RU2605491C1 - Способ определения места короткого замыкания на воздушной линии электропередачи по замерам с двух концов линии с учетом различия продольных и поперечных фазных и междуфазных параметров линии - Google Patents
Способ определения места короткого замыкания на воздушной линии электропередачи по замерам с двух концов линии с учетом различия продольных и поперечных фазных и междуфазных параметров линии Download PDFInfo
- Publication number
- RU2605491C1 RU2605491C1 RU2015126374/28A RU2015126374A RU2605491C1 RU 2605491 C1 RU2605491 C1 RU 2605491C1 RU 2015126374/28 A RU2015126374/28 A RU 2015126374/28A RU 2015126374 A RU2015126374 A RU 2015126374A RU 2605491 C1 RU2605491 C1 RU 2605491C1
- Authority
- RU
- Russia
- Prior art keywords
- line
- phase
- complex
- short circuit
- sum
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/08—Locating faults in cables, transmission lines, or networks
Landscapes
- Locating Faults (AREA)
Abstract
Изобретение относится к электроэнергетике и может быть использовано для определения места короткого замыкания на линиях электропередачи по измерениям с двух ее концов без использования эквивалентных параметров питающих систем. Технический результат: повышение точности определении места короткого замыкания. Сущность: измеряют с двух концов линии несинхронизированные по углам комплексные фазные токи и напряжения основной частоты в момент короткого замыкания, измеряют угол между одноименными напряжениями по концам линии, доворачивают векторы напряжений и токов на втором конце на измеренный угол, расчетным путем определяют относительное значение расстояния до места короткого замыкания с использованием фазных величин токов и напряжений и продольных и поперечных фазных и междуфазных параметров линии. 1 з.п. ф-лы, 3 ил.
Description
Предлагаемое изобретение относится к электроэнергетике и может быть использовано для определения места короткого замыкания на линиях электропередачи по замерам с двух концов линии.
Изобретение относится к приоритетному направлению развития науки и технологий «Технологии создания энергосберегающих систем транспортировки, распределения и потребления тепла и электроэнергии» [Алфавитно-предметный указатель к Международной патентной классификации по приоритетным направлениям развития науки и технологий / Ю.Г. Смирнов, Е.В. Скиданова, С.А. Краснов. - М.: ПАТЕНТ, 2008. - с. 97], так как решает проблему уменьшения времени задержек при транспортировке электроэнергии потребителям в случае повреждения электрических сетей.
Наиболее известны способы определения места повреждения по измерениям с одного конца линии. Такие способы реализованы в регистрирующих приборах (МФИ-1, МИР-1, ЦРАП [Техническое описание и инструкция по эксплуатации МФИ-1, г. Рига, 1991; Алгоритмы функционирования и опыт эксплуатации микропроцессорных устройств определения повреждения линий электропередачи. Электрические станции №12, 1997]). Способы, основанные на односторонних замерах параметров короткого замыкания предполагают определение падения напряжения на переходном сопротивлении, и точность его определения имеет большое значение. Однако на точность оказывают влияние различные факторы.
Известен способ определения места повреждения по измерениям параметров аварийного режима с одного (и с другого) конца линии, в котором измеряют реактивную составляющую сопротивления поврежденной фазы [Разработка и исследование защиты линий электропередач с фиксацией места повреждения. Новочеркасский политехнический институт, г. Новочеркасск, 1969].
Признаками аналога, совпадающими с существенными признаками заявляемого способа, являются измерение фазных токов и напряжений в момент короткого замыкания на линии на одном конце линии, определение вида короткого замыкания и определение по соотношению измеренных с одного конца мнимых составляющих комплексных величин расстояния до места короткого замыкания. Аналогично по соотношению измеренных величин с другого конца определяют расстояние до места короткого замыкания со второго конца.
Данный метод, использующий только реактивную составляющую отношения измеренного напряжения к измеренному току, позволяет уменьшить влияние переходного сопротивления в месте повреждения. Однако точность во многом зависит от величины переходного сопротивления и величины подпитывающего тока противоположного конца линии тому, на котором производятся измерения.
Хорошо известен способ, использующийся в устройствах релейной защиты некоторых западных производителей - компенсационный метод [Висящев А.Н. Приборы и методы определения места повреждения на линиях электропередачи: Учебное пособие. - Иркутск: Издательство ИрГТУ, 2001, ч. 1]. Данный способ использует параметры аварийного и предаварийного режимов, полученные с одного конца линии.
