RU2606188C2 - Высокочастотный резонатор и ускоритель частиц, снабженный высокочастотным резонатором - Google Patents

Высокочастотный резонатор и ускоритель частиц, снабженный высокочастотным резонатором Download PDF

Info

Publication number
RU2606188C2
RU2606188C2 RU2014116552A RU2014116552A RU2606188C2 RU 2606188 C2 RU2606188 C2 RU 2606188C2 RU 2014116552 A RU2014116552 A RU 2014116552A RU 2014116552 A RU2014116552 A RU 2014116552A RU 2606188 C2 RU2606188 C2 RU 2606188C2
Authority
RU
Russia
Prior art keywords
cavity
frequency resonator
coating
frequency
outer coating
Prior art date
Application number
RU2014116552A
Other languages
English (en)
Other versions
RU2014116552A (ru
Inventor
Михаэль БАК
Оливер ХАЙД
Михаэль КЛЕМАНН
Original Assignee
Сименс Акциенгезелльшафт
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сименс Акциенгезелльшафт filed Critical Сименс Акциенгезелльшафт
Publication of RU2014116552A publication Critical patent/RU2014116552A/ru
Application granted granted Critical
Publication of RU2606188C2 publication Critical patent/RU2606188C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P7/00Resonators of the waveguide type
    • H01P7/06Cavity resonators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/14Vacuum chambers
    • H05H7/18Cavities; Resonators

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Particle Accelerators (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

Высокочастотный резонатор включает в себя цилиндрическую полость из диэлектрического материала. Внутренняя сторона полости имеет электрически проводящее покрытие, которое разделено кольцеобразно проходящим по периметру боковой поверхности полости электрически изолирующим зазором на первое внутреннее покрытие и второе внутреннее покрытие. Наружная сторона полости имеет электрически проводящее первое наружное покрытие и электрически проводящее второе наружное покрытие. Первое наружное покрытие и второе наружное покрытие электрически изолированы друг от друга. Высокочастотный резонатор включает в себя устройство, которое предусмотрено для того, чтобы прикладывать высокочастотное электрическое напряжение между первым наружным покрытием и вторым наружным покрытием. Технический результат- упрощение технологии изготовления резонатора. 2 н. и 10 з.п. ф-лы, 2 ил.

