытия, повышение его жаропрочности и жаростойкости, а также высокое значение адгезии и когезии. 2 н. и 1 з.п. ф-лы.
Description
Изобретение относится к области материаловедения, в частности к способам напыления теплозащитных покрытий, и может найти применение в авиастроении и других областях машиностроения при производстве деталей турбинных двигателей и установок, которые требуют формирования на рабочих поверхностях покрытий, имеющих достаточно высокое значение адгезии и когезии.
В настоящее время при создании покрытия с заданными свойствами методом послойного напыления образуются межфазные макроскопические границы в плоскостях, параллельных обрабатываемой поверхности, и при циклических термонагрузках разница в значениях коэффициентов термического расширения может привести к расслоению покрытия и его разрушению.
Известен способ напыления теплозащитного покрытия с использованием оксида циркония, стабилизированного Y2O3, включающий послойное нанесение покрытия на изделие и покрытие, полученное этим способом (Патент US 6180184, С23С 4/10, 30.01.2001 - прототип).
Термобарьерное покрытие согласно этому способу получают из жаропрочных сплавов, стабилизированных иттрием, оксида циркония, которое послойно наносят с помощью вакуумного электронно-лучевого напыления. При этом получают покрытие, имеющее столбчатую структуру, проявляющуюся в одном или нескольких слоях.
Недостатком получаемого покрытия является возможность получения сквозной пористости, приводящей к коррозии подложки и к разрушению покрытия. Кроме этого, в процессе послойного напыления образуются межфазные границы в плоскостях, параллельных поверхности, и при циклических термонагрузках разница в значениях коэффициентов термического расширения может привести к расслоению покрытия и его разрушению.
Задачей предложенного технического решения является устранение указанных недостатков и создание наноструктурного покрытия из оксида циркония и способа его нанесения на металлическую поверхность, применение которых позволит сформировать плавный переход от металлического материала к оксидному покрытию без межфазной границы макроскопического размера.
Решение указанной задачи достигается тем, что в предложенном теплозащитном нанокомпозитном покрытии, включающем оксид циркония, нанесенном на поверхность изделия из никелевого сплава с использованием магнетронной системы, содержащем первичный сплошной слой, градиентный переходный слой и пленку из оксида циркония, при этом первичный сплошной слой состоит из никелевого сплава, соответствующего составу упомянутого изделия, с цирконием и с добавками стабилизирующего элемента, градиентный переходный слой содержит две фазы: диэлектрическую фазу из оксида циркония и металлическую фазу из никелевого сплава, соответствующего составу упомянутой поверхности изделия, и циркония с добавкой стабилизирующего элемента, при этом доля оксидной фазы в переходном слое возрастает по мере увеличения его толщины.
Для получения покрытия предложен способ его формирования на поверхности изделия из никелевого сплава, при применении которого согласно изобретению осуществляют формирование на поверхности изделия первичного сплошного слоя из никелевого сплава, соответствующего составу упомянутого изделия, с цирконием и с добавкой стабилизирующего элемента, градиентного переходного слоя и напыление пленки из оксида циркония до достижения ею требуемой толщины покрытия, при этом формирование упомянутого первичного слоя и градиентного переходного слоя осуществляют с использованием магнетронной системы с двумя магнетронами, причем с помощью первого магнетрона распыляют мишень из упомянутого никелевого сплава, а с помощью второго магнетрона распыляют вторую мишень из циркония с добавкой стабилизирующего элемента, причем упомянутый первичный сдой формируют путем совместного распыления указанных мишеней в атмосфере аргона с интенсивностью атомного потока, сформированного от упомянутой первой мишени, превышающей интенсивность атомного потока от упомянутой второй мишени, затем осуществляют формирование упомянутого градиентного переходного слоя путем распыления упомянутых мишеней в присутствии кислорода с образованием в переходном слое оксида циркония и нсокисленного никелевого сплава, при этом парциальное давление кислорода при распылении плавно увеличивают до давления 1,5*10-3 Па, а мощность первого магнетрона, распыляющего первую мишень из упомянутого никелевого сплава, уменьшают вплоть до его полного отключения.
В варианте применения в качестве стабилизирующего элемента используют иттрий.
Предложенное наноструктурное композитное покрытие может быть получено следующим образом.
Для получения указанного покрытия используется магнетронная система с двумя магнетронами. При помощи первого магнетрона распыляют первую мишень из никелевого сплава, а при помощи второго магнетрона распыляют мишень из циркония с добавками стабилизирующих элементов, например иттрия. Первоначальное распыление мишеней осуществляется в атмосфере аргона, причем интенсивность атомного потока, сформированного от никелевой мишени, превышает интенсивность атомного потока от циркониевой мишени. После формирования первичного сплошного металлического слоя в рабочую камеру добавляется кислород, после чего процесс напыления приобретает характер реактивного - в напыляемой пленке начинает образовываться оксид. В силу различных значений энергий связи в оксиде никеля и оксиде циркония в формирующемся покрытии происходит образование оксида циркония, в то время как никель остается неокисленным.