Признаками аналога, совпадающими с существенными признаками заявляемого способа, являются измерение фазных токов и напряжений в момент короткого замыкания на линии на одном конце линии, определение вида короткого замыкания и определение по соотношению измеренных с одного конца величин расстояния до места короткого замыкания. Аналогично по соотношению измеренных величин с другого конца определяют расстояние до места короткого замыкания со второго конца.
Основная особенность способа - это возможность учета влияния питания с противоположного конца линии, а также исключение погрешности от переходного сопротивления в месте короткого замыкания. Для реализации этого метода требуется полная модель сети, т.е. программы расчета установившихся и аварийных режимов сети. Кроме того, требуется произвести предварительные измерения тока нагрузки, которые сохраняют и используют для компенсации погрешности от влияния нагрузки.
Известен способ определения места повреждения на воздушных линиях электропередачи [Заявка RU №2009137563/28, G01R 31/08 (2006.01), дата публикации 20.04.2011], в котором указанные недостатки устраняются. В этом способе измеряют с двух концов линии фазные напряжения и токи, преобразуют их в расчетные комплексные значения по предложенным выражениям и, используя мнимые части расчетных величин, находят расчетным путем относительные и физические расстояния места повреждения от концов линии. В этом способе не используют эквивалентные параметры питающих систем, устранено влияние переходного сопротивления.
Признаками аналога, совпадающими с существенными признаками заявляемого способа, являются: измерение с двух концов линии (′ - один конец линии, ′′ - второй конец линии) несинхронизированных по углам комплексных фазных токов , и напряжений , основной частоты в момент короткого замыкания, определение вида короткого замыкания, расчетным путем с использованием замеров с обоих концов определение относительного значения расстояния до места короткого замыкания n и расстояние до места короткого замыкания Ln=n*L.
Недостатком способа является необходимость использования только мнимых составляющих расчетных величин.
Указанный недостаток может приводить к погрешности в определении места повреждения из-за недостаточного объема учитываемых параметров.
Известен способ определения места короткого замыкания на воздушной линии электропередачи по замерам с двух ее концов [патент RU №2485531, С2], в котором указанные недостатки устраняются. В этом способе определения места короткого замыкания на линии электропередачи по замерам с двух ее концов, имеющей комплексное сопротивление прямой (индекс 1), обратной (индекс 2) и нулевой (индекс 0) последовательностей Z 1Л, Z 2Л, Z 0Л, длину L, соединяющую две питающие системы, в котором измеряют с двух концов линии (′ - один конец линии, ′′ - второй конец линии) несинхронизированные по углам комплексные фазные токи , и напряжения , основной частоты в момент короткого замыкания, определяют вид короткого замыкания, расчетным путем определяют относительное значение расстояния до места короткого замыкания n и расстояние до места короткого замыкания Ln=n*L, измеряют любыми известными средствами угол между одноименными напряжениями по концам линии, например, с помощью средств GPS, доворачивают векторы напряжений и токов на втором конце на измеренный угол, преобразуют фазные токи и напряжения в симметричные составляющие комплексные токи и напряжения прямой, обратной и нулевой последовательностей , , , и определяют в зависимости от вида короткого замыкания относительные расстояния от концов линии до места повреждения для замыканий на землю по выражениям:
для двухфазного замыкания по выражениям:
для любых замыканий по выражениям:
Недостатками способа являются: необходимость использования величин симметричных составляющих токов, напряжений и сопротивлений линии и отсутствие учета поперечных параметров линии.
Указанный недостаток может приводить к погрешности в определении места повреждения из-за усреднения величин продольных и неучета поперечных сопротивлений линии.
Известен способ [патент RU 2531769 С2], принятый за прототип, в котором технический результат достигается тем, что на линии электропередачи, имеющей комплексные сопротивления проводов фаз ZAA, ZBB, ZCC, междуфазные комплексные сопротивления ZAB, ZAC, ZBA, ZBC, ZCA, ZCB, длину L, соединяющую две питающие системы, измеряют с двух концов линии (′ - один конец линии, ′′ - второй конец линии) несинхронизированные по углам комплексные фазные токи , и напряжения , основной частоты в момент короткого замыкания, измеряют любыми известными средствами угол между одноименными напряжениями по концам линии, например, с помощью средств GPS, доворачивают векторы напряжений и токов на втором конце на измеренный угол, расчетным путем формируют для любого вида короткого замыкания относительное значение расстояния до места короткого замыкания по выражениям:
и расстояние до места короткого замыкания Ln=n*L,
где n′, n′′ - относительные значения расстояний соответственно от первого и от второго концов линии до места короткого замыкания;
- векторная сумма фазных падений напряжений на всем сопротивлении линии от токов первого конца линии (В);
- векторная сумма фазных падений напряжений на всем сопротивлении линии от токов второго конца линии (В);
Недостатком способа является отсутствие учета поперечных фазных и междуфазных параметров линии.