Description

Настоящее изобретение касается высокочастотного резонатора по п. 1 формулы изобретения, а также ускорителя частиц для ускорения электрически заряженных частиц по п. 11 формулы изобретения.
В высокочастотных резонаторах могут возбуждаться высокочастотные электромагнитные колебания. Высокочастотные резонаторы могут также называться объемными резонаторами. Высокочастотные резонаторы применяются, например, в ускорителях частиц для ускорения электрически заряженных частиц.
Для возбуждения высокочастотного электромагнитного колебания в высокочастотном резонаторе известно получение высокочастотной мощности, например, посредством клистрона или тетрода и передача посредством кабеля или волновода к высокочастотному резонатору и там через окно излучения или высокочастотную антенну ввод в высокочастотный резонатор. Впрочем, при этом виде возбуждения не могут достигаться очень высокие высокочастотные мощности.
Из EP 0 606 870 A1 известно оснащение высокочастотного резонатора проводящей стенкой, снабженной несколькими твердотельными транзисторами, которые предусмотрены для того, чтобы индуцировать высокочастотный электрический ток в стенке высокочастотного резонатора и тем самым возбуждать в высокочастотном резонаторе высокочастотное электромагнитное колебание. Возбуждение тока происходит при этом путем приложения высокочастотного электрического напряжения через электрически изолирующую прорезь в стенке высокочастотного резонатора.
Применение высокочастотных резонаторов в ускорителях частиц для ускорения электрически заряженных частиц требует вакуумирования высокочастотного резонатора до очень низкого давления. Оказалось, что наполненные диэлектрическим материалом электрически изолирующие прорези в проводящих в отличие от них стенках высокочастотного резонатора могут уплотняться только трудоемким и дорогостоящим образом.
Поэтому задача настоящего изобретения заключается в том, чтобы предоставить высокочастотный резонатор с улучшенной возможностью вакуумирования. Эта задача решается с помощью высокочастотного резонатора с признаками п. 1 формулы изобретения. Задачей настоящего изобретения является также предоставить ускоритель частиц, снабженный высокочастотным резонатором с улучшенной возможностью вакуумирования. Эта задача решается с помощью ускорителя частиц с признаками п. 11 формулы изобретения. Предпочтительные усовершенствования указаны в зависимых пунктах формулы изобретения.
Предлагаемый изобретением высокочастотный резонатор включает в себя цилиндрическую полость из диэлектрического материала. Внутренняя сторона полости имеет электрически проводящее покрытие, которое разделено кольцеобразно проходящим по периметру боковой поверхности полости, электрически изолирующим зазором на первое внутреннее покрытие и второе внутреннее покрытие. Наружная сторона полости имеет электрически проводящее первое наружное покрытие и электрически проводящее второе наружное покрытие. Первое наружное покрытие и второе наружное покрытие электрически изолированы друг от друга. Высокочастотный резонатор включает в себя устройство, которое предусмотрено для того, чтобы прикладывать высокочастотное электрическое напряжение между первым наружным покрытием и вторым наружным покрытием. Предпочтительным образом цилиндрическая полость этого высокочастотного резонатора может легко вакуумироваться и не имеет проемов, уплотнение которых является проблематичным, в частности, трудно уплотняемых соединений металла с керамикой. Предпочтительным образом устройство высокочастотного резонатора через проводящие наружные и внутренние покрытия может емкостным способом возбуждать в высокочастотном резонаторе высокочастотное электромагнитное колебание.
В одном из предпочтительных вариантов осуществления высокочастотного резонатора кольцеобразно проходящий по периметру зазор ориентирован перпендикулярно продольному направлению цилиндрической полости. Предпочтительным образом высокочастотный резонатор обладает тогда зеркально-вращательной симметрией, что позволяет возбуждать колебания в симметричных режимах.
В одном из также предпочтительных вариантов осуществления высокочастотного резонатора первое наружное покрытие и второе наружное покрытие проходят каждое кольцеобразно по периметру боковой поверхности полости. Тогда предпочтительным образом наружная сторона высокочастотного резонатора также обладает зеркально-вращательной симметрией, что позволяет возбуждать колебания в симметричных режимах.