Таким образом, в результате одновременного распыления никелевого сплава и циркония в смешанной кислородно-аргонной атмосфере происходит напыление композитного материала металл-оксид. В процессе напыления парциальное давление кислорода плавно увеличивается до давления 1,5*10-3 Па, а мощность магнетрона, распыляющего металлический сплав, уменьшают вплоть до его полного отключения. После этого продолжают напыление оксида циркония до достижения им требуемой толщины.
В этом случае в покрытии образуется переходной слой из градиентного нанокомпозитного материала, содержащего две фазы: металлическую фазу с составом, соответствующим составу защищаемой поверхности, и диэлектрическую фазу - собственно оксид циркония различной стехиометрии, при этом соотношение фаз в переходном слое обеспечивается не постоянным, а переменным, с возрастанием доли оксидной фазы по мере увеличения толщины пленки. В результате создания такого градиентного слоя формируется плавный переход от металлического материала к оксиду без межфазной границы макроскопического размера, при этом сформированный градиентный слой является не только композитным, но и наноструктурированным, поскольку характерные размеры включений каждой фазы составляют от единиц до нескольких десятков нанометров в зависимости от объемной доли фазы.
Полученная наноструктурированность не только повышает механическую прочность покрытия, но и приводит к изотропному распределению внутренних напряжений при циклических термонагрузках, что повышает жаропрочность и жаростойкость покрытия.
Использование предложенного технического решения позволит создать наноструктурное композитное покрытие из оксида циркония, применение которого позволит сформировать плавный переход от металлического материала к оксиду без межфазной границы макроскопического размера, что, в конечном итоге, позволит повысить механическую прочность покрытия и приведет к изотропному распределению внутренних напряжений при циклических термонагрузках, что позволит повысить жаропрочность и жаростойкость покрытия.
Claims (3)
1. Теплозащитное нанокомпозитное покрытие, включающее оксид циркония, нанесенное на поверхность изделия из никелевого сплава с использованием магнетронной системы, содержащее первичный сплошной слой, градиентный переходный слой и пленку из оксида циркония, при этом первичный сплошной слой состоит из никелевого сплава, соответствующего составу упомянутого изделия, с цирконием и с добавками стабилизирующего элемента, градиентный переходный слой содержит две фазы в виде диэлектрической фазы из оксида циркония и металлической фазы из никелевого сплава, соответствующего составу упомянутой поверхности изделия, и циркония с добавкой стабилизирующего элемента, при этом доля оксидной фазы в переходном слое возрастает по мере увеличения его толщины.
2. Способ формирования на поверхности изделия из никелевого сплава теплозащитного нанокомпозитного покрытия по п. 1, характеризующийся тем, что осуществляют формирование на поверхности изделия первичного сплошного слоя из никелевого сплава, соответствующего составу упомянутого изделия, с цирконием и с добавкой стабилизирующего элемента, градиентного переходного слоя и напыление пленки из оксида циркония до достижения ею требуемой толщины покрытия, при этом формирование упомянутого первичного слоя и градиентного переходного слоя осуществляют с использованием магнетронной системы с двумя магнетронами, причем с помощью первого магнетрона распыляют мишень из упомянутого никелевого сплава, а с помощью второго магнетрона распыляют вторую мишень из циркония с добавкой стабилизирующего элемента, причем упомянутый первичный слой формируют путем совместного распыления указанных мишеней в атмосфере аргона с интенсивностью атомного потока, сформированного от упомянутой первой мишени, превышающей интенсивность атомного потока от упомянутой второй мишени, затем осуществляют формирование упомянутого градиентного переходного слоя путем распыления упомянутых мишеней в присутствии кислорода с образованием в переходном слое оксида циркония и неокисленного никелевого сплава, при этом парциальное давление кислорода при распылении плавно увеличивают до давления 1,5*10-3 Па, а мощность первого магнетрона, распыляющего первую мишень из упомянутого никелевого сплава, уменьшают вплоть до его полного отключения.