Указанный недостаток может приводить к погрешности в определении места короткого замыкания из-за неучета величин поперечных сопротивлений линии.
Изобретение направлено на решение задачи по созданию технологий, позволяющих повысить эффективность электроснабжения.
Технический результат изобретения заключается в повышении точности определения места короткого замыкания за счет использования величин емкостных фазных и междуфазных проводимостей при использовании фазных токов и напряжений и величин полных фазных и междуфазных сопротивлений линии.
Технический результат достигается тем, что в способе определения места короткого замыкания на линии электропередачи по замерам с двух ее концов, имеющей комплексные сопротивления проводов фаз ZAA, ZBB, ZCC, междуфазные комплексные сопротивления ZAB, ZAC, ZBA, ZBC, ZCA, ZCB, емкостные проводимости проводов фаз линии на землю YAA, YBB, YCC, емкостные междуфазные проводимости линии YAB, YAC, YBA, YBC, YCA, YCB, длину L, соединяющую две питающие системы, в котором измеряют с двух концов линии (′ - первый конец линии, ′′ - второй конец линии) несинхронизированные по углам комплексные фазные токи , и напряжения , основной частоты в момент короткого замыкания, измеряют любыми известными средствами угол между одноименными напряжениями по концам линии, например, с помощью средств GPS, доворачивают векторы напряжений и токов на втором конце на измеренный угол, расчетным путем определяют относительное значение расстояния до места короткого замыкания n и расстояние до места короткого замыкания Ln=n*L, согласно изобретению формируют комплексные падения напряжений на элементах линии:
где ZAA, ZBB, ZCC - комплексные сопротивления проводов фаз линии (Ом);
ZAB, ZAC, ZBA, ZBC, ZCA, ZCB - междуфазные комплексные сопротивления линии (Ом);
YAA, YBB, YCC - емкостные проводимости проводов фаз линии на землю (См);
YAB, YAC, YBA, YBC, YCA, YCB - емкостные междуфазные проводимости линии (См);
, - комплексные фазные напряжения, измеренные на шинах с первого (′) и второго (′′) концов линии (В),
и определяют относительные расстояния от концов линии до места повреждения для любого вида короткого замыкания по выражениям:
где n′, n′′ - относительные значения расстояний соответственно от первого и от второго концов линии до места короткого замыкания;
- сумма комплексных фазных падений напряжений на всем сопротивлении линии от токов первого конца линии (В);
- сумма комплексных фазных падений напряжений на всем сопротивлении линии от токов второго конца линии (В);
- сумма комплексных фазных падений напряжений на всем сопротивлении линии от емкостных токов первого конца линии (В);
- сумма комплексных фазных падений напряжений на всем сопротивлении линии от емкостных токов второго конца линии (В).
При этом для реализации условия симметричных составляющих нулевой последовательности формируют суммы комплексных фазных напряжений по выражениям:
суммы комплексных фазных падений напряжений по выражениям:
Для реализации условия симметричных составляющих прямой последовательности формируют суммы комплексных фазных напряжений по выражениям:
суммы комплексных фазных падений напряжений по выражениям:
где a=ej120 - оператор поворота, a2=ej240 - оператор поворота в квадрате.
Для реализации условия симметричных составляющих обратной последовательности формируют суммы комплексных фазных напряжений по выражениям:
суммы комплексных фазных падений напряжений по выражениям:
Для реализации произвольного условия формируют суммы комплексных фазных напряжений, например, по выражениям:
суммы комплексных фазных падений напряжений по выражениям:
Для однофазного короткого замыкания предварительно определяют поврежденную фазу линии, для которой формируют комплексные падения напряжений по выражениям:
и определяют место короткого замыкания по выражениям:
Значения комплексных сопротивлений проводов фаз линии и междуфазных комплексных сопротивлений (соответственно собственных и взаимных сопротивлений) определяются по общеизвестным выражениям (например, Ульянов С.А. Электромагнитные переходные процессы в энергетических системах. Изд-во Энергия, 1970 г., с 293, 294).