Целесообразно, чтобы первое наружное покрытие в направлении, ориентированном перпендикулярно боковой поверхности полости, было расположено рядом с первым внутренним покрытием. Предпочтительным образом тогда существует сильная емкостная связь между первым наружным покрытием и первым внутренним покрытием.
Также целесообразно, чтобы второе наружное покрытие в направлении, ориентированном перпендикулярно боковой поверхности полости, было расположено рядом со вторым внутренним покрытием. Предпочтительным образом тогда существует большая емкостная связь между вторым наружным покрытием и вторым внутренним покрытием.
В одном из предпочтительных усовершенствований высокочастотного резонатора устройство включает в себя твердотельный мощный транзистор. Предпочтительным образом с помощью твердотельного мощного транзистора высокочастотная мощность, которая должна вводиться в высокочастотный резонатор, может получаться вблизи места ввода.
В одном из усовершенствований высокочастотного резонатора устройство включает в себя несколько твердотельных мощных транзисторов, которые расположены кольцеобразно вокруг боковой поверхности полости. Предпочтительным образом наличие нескольких твердотельных мощных транзисторов позволяет возбуждать в высокочастотном резонаторе особенно высокую высокочастотную мощность.
В одном из предпочтительных вариантов осуществления высокочастотного резонатора диэлектрический материал представляет собой стекло или керамику. Предпочтительным образом стекло и керамика обладают механическими свойствами, пригодными для применения в качестве вакуумной камеры.
Целесообразно, чтобы полость имела форму круглого цилиндра. Предпочтительным образом баллон, выполненный в виде круглого цилиндра, позволяет возбуждать колебания в надлежащих режимах для ускорения заряженных частиц.
Предпочтительно полость выполнена, чтобы вакуумироваться до давления воздуха, пониженного по сравнению с давлением окружающей полость среды. Предпочтительным образом тогда высокочастотный резонатор может использоваться для ускорения электрически заряженных частиц.
Предлагаемый изобретением ускоритель частиц для ускорения электрически заряженных частиц имеет высокочастотный резонатор вышеназванного рода. Предпочтительным образом высокочастотный резонатор у этого ускорителя частиц может вакуумироваться до низкого давления и при этом не имеет трудно уплотняемых мест сопряжения.
Описанные выше свойства, признаки и преимущества этого изобретения, а также способ их достижения становятся яснее и отчетливее понятны в контексте последующего описания примеров осуществления, которые поясняются подробнее в связи с чертежами. При этом показано:
фиг. 1: сечение высокочастотного резонатора;
фиг. 2: сечение участка стенки высокочастотного резонатора.
На фиг. 1 показан высокочастотный резонатор 100 в сильно схематизированном изображении. В высокочастотном резонаторе 100 может возбуждаться электромагнитное колебание в высокочастотном режиме. Высокочастотный резонатор 100 может служить, например, для ускорения электрически заряженных частиц в ускорителе частиц.
Высокочастотный резонатор 100 включает в себя полость 200. Полость200 выполнена в виде полого цилиндра и имеет первую закрывающую поверхность 210 в форме плоского круга, вторую закрывающую поверхность 220 в форме плоского круга и боковую поверхность 230, соединяющую первую закрывающую поверхность 210 со второй закрывающей поверхностью 220. На изображении фиг. 1 полость 200 рассечена по плоскости чертежа. На фиг. 1, таким образом, изображена только половина полости 200.
Выполненная в виде полого цилиндра полость 200 задает продольное направление 201 и радиальное направление 202, которое ориентировано перпендикулярно продольному направлению 201. Первая закрывающая поверхность 210 и вторая закрывающая поверхность 220 ориентированы каждая перпендикулярно продольному направлению 201. Боковая поверхность 230полости 200 распространяется между первой закрывающей поверхностью 210 и второй закрывающей поверхностью 220 в продольном направлении 201.
Первая закрывающая поверхность 210 и вторая закрывающая поверхность 220 в альтернативных вариантах осуществления могут быть также выполнены иначе, чем в форме плоского круга. Например, закрывающие поверхности 210, 220 могут иметь каждая прямоугольную форму или эллиптическую форму.
Полость 200 состоит из электрически изолирующего диэлектрического материала. Предпочтительно полость 200 состоит из стекла или керамики. Предпочтительным образом стеклянные и керамические материалы достаточно прочны, чтобы выдерживать высокую разность давлений между внутренним пространством полости 200 и окружающей полость200 средой.