3. Способ по п. 2, отличающийся тем, что в качестве стабилизирующего элемента используют иттрий.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2014108807A RU2606814C2 (ru) | 2014-03-06 | 2014-03-06 | Теплозащитное нанокомпозитное покрытие и способ его формирования |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2014108807A RU2606814C2 (ru) | 2014-03-06 | 2014-03-06 | Теплозащитное нанокомпозитное покрытие и способ его формирования |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2014108807A RU2014108807A (ru) | 2015-09-20 |
RU2606814C2 true RU2606814C2 (ru) | 2017-01-10 |
Family
ID=54147407
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2014108807A RU2606814C2 (ru) | 2014-03-06 | 2014-03-06 | Теплозащитное нанокомпозитное покрытие и способ его формирования |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2606814C2 (ru) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107513694B (zh) * | 2017-08-22 | 2019-05-14 | 四川大学 | 一种用于锆合金表面抗高温氧化ZrCrFe/AlCrFeTiZr复合梯度合金涂层制备工艺 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2120494C1 (ru) * | 1997-06-17 | 1998-10-20 | Международный Центр Электронно-Лучевых Технологий Института Электросварки им.Е.О.Патона НАН Украины | Способ получения на подложке защитных покрытий с градиентом химического состава и структуры по толщине с внешним керамическим слоем, его вариант |
RU2423550C1 (ru) * | 2009-11-30 | 2011-07-10 | Общество с ограниченной ответственностью "Производственное предприятие Турбинаспецсервис" | Теплозащитное покрытие для лопаток турбин и способ его получения |
GB2495793A (en) * | 2011-10-17 | 2013-04-24 | Internat Advanced Res Ct For Powder Metallurg And New Materials Arci | Composite plasma spray coatings and methods of application |
-
2014
- 2014-03-06 RU RU2014108807A patent/RU2606814C2/ru not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2120494C1 (ru) * | 1997-06-17 | 1998-10-20 | Международный Центр Электронно-Лучевых Технологий Института Электросварки им.Е.О.Патона НАН Украины | Способ получения на подложке защитных покрытий с градиентом химического состава и структуры по толщине с внешним керамическим слоем, его вариант |
RU2423550C1 (ru) * | 2009-11-30 | 2011-07-10 | Общество с ограниченной ответственностью "Производственное предприятие Турбинаспецсервис" | Теплозащитное покрытие для лопаток турбин и способ его получения |
GB2495793A (en) * | 2011-10-17 | 2013-04-24 | Internat Advanced Res Ct For Powder Metallurg And New Materials Arci | Composite plasma spray coatings and methods of application |
Also Published As
Publication number | Publication date |
---|---|
RU2014108807A (ru) | 2015-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Meng et al. | Vacuum heat treatment mechanisms promoting the adhesion strength of thermally sprayed metallic coatings | |
CN103160797B (zh) | 纳米陶瓷涂层、沉积有该涂层的压铸模具及其制备方法 | |
Lee et al. | Thermal cycling behavior and interfacial stability in thick thermal barrier coatings | |
Wang et al. | Microstructural characterization of Al2O3–13 wt.% TiO2 ceramic coatings prepared by squash presetting laser cladding on GH4169 superalloy | |
KR20070067607A (ko) | 고강도 Ni-Pt-Al-Hf 접합 코팅 | |
KR101331828B1 (ko) | 실리콘 및 지르코늄을 주원료로 하는 타깃을 열 분사에 의해 제조하는 방법 | |
BRPI0907264A2 (pt) | método para a produção de camadas, especificamente de camadas estáveis em altas temperaturas, alvo de liga consistindo de aluminío e de um componente metálico ou semimetálico e camada em estrutura coríndon contendo essencialmente óxido de alumínio. | |
US20130129938A1 (en) | Method for the co-evaporation and deposition of materials with differing vapor pressures | |
RU2607055C2 (ru) | Способ нанесения теплозащитного композитного покрытия, содержащего оксид циркония, на металлическую поверхность изделия | |
RU2606814C2 (ru) | Теплозащитное нанокомпозитное покрытие и способ его формирования | |
RU2588973C2 (ru) | Способ обработки рабочих поверхностей деталей лопастных машин | |
JP2016500756A5 (ru) | ||
RU2588956C2 (ru) | Способ обработки рабочих поверхностей газотурбинных установок | |
RU2551331C2 (ru) | Способ получения многослойного градиентного покрытия методом магнетронного напыления | |
RU2607677C2 (ru) | Способ формирования на поверхности изделия из никелевого сплава композитного покрытия | |
RU2591098C2 (ru) | Способ нанесения композитного оксидного покрытия на металлическую поверхность | |
RU2588619C2 (ru) | Наноструктурное композитное покрытие из оксида циркония | |
RU2606815C2 (ru) | Способ нанесения теплозащитного композитного покрытия, содержащего оксид циркония, на металлическую поверхность изделия | |
RU2606826C2 (ru) | Способ формирования на рабочей поверхности детали из никелевого сплава теплозащитного нанокомпозитного покрытия | |
RU2581546C2 (ru) | Способ нанесения покрытия из оксида циркония на поверхность изделия из никелевого сплава | |
RU2591024C2 (ru) | Способ обработки рабочих поверхностей деталей газотурбинных установок | |
RU2607056C2 (ru) | Способ нанесения теплозащитного композитного покрытия | |
Vardanyan et al. | Technology of the deposition of composite coatings based on Ti–Al intermetallic compounds by vacuum-arc plasma discharge | |
US10240229B2 (en) | Mo—Si—B layers and method for the production thereof | |
Piticescu et al. | Development of Novel Material Systems and Coatings for Extreme Environments: A Brief Overview |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20170307 |