Значения емкостных проводимостей фаз на «землю» и взаимных емкостных проводимостей междуфаз определяются по общеизвестным выражениям (например, Висящев А.Н. Приборы и методы определения места повреждения на линиях электропередачи. Иркутск, уч. пособие, изд-во ИрГТУ, 2001 г., с. 27-29).
При наличии осциллограмм токов и напряжений для определения угла между одноименными напряжениями по концам линии совмещают осциллограммы с двух концов линии по срезу начала короткого замыкания и измеряют угол сдвига между синусоидами напряжений, например фазы А по концам линии.
Отличия от прототипа доказывают новизну технического решения, охарактеризованного в формуле изобретения.
Новый подход позволяет повысить точность определения места короткого замыкания при использовании величин фазных токов и напряжений и величин полных фазных и междуфазных сопротивлений линии за счет использования величин фазных и междуфазных емкостных проводимостей линии и в то же время дает возможность практической реализации метода благодаря раскрытию довольно простых средств и методов, что подтверждает соответствие заявляемых технических решений условию патентоспособности «промышленная применимость».
Из уровня техники не известны отличительные существенные признаки заявляемого способа, охарактеризованного в формуле изобретения, что подтверждает их соответствие условию патентоспособности «изобретательский уровень».
Изобретение поясняется чертежом, где:
на фиг. 1 представлена общая трехфазная схема замещения линии электропередачи с двухсторонним питанием;
на фиг. 2 представлена трехфазная схема замещения линии для короткого замыкания на землю;
на фиг. 3 представлена трехфазная схема замещения линии для междуфазного короткого замыкания (здесь АВ).
На фиг. 1 показана трехфазная схема замещения линии электропередачи с двухсторонним питанием, длиной L, имеющей комплексные сопротивления проводов фаз А, В и С ZAA, ZBB, ZCC, комплексные междуфазные сопротивления ZAB, ZBC, ZCA, ZBA, ZCB, ZAC (причем ZAB=ZBA, ZBC=ZCB, ZCA=ZAC), емкостные проводимости проводов фаз А, В и С на землю YAA, YBB, YCC, емкостные междуфазные проводимости YAB, YBC, YCA, YBA, YCB, YAC (причем YAB=YBA, YBC=YCB, YCA=YAC), соединяющей шины 3 и 4 двух систем 1 и 2 с эквивалентными параметрами (ЭДС и комплексные сопротивления соответственно , ′- один конец линии, ′′ - второй конец линии).
На фиг. 2 на линии показано короткое замыкание 6 за переходным сопротивлением (RП) 7 на расстоянии nL от первого конца линии, участок 8 длиной nL от первого конца линии до места короткого замыкания, участок 9 длиной (1-n)L, от второго конца линии до места короткого замыкания. При возникновении короткого замыкания на линии по ней протекают фазные токи в сопротивлениях участка 8, токи в сопротивлениях участка 9, сумма которых дает полный ток короткого замыкания
в переходном сопротивлении 7, при этом на шинах 3 и 4 измеряют с двух концов линии несинхронизированные по углам комплексные фазные токи , и напряжения , .
На фиг. 3 на линии показано междуфазное короткое замыкание 6 через переходное сопротивление (RП) 7 на расстоянии nL от первого конца линии.
Рассмотрим любое короткое замыкание на одноцепной линии с двухсторонним питанием. Параметры аварийного режима - токи , и напряжения , замерены с двух концов и поэтому влияние RП (7) и питающих систем (1, 2) можно исключить.
Разницу фазных напряжений на шинах питающих систем и фазных падений напряжений до точки короткого замыкания от первого и второго концов линии можно приравнять и записать следующим образом:
ZAA, ZBB, ZCC - комплексные сопротивления проводов фаз А, В и С (Ом);
ZAB, ZBC, ZCA, ZBA, ZCB, ZAC - комплексные междуфазные сопротивления (Ом);
YAA, YBB, YCC - емкостные проводимости проводов фаз А, В и С на землю (См);
YAB, YBC, YCA, YBA, YCB, YAC - емкостные междуфазные проводимости (См).
Для двух- и n-цепной линии электропередачи можно составить соответственно шесть или n*3 уравнений (при наличии измерений во всех фазах всех цепей по концам линии). При этом питающие системы по концам линии могут быть как связаны, так и не связаны, могут быть разного уровня напряжений.
Полученная система трех (шести или n*3) связанных уравнений может быть решена множеством путей.