Полость 200 высокочастотного резонатора полностью охватывает полость и предпочтительно не имеет трудно уплотняемых мест сопряжений, в частности, не имеет переходов металл-керамика. Это позволяет вакуумировать полость 200 до давления, пониженного по сравнению с давлением воздуха в окружающей полость 200 среде. Для вакуумирования полости 200 полость 200 может иметь один или несколько надлежащих фланцев. Первая закрывающая поверхность 210 и вторая закрывающая поверхность 220 полости 200 могут, кроме того, иметь надлежащие отверстия или окна, через которые струя заряженных частиц может попадать внутрь полости 200 и выходить изнутри полости 200.
Полость 200 имеет внутреннюю сторону 240, которая обращена к охваченной баллоном 200 полости. Кроме того, полость 200 имеет наружную сторону 250, которая обращена к окружающей полость 100 среде.
На внутренней стороне 240полости 200 расположено электрически проводящее покрытие 300. Это электрически проводящее покрытие 300 может состоять, например, из металла. Внутреннее покрытие 300 разделено на первое внутреннее покрытие 310 и второе внутреннее покрытие 320. Между первым внутренним покрытием 310 и вторым внутренним покрытием 320 расположен электрически изолирующий внутренний зазор 330, посредством которого первое внутреннее покрытие 310 электрически изолировано от второго внутреннего покрытия 320. В области внутреннего зазора 330 на внутренней стороне 240полости 200 проводящее покрытие не предусмотрено.
Предпочтительно внутренний зазор 330 расположен, проходя кольцеобразно по периметру боковой поверхности 230полости 200. При этом внутренний зазор 330 предпочтительно ориентирован перпендикулярно продольному направлению 201полости 200 и, таким образом, параллельно закрывающим поверхностям 210, 220. Особенно предпочтительно, если внутренний зазор 330 расположен в середине между первой закрывающей поверхностью и второй закрывающей поверхностью 220.
Первое внутреннее покрытие 310 покрывает внутреннюю сторону 240 первой закрывающей поверхности 210, а также внутреннюю сторону 240 примыкающего к первой закрывающей поверхности 210 участка боковой поверхности 230. Второе внутреннее покрытие 320 покрывает внутреннюю сторону 240 второй закрывающей поверхности 220, а также внутреннюю сторону 240 примыкающего ко второй закрывающей поверхности 220 участка боковой поверхности 230.
В продольном направлении 201 внутренний зазор 330 предпочтительно выполнен очень узким. В частности, ширина внутреннего зазора 330 в продольном направлении 201 предпочтительно мала по сравнению с длиной полости 200 в продольном направлении 201 и мала по сравнению с длиной волны колебания высокочастотного режима, возбуждаемого в высокочастотном резонаторе 100.
С наружной стороны 250полости 200 расположено электрически проводящее покрытие 400. Наружное покрытие 400 может, например, состоять из металла. Наружное покрытие 400 включает в себя первое наружное покрытие 410 и второе наружное покрытие 420. Между первым наружным покрытием 410 и вторым наружным покрытием 420 расположен наружный зазор 430. В области наружного зазора 430 электрически проводящее покрытие с наружной стороны 250полости 200 не предусмотрено. Посредством наружного зазора 430 первое наружное покрытие 410 и второе наружное покрытие 420 электрически изолированы друг от друга.
На фиг. 2 показано сечение участка боковой поверхности 230полости 200 высокочастотного резонатора 100 в области внутреннего зазора 330 и наружного зазора 430. Можно видеть, что наружный зазор 430 находится в продольном направлении 201 в том же положении, что и внутренний зазор 330. В радиальном направлении 202 наружный зазор 430 расположен рядом с внутренним зазором 330. Наружный зазор 430 расположен, проходя кольцеобразно по периметру наружной стороны 250 боковой поверхности 230. В случае если внутренний зазор 330 в продольном направлении 201полости 200 находится в середине между первой закрывающей поверхностью 210 и второй закрывающей поверхностью 220, то наружный зазор 430 также предпочтительно расположен в середине между первой закрывающей поверхностью 210 и второй закрывающей поверхностью 220. Ширина наружного зазора 430 в продольном направлении 201 предпочтительно по существу соответствует ширине внутреннего зазора 330 в продольном направлении 201.
Первое наружное покрытие 410 и второе наружное покрытие 420 также расположены каждое, проходя кольцеобразно по периметру наружной стороны 250 боковой поверхности 230. При этом кольцеобразно выполненные наружные покрытия 410, 420 предпочтительно ориентированы перпендикулярно продольному направлению 201полости 200. Ширина первого наружного покрытия 410 в продольном направлении 201, а также ширина второго наружного покрытия 420 в продольном направлении 201 предпочтительно примерно соответствует ширине наружного зазора 430 в продольном направлении 201полости 200. Первое наружное покрытие 410 и второе наружное покрытие 420 могут также, однако, в продольном направлении 201 иметь большую ширину или меньшую ширину, чем наружный зазор 430. Предпочтительно ширина первого и второго наружного покрытия 410, 420 в продольном направлении 201 мала по сравнению с длиной волны электромагнитного колебания режима, возбуждаемого в полости 200.
Первое наружное покрытие 410 диэлектрической боковой поверхностью 230 изолировано от первого внутреннего покрытия 310. Второе наружное покрытие 420 диэлектрической боковой поверхностью 230 изолировано от второго внутреннего покрытия 320. Первое внутреннее покрытие 410, диэлектрическая боковая поверхность 230 и первое внутреннее покрытие 310 образуют первый конденсатор. Второе наружное покрытие 420, диэлектрическая боковая поверхность 230 и второе внутреннее покрытие 320 образуют второй конденсатор. Первый и второй конденсатор осуществляют емкостную связь между первым наружным покрытием 410 и первым внутренним покрытием 310 или, соответственно, между вторым наружным покрытием 420 и вторым внутренним покрытием 320. Электрическое напряжение, приложенное между первым наружным покрытием 410 и вторым наружным покрытием 420, емкостным способом вводится в первое внутреннее покрытие 310 и второе внутреннее покрытие 320, так что приложенное между первым наружным покрытием 410 и вторым наружным покрытием 420 напряжение создает, по существу, такое же электрическое напряжение между первым внутренним покрытием 310 и вторым внутренним покрытием 320.
Высокочастотный резонатор 100 включает в себя устройство 500 возбуждения, которое предусмотрено для того, чтобы вводить высокочастотную электромагнитную мощность в полость 200 высокочастотного резонатора 100. Для этого устройство 500 возбуждения выполнено, чтобы прикладывать высокочастотное электрическое напряжение между первым наружным покрытием 410 и вторым наружным покрытием 420. Устройство 500 возбуждения предпочтительно имеет твердотельный мощный транзистор или другой твердотельный выключатель. Особенно предпочтительно, если устройство 500 возбуждения включает в себя несколько твердотельных мощных транзисторов, которые расположены кольцеобразно в области наружного зазора 420 по периметру наружной стороны 250 боковой поверхности 230полости 200.
Когда с помощью устройства 500 возбуждения прикладывается высокочастотное электрическое переменное напряжение между первым наружным покрытием 410 и вторым наружным покрытием 420, то вследствие емкостных связей между наружными покрытиями 410, 420 и внутренними покрытиями 310, 320 возникает также высокочастотное электрическое переменное напряжение между первым внутренним покрытием 310 и вторым внутренним покрытием 320. В первом внутреннем покрытии 310 и втором внутреннем покрытии 320 введенное высокочастотное электрическое напряжение возбуждает высокочастотный электрический ток.
Если частота переменного напряжения, приложенного устройством 500 возбуждения между первым наружным покрытием 410 и вторым наружным покрытием 420, соответствует резонансной частоте высокочастотного резонатора 100, то индуцированный во внутренних покрытиях 310, 320 ток вызывает возбуждение резонансного колебания высокочастотного режима внутри полости 200.
Таким образом, устройство 500 возбуждения позволяет емкостным способом вводить высокочастотную электромагнитную мощность в полость 200 высокочастотного резонатора 100, чтобы возбуждать и усиливать резонансное высокочастотное колебание внутри полости200.
Предпочтительным образом полость 200 высокочастотного резонатора 100 одновременно служит в качестве вакуумируемой камеры и в качестве подложки для электрически проводящего внутреннего покрытия 300. Благодаря возможности емкостного возбуждения полость 200 не требует никаких электрически проводящих проемов и поэтому также никаких трудно уплотняемых переходов металл-керамика.
Хотя изобретение было подробно проиллюстрировано и описано в деталях на предпочтительном примере осуществления, изобретение не ограничено раскрытыми примерами. Специалист может вывести отсюда другие варианты, не выходя из объема охраны изобретения.