Например, если сложить все три уравнения (для одноцепной линии), то получим уравнение для нулевой последовательности:
где:
откуда относительное расстояние n′ определится по выражению:
Если умножить второе уравнение на оператор поворота а2=ej120, а третье уравнение на оператор поворота а2=ej240, то получим уравнение для прямой последовательности:
откуда относительное расстояние n′ определится по выражению:
Если умножить второе уравнение на оператор поворота а2=ej240, а третье уравнение на оператор поворота а2=ej120, то получим уравнение для обратной последовательности:
откуда относительное расстояние n′ определится по выражению:
Также можно сложить два уравнения и вычесть третье:
откуда относительное расстояние n′ определится по выражению:
Такой вариант целесообразно применять при двухфазных коротких замыканиях.
В общем случае относительные расстояния от концов линии до места повреждения определяют для любого вида короткого замыкания по выражениям:
где n′, n′′ - относительные значения расстояний соответственно от первого и второго концов линии до места короткого замыкания;
- сумма комплексных фазных падений напряжений на всем сопротивлении линии от токов первого конца линии (В);
- сумма комплексных фазных падений напряжений на всем сопротивлении линии от токов второго конца линии (В);
- сумма комплексных фазных падений напряжений на всем сопротивлении линии от емкостных токов первого конца линии (В);
- сумма комплексных фазных падений напряжений на всем сопротивлении линии от емкостных токов второго конца линии (В).
При этом следует учитывать, наличие множества комбинаций с тремя начальными уравнениями.
Для однофазного замыкания на землю любое из трех уравнений можно решить одиночно для поврежденной фазы, однако при этом нужно предварительно установить фазу линии, в которой произошло замыкание.
Например, при коротком замыкании в фазе А место короткого замыкания определяют по выражениям:
где:
Для реализации способа измеряют комплексные величины фазных токов , и напряжений , по концам линии, измеряют любыми известными средствами угол между одноименными напряжениями по концам линии (например, с помощью средств GPS [Балабин М.А. и др. Тестовые испытания устройств синхронизированных измерений векторных величин энергосистем. Электричество, №4, 2011, с. 17]). При наличии осциллограмм токов и напряжений для определения угла между одноименными напряжениями по концам линии совмещают осциллограммы с двух концов линии по срезу начала короткого замыкания и измеряют угол сдвига между синусоидами напряжений, например фазы А по концам линии. Далее, поворачивают векторы напряжений и токов на втором конце на измеренный угол, определяют относительные расстояния от концов линии до места повреждения для замыканий на землю с учетом множества возможных комбинаций векторных сумм фазных напряжений и векторных сумм фазных падений напряжений по выражениям:
Предлагаемый способ позволяет определить место короткого замыкания на одной из цепей многоцепной линии электропередачи при условии наличия измерений токов и напряжений во всех фазах всех цепей по концам линии.
Проверка способа на реальных коротких замыканиях показала высокую точность определения места повреждения. Определение места повреждения, выполненное по предложенной методике, показало также полное отсутствие методической погрешности при наличии переходного сопротивления от 5 до 50 Ом и при изменениях нагрузочного режима в широких диапазонах. Погрешность отсутствует как при измерениях со стороны слабой, так и со стороны мощной питающих систем.
Таким образом, использованием алгоритма определения расстояния до места повреждения при двухстороннем замере на основании известного угла сдвига между напряжениями и токами по концам линии, известных фазных и междуфазных продольных и поперечных параметров линии достигается более точное определение расстояние до места короткого замыкания.
Claims (2)
1. Способ определения места короткого замыкания на воздушной линии электропередачи по замерам с двух концов линии, имеющей комплексные сопротивления проводов фаз ZAA, ZBB, ZCC, междуфазные комплексные сопротивления ZAB, ZAC, ZBA, ZBC, ZCA, ZCB, емкостные проводимости проводов фаз линии на землю YAA, YBB, YCC, емкостные междуфазные проводимости линии YAB, YAC, YBA, YBC, YCA, YCB, длину L, соединяющей две питающие системы, в котором измеряют с двух концов линии (' - первый конец линии, “ - второй конец линии) несинхронизированные по углам комплексные фазные токи , и напряжения , основной частоты в момент короткого замыкания, измеряют любыми известными средствами угол между одноименными напряжениями по концам линии, например, с помощью средств GPS, доворачивают векторы напряжений и токов на втором конце на измеренный угол, расчетным путем определяют относительное значение расстояния до места короткого замыкания n и расстояние до места короткого замыкания Ln=n*L, отличающийся тем, что формируют комплексные падения напряжений на элементах линии:
где
ZAA, ZBB, ZCC - комплексные сопротивления проводов фаз линии, Ом;
ZAB, ZAC, ZBA, ZBC, ZCA, ZCB - междуфазные комплексные сопротивления линии, Ом;
YAA, YBB, YCC - емкостные проводимости проводов фаз линии на землю, См;
YAB, YAC, YBA, YBC, YCA, YCB - емкостные междуфазные проводимости линии, См;
, - комплексные фазные токи, измеренные с первого (') и второго (“) концов линии, А;
, - комплексные фазные напряжения, измеренные на шинах с первого (') и второго (“) концов линии, В,
и определяют относительные расстояния от концов линии до места повреждения для любого вида короткого замыкания по выражениям:
,
,
где n', n” - относительные значения расстояний соответственно от первого и от второго концов линии до места короткого замыкания;
- сумма комплексных фазных напряжений с первого конца линии, В;
- сумма комплексных фазных напряжений со второго конца линии, В;
- сумма комплексных фазных падений напряжений на всем сопротивлении линии от токов первого конца линии, В;
- сумма комплексных фазных падений напряжений на всем сопротивлении линии от токов второго конца линии, В;
- сумма комплексных фазных падений напряжений на всем сопротивлении линии от емкостных токов первого конца линии, В;
- сумма комплексных фазных падений напряжений на всем сопротивлении линии от емкостных токов второго конца линии, В,
при этом для реализации условия симметричных составляющих нулевой последовательности формируют суммы комплексных фазных напряжений по выражениям:
суммы комплексных фазных падений напряжений по выражениям:
для реализации условия симметричных составляющих прямой последовательности формируют суммы комплексных фазных напряжений по выражениям:
суммы комплексных фазных падений напряжений по выражениям:
для реализации условия симметричных составляющих обратной последовательности формируют суммы комплексных фазных напряжений по выражениям:
суммы комплексных фазных падений напряжений по выражениям:
для реализации произвольного условия формируют суммы комплексных фазных напряжений, например, по выражениям:
суммы комплексных фазных падений напряжений по выражениям:
где
a=ej120 - оператор поворота,
a2=ej240 - оператор поворота в квадрате.
где
ZAA, ZBB, ZCC - комплексные сопротивления проводов фаз линии, Ом;
ZAB, ZAC, ZBA, ZBC, ZCA, ZCB - междуфазные комплексные сопротивления линии, Ом;
YAA, YBB, YCC - емкостные проводимости проводов фаз линии на землю, См;
YAB, YAC, YBA, YBC, YCA, YCB - емкостные междуфазные проводимости линии, См;
, - комплексные фазные токи, измеренные с первого (') и второго (“) концов линии, А;
, - комплексные фазные напряжения, измеренные на шинах с первого (') и второго (“) концов линии, В,
и определяют относительные расстояния от концов линии до места повреждения для любого вида короткого замыкания по выражениям:
,
,
где n', n” - относительные значения расстояний соответственно от первого и от второго концов линии до места короткого замыкания;
- сумма комплексных фазных напряжений с первого конца линии, В;
- сумма комплексных фазных напряжений со второго конца линии, В;
- сумма комплексных фазных падений напряжений на всем сопротивлении линии от токов первого конца линии, В;
- сумма комплексных фазных падений напряжений на всем сопротивлении линии от токов второго конца линии, В;
- сумма комплексных фазных падений напряжений на всем сопротивлении линии от емкостных токов первого конца линии, В;
- сумма комплексных фазных падений напряжений на всем сопротивлении линии от емкостных токов второго конца линии, В,
при этом для реализации условия симметричных составляющих нулевой последовательности формируют суммы комплексных фазных напряжений по выражениям:
суммы комплексных фазных падений напряжений по выражениям:
для реализации условия симметричных составляющих прямой последовательности формируют суммы комплексных фазных напряжений по выражениям:
суммы комплексных фазных падений напряжений по выражениям:
для реализации условия симметричных составляющих обратной последовательности формируют суммы комплексных фазных напряжений по выражениям:
суммы комплексных фазных падений напряжений по выражениям:
для реализации произвольного условия формируют суммы комплексных фазных напряжений, например, по выражениям:
суммы комплексных фазных падений напряжений по выражениям:
где
a=ej120 - оператор поворота,
a2=ej240 - оператор поворота в квадрате.