Claims (27)

1. Высокочастотный резонатор (100), включающий в себя цилиндрическую полостью (200) из диэлектрического материала,
при этом внутренняя сторона (240) полости (200) имеет электрически проводящее покрытие (300), которое разделено кольцеобразно проходящим по периметру боковой поверхности (230) полости (200) электрически изолирующим зазором (330) на первое внутреннее покрытие (310) и второе внутреннее покрытие (320),
при этом наружная сторона (250) полости (200) имеет электрически проводящее первое наружное покрытие (410) и электрически проводящее второе наружное покрытие (420),
при этом первое наружное покрытие (410) и второе наружное покрытие (420) электрически изолированы друг от друга,
при этом высокочастотный резонатор (100) включает в себя устройство (500), которое предусмотрено для того, чтобы прикладывать высокочастотное электрическое напряжение между первым наружным покрытием (410) и вторым наружным покрытием (420).
2. Высокочастотный резонатор (100) по п. 1,
при этом кольцеобразно проходящий по периметру зазор (330) ориентирован перпендикулярно продольному направлению (201) цилиндрической полости (200).
3. Высокочастотный резонатор (100) по п. 1,
при этом первое наружное покрытие (410) и второе наружное покрытие (420) проходят каждое кольцеобразно по периметру боковой поверхности (230) полости (200).
4. Высокочастотный резонатор (100) по одному из пп. 1-3,
при этом первое наружное покрытие (410) в направлении (202), ориентированном перпендикулярно боковой поверхности (230) полости (200), расположено рядом с первым внутренним покрытием (310).
5. Высокочастотный резонатор (100) по одному из пп. 1-3,
при этом второе наружное покрытие (420) в направлении (202), ориентированном перпендикулярно боковой поверхности (230) полости (200), расположено рядом со вторым внутренним покрытием (320).
6. Высокочастотный резонатор (100) по одному из пп. 1-3,
при этом первое наружное покрытие (410) в направлении (202), ориентированном перпендикулярно боковой поверхности (230) полости (200), расположено рядом с первым внутренним покрытием (310) и при этом второе наружное покрытие (420) в направлении (202), ориентированном перпендикулярно боковой поверхности (230) полости (200), расположено рядом со вторым внутренним покрытием (320).
7. Высокочастотный резонатор (100) по одному из пп. 1-3,
при этом устройство (500) включает в себя твердотельный мощный транзистор.
8. Высокочастотный резонатор (100) по п. 7,
при этом устройство (500) включает в себя несколько твердотельных мощных транзисторов, которые расположены кольцеобразно вокруг боковой поверхности (230) полости (200).
9. Высокочастотный резонатор (100) по п. 1,
при этом диэлектрический материал представляет собой стекло или керамику.
10. Высокочастотный резонатор (100) по одному из пп. 1-3,
при этом полость (200) имеет форму круглого цилиндра.
11. Высокочастотный резонатор (100) по одному из пп. 1-3, 9,
при этом полость (200) выполнена, чтобы вакуумироваться до давления воздуха, пониженного по сравнению с давлением окружающей полость (200) среды.
12. Ускоритель частиц для ускорения электрически заряженных частиц,
при этом ускоритель частиц имеет высокочастотный резонатор (100) по одному из пп 1-11.
RU2014116552A 2011-09-29 2012-09-05 Высокочастотный резонатор и ускоритель частиц, снабженный высокочастотным резонатором RU2606188C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102011083668.3 2011-09-29
DE102011083668A DE102011083668A1 (de) 2011-09-29 2011-09-29 HF-Resonator und Teilchenbeschleuniger mit HF-Resonator
PCT/EP2012/067266 WO2013045236A1 (de) 2011-09-29 2012-09-05 Hf-resonator und teilchenbeschleuniger mit hf-resonator

Publications (2)

Publication Number Publication Date
RU2014116552A RU2014116552A (ru) 2015-11-10
RU2606188C2 true RU2606188C2 (ru) 2017-01-10

Family

ID=47008482

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014116552A RU2606188C2 (ru) 2011-09-29 2012-09-05 Высокочастотный резонатор и ускоритель частиц, снабженный высокочастотным резонатором

Country Status (9)

Country Link
US (1) US9577311B2 (ru)
EP (1) EP2749151B1 (ru)
JP (1) JP5763277B2 (ru)
KR (1) KR101941326B1 (ru)
CN (1) CN103959921B (ru)
DE (1) DE102011083668A1 (ru)
PL (1) PL2749151T3 (ru)
RU (1) RU2606188C2 (ru)
WO (1) WO2013045236A1 (ru)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011083668A1 (de) * 2011-09-29 2013-04-04 Siemens Aktiengesellschaft HF-Resonator und Teilchenbeschleuniger mit HF-Resonator
KR101641135B1 (ko) 2015-04-21 2016-07-29 한국원자력연구원 집속용 솔레노이드, 차폐체, 및 가속관이 일체형으로 정렬된 입자 가속 장치
DE102016109343A1 (de) 2016-05-20 2017-11-23 Christof-Herbert Diener Schaltungsanordnung zur Bereitstellung von Hochfrequenzenergie und System zur Erzeugung einer elektrischen Entladung
DE102018220967B4 (de) * 2018-12-04 2020-06-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung mit einer funkerkennungsanordnung und verfahren zum bereitstellen derselben

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020093401A1 (en) * 1998-10-16 2002-07-18 Chiu Luna H. Voltage tunable laminated dielectric materials for microwave applications
JP2003303700A (ja) * 2002-04-10 2003-10-24 Mitsubishi Heavy Ind Ltd セラミックス製加速空洞、当該加速空洞を備えた加速器及びセラミックス製加速空洞の製造方法
DE102009036418A1 (de) * 2009-08-06 2011-02-10 Siemens Aktiengesellschaft Wellenleiter, insbesondere beim Dielektrikum-Wand-Beschleuniger
WO2011061026A1 (de) * 2009-11-17 2011-05-26 Siemens Aktiengesellschaft Hf-kavität sowie beschleuniger mit einer derartigen hf-kavität

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3300767A1 (de) * 1983-01-12 1984-07-12 Bruker Analytische Meßtechnik GmbH, 7512 Rheinstetten Hohlraumresonator
DE4037091C2 (de) * 1990-11-22 1996-06-20 Leybold Ag Vorrichtung für die Erzeugung eines homogenen Mikrowellenfeldes
US5497050A (en) * 1993-01-11 1996-03-05 Polytechnic University Active RF cavity including a plurality of solid state transistors
US5532210A (en) 1994-06-08 1996-07-02 E. I. Du Pont De Nemours And Company High temperature superconductor dielectric slow wave structures for accelerators and traveling wave tubes
US6417499B2 (en) 2000-07-06 2002-07-09 Heatwave Drying Systems Ltd. Dielectric heating using inductive coupling
US6706138B2 (en) 2001-08-16 2004-03-16 Applied Materials Inc. Adjustable dual frequency voltage dividing plasma reactor
US20040143099A1 (en) * 2002-11-06 2004-07-22 Petersen Lars Christian Tissue factor antagonist and blood glucose regulator compositions
US20040198660A1 (en) * 2002-11-06 2004-10-07 Petersen Lars Christian Tissue factor antagonist and protein C polypeptide compositions
US8190458B2 (en) * 2007-01-17 2012-05-29 Schlumberger Technology Corporation Method of performing integrated oilfield operations
DE102008006392A1 (de) * 2008-01-28 2009-07-30 Herrenknecht Vertical Gmbh Verfahren und Vorrichtung zum Erstellen einer Tiefbohrung
US20100161361A1 (en) * 2008-12-23 2010-06-24 Schlumberger Technology Corporation Performing enterprise planning and economics analysis for reservoir-related services
US9164859B2 (en) * 2009-09-25 2015-10-20 Qualcomm Incorporated Computing device for enabling concurrent testing
US9199446B2 (en) * 2010-06-25 2015-12-01 Global Web Finishing, Llc Coating apparatus and method
DE102011082580A1 (de) * 2011-09-13 2013-03-14 Siemens Aktiengesellschaft HF-Resonator und Teilchenbeschleuniger mit HF-Resonator
DE102011083668A1 (de) * 2011-09-29 2013-04-04 Siemens Aktiengesellschaft HF-Resonator und Teilchenbeschleuniger mit HF-Resonator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020093401A1 (en) * 1998-10-16 2002-07-18 Chiu Luna H. Voltage tunable laminated dielectric materials for microwave applications
JP2003303700A (ja) * 2002-04-10 2003-10-24 Mitsubishi Heavy Ind Ltd セラミックス製加速空洞、当該加速空洞を備えた加速器及びセラミックス製加速空洞の製造方法
DE102009036418A1 (de) * 2009-08-06 2011-02-10 Siemens Aktiengesellschaft Wellenleiter, insbesondere beim Dielektrikum-Wand-Beschleuniger
WO2011061026A1 (de) * 2009-11-17 2011-05-26 Siemens Aktiengesellschaft Hf-kavität sowie beschleuniger mit einer derartigen hf-kavität