2. Способ по п. 1 отличающийся тем, что для однофазного короткого замыкания предварительно определяют поврежденную, например, фазу А линии, для которой формируют комплексные падения напряжений по выражениям:
,
,
,
,
и определяют место короткого замыкания по выражениям:
, ,
где:
ZAA - комплексные сопротивления провода фазы А линии, Ом;
ZAB, ZAC, ZBA, ZBC, ZCA, ZCB - междуфазные комплексные сопротивления линии, Ом;
YAA - емкостные проводимости провода фазы А линии на землю, См;
YAB, YAC, YBA, YBC, YCA, YCB - емкостные междуфазные проводимости линии, См;
, - комплексные фазные токи, измеренные с первого (') и второго (“) концов линии, А.
,
,
,
,
и определяют место короткого замыкания по выражениям:
, ,
где:
ZAA - комплексные сопротивления провода фазы А линии, Ом;
ZAB, ZAC, ZBA, ZBC, ZCA, ZCB - междуфазные комплексные сопротивления линии, Ом;
YAA - емкостные проводимости провода фазы А линии на землю, См;
YAB, YAC, YBA, YBC, YCA, YCB - емкостные междуфазные проводимости линии, См;
, - комплексные фазные токи, измеренные с первого (') и второго (“) концов линии, А.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2015126374/28A RU2605491C1 (ru) | 2015-07-01 | 2015-07-01 | Способ определения места короткого замыкания на воздушной линии электропередачи по замерам с двух концов линии с учетом различия продольных и поперечных фазных и междуфазных параметров линии |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2015126374/28A RU2605491C1 (ru) | 2015-07-01 | 2015-07-01 | Способ определения места короткого замыкания на воздушной линии электропередачи по замерам с двух концов линии с учетом различия продольных и поперечных фазных и междуфазных параметров линии |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2605491C1 true RU2605491C1 (ru) | 2016-12-20 |
Family
ID=58697302
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2015126374/28A RU2605491C1 (ru) | 2015-07-01 | 2015-07-01 | Способ определения места короткого замыкания на воздушной линии электропередачи по замерам с двух концов линии с учетом различия продольных и поперечных фазных и междуфазных параметров линии |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2605491C1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107192922A (zh) * | 2017-05-11 | 2017-09-22 | 西安交通大学 | 利用相电流突变量高频信号相位比较的谐振接地系统单相接地故障区段定位方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6466031B1 (en) * | 2000-12-29 | 2002-10-15 | Abb Power Automation Ltd. | Systems and methods for locating faults on a transmission line with multiple tapped loads |
WO2003044547A1 (en) * | 2001-11-23 | 2003-05-30 | Abb Ab | Fault location using measurements from two ends of a line |
RU2485531C2 (ru) * | 2011-08-22 | 2013-06-20 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Иркутский государственный технический университет" (ФГБОУ ВПО "ИрГТУ") | Способ определения места короткого замыкания на воздушной линии электропередачи по замерам с двух ее концов (варианты) |
RU2505827C1 (ru) * | 2012-05-23 | 2014-01-27 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Иркутский государственный технический университет" (ФГБОУ ВПО "ИрГТУ") | Способ определения места короткого замыкания на воздушной линии электропередачи по замерам с двух ее концов (варианты) |
EP1971869B1 (en) * | 2006-01-12 | 2014-04-23 | ABB Technology Ltd | Method and device for fault location in a two-terminal transmission or distribution power line |
RU2526095C2 (ru) * | 2009-10-09 | 2014-08-20 | Александр Никандорович Висящев | Способ определения места повреждения на воздушных линиях электропередачи (варианты) |
RU2531769C2 (ru) * | 2013-07-23 | 2014-10-27 | Степан Георгиевич Тигунцев | Способ определения места короткого замыкания на воздушной линии электропередачи по замерам с двух концов линии |
-
2015
- 2015-07-01 RU RU2015126374/28A patent/RU2605491C1/ru active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6466031B1 (en) * | 2000-12-29 | 2002-10-15 | Abb Power Automation Ltd. | Systems and methods for locating faults on a transmission line with multiple tapped loads |
WO2003044547A1 (en) * | 2001-11-23 | 2003-05-30 | Abb Ab | Fault location using measurements from two ends of a line |
EP1971869B1 (en) * | 2006-01-12 | 2014-04-23 | ABB Technology Ltd | Method and device for fault location in a two-terminal transmission or distribution power line |