Also Published As

Publication number Publication date
WO2013045236A1 (de) 2013-04-04
CN103959921B (zh) 2016-08-24
EP2749151A1 (de) 2014-07-02
US20140346949A1 (en) 2014-11-27
CN103959921A (zh) 2014-07-30
JP2014528151A (ja) 2014-10-23
RU2014116552A (ru) 2015-11-10
DE102011083668A1 (de) 2013-04-04
EP2749151B1 (de) 2015-07-15
KR20140069263A (ko) 2014-06-09
KR101941326B1 (ko) 2019-01-22
US9577311B2 (en) 2017-02-21
JP5763277B2 (ja) 2015-08-12
PL2749151T3 (pl) 2015-12-31

Similar Documents

Publication Publication Date Title
KR101711713B1 (ko) 마이크로파 방사 기구, 마이크로파 플라즈마원 및 표면파 플라즈마 처리 장치
RU2606188C2 (ru) Высокочастотный резонатор и ускоритель частиц, снабженный высокочастотным резонатором
KR100291152B1 (ko) 플라즈마발생장치
US7589470B2 (en) Method and apparatus for producing plasma
JP2006128075A (ja) 高周波加熱装置、半導体製造装置および光源装置
JPH10134996A (ja) プラズマ処理装置
US9130504B2 (en) HF resonator and particle accelerator with HF resonator
CA1078962A (en) Magnetron slot mode absorber
JP7199423B2 (ja) イオンビーム加速のためのrf共振器
KR20060106025A (ko) 마그네트론의 콘덴서
JPH1167492A (ja) プラズマ処理装置及びプラズマ処理方法
US9041290B2 (en) Plasma light source
JP4815146B2 (ja) マグネトロン
US2747137A (en) High frequency electrical apparatus
JP2010277969A (ja) プラズマ処理装置及びプラズマ処理装置の給電方法
US2832050A (en) Electron discharge devices
Joshi et al. Identification and suppression of slot modes in a coaxial magnetron
JP2007018819A (ja) 処理装置および処理方法
RU2306685C1 (ru) Ускоритель заряженных частиц
JPS63152900A (ja) Ecrプラズマ発生装置
KR100595205B1 (ko) 마그네트론의 콘덴서
KR20160015944A (ko) 전자파 발생기
KR20240028934A (ko) 플라스마 처리 장치
JPH03238736A (ja) マグネトロン
JPH08167752A (ja) ガスレーザー装置

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190906