RU2526095C2 (ru) * | 2009-10-09 | 2014-08-20 | Александр Никандорович Висящев | Способ определения места повреждения на воздушных линиях электропередачи (варианты) |
RU2485531C2 (ru) * | 2011-08-22 | 2013-06-20 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Иркутский государственный технический университет" (ФГБОУ ВПО "ИрГТУ") | Способ определения места короткого замыкания на воздушной линии электропередачи по замерам с двух ее концов (варианты) |
RU2505827C1 (ru) * | 2012-05-23 | 2014-01-27 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Иркутский государственный технический университет" (ФГБОУ ВПО "ИрГТУ") | Способ определения места короткого замыкания на воздушной линии электропередачи по замерам с двух ее концов (варианты) |
RU2531769C2 (ru) * | 2013-07-23 | 2014-10-27 | Степан Георгиевич Тигунцев | Способ определения места короткого замыкания на воздушной линии электропередачи по замерам с двух концов линии |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107192922A (zh) * | 2017-05-11 | 2017-09-22 | 西安交通大学 | 利用相电流突变量高频信号相位比较的谐振接地系统单相接地故障区段定位方法 |
CN107192922B (zh) * | 2017-05-11 | 2019-07-23 | 西安交通大学 | 基于相电流相位比较的谐振接地系统接地故障定位方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2531769C2 (ru) | Способ определения места короткого замыкания на воздушной линии электропередачи по замерам с двух концов линии | |
RU2508556C1 (ru) | Способ определения места короткого замыкания на воздушной линии электропередачи при несинхронизированных замерах с двух ее концов | |
EP2829887B1 (en) | Method and device for estimating angle of zero-sequence voltage in single-phase earth fault | |
Shi et al. | Identification of short transmission-line parameters from synchrophasor measurements | |
RU2539830C2 (ru) | Способ определения места повреждения на воздушных и кабельных линиях электропередачи в сетях с изолированной нейтралью | |
Kang et al. | A fault location algorithm based on circuit analysis for untransposed parallel transmission lines | |
Dehghani et al. | A new fault location technique on radial distribution systems using artificial neural network | |
CN105044551A (zh) | 一种架空线-高压电缆混合线路故障定位方法 | |
RU2610852C1 (ru) | Способ определения места короткого замыкания на воздушной линии электропередачи с выполнением расчетной синхронизации измерений с двух её концов | |
RU2605491C1 (ru) | Способ определения места короткого замыкания на воздушной линии электропередачи по замерам с двух концов линии с учетом различия продольных и поперечных фазных и междуфазных параметров линии | |
US11327105B2 (en) | Fault location in multi-terminal tapped lines | |
RU2557375C1 (ru) | Способ определения расстояния до мест замыканий на землю на двух линиях электропередачи в сетях с малыми токами замыкания на землю | |
RU2586453C1 (ru) | Способ определения места короткого замыкания на воздушной линии электропередачи при несинхронизированных замерах с двух её концов | |
RU2505827C1 (ru) | Способ определения места короткого замыкания на воздушной линии электропередачи по замерам с двух ее концов (варианты) | |
RU2605558C1 (ru) | Способ определения места короткого замыкания на воздушной линии электропередачи с грозозащитным тросом по замерам с двух концов линии с учетом различия продольных и поперечных фазных и междуфазных параметров линии | |
CN108982947A (zh) | 带辅助测量功能的电气线路及电力参数测量方法 | |
RU2615150C1 (ru) | Способ определения места короткого замыкания на многоцепной с грозозащитными тросами, заземленными на анкерных опорах, трехфазной воздушной линии электропередачи с распределенными параметрами | |
RU2609727C1 (ru) | Способ определения удаленности места повреждения контактной сети (варианты) | |
CN104316842B (zh) | 利用相间故障位置因子相位特性实现线路相间故障单端测距方法 | |
RU2485531C2 (ru) | Способ определения места короткого замыкания на воздушной линии электропередачи по замерам с двух ее концов (варианты) | |
Jiao et al. | Accurate location of evolving faults on transmission lines using sparse wide area measurements | |
RU2544889C1 (ru) | Способ экспериментального определения сопротивлений обмоток трансформаторов | |
Zhang et al. | A robust fault location algorithm for single line-to-ground fault in double-circuit transmission systems | |
RU2790790C1 (ru) | Способ одностороннего определения места повреждения линии электропередачи с использованием её моделей | |
RU2628663C2 (ru) | Способ измерения симметричных составляющих напряжений в трёхфазных сетях |