RU2604887C1 - Способ подводного освоения газовых месторождений, способ подводного сжижения природного газа и подводный комплекс для их осуществления - Google Patents

Способ подводного освоения газовых месторождений, способ подводного сжижения природного газа и подводный комплекс для их осуществления Download PDF

Info

Publication number
RU2604887C1
RU2604887C1 RU2015142096/03A RU2015142096A RU2604887C1 RU 2604887 C1 RU2604887 C1 RU 2604887C1 RU 2015142096/03 A RU2015142096/03 A RU 2015142096/03A RU 2015142096 A RU2015142096 A RU 2015142096A RU 2604887 C1 RU2604887 C1 RU 2604887C1
Authority
RU
Russia
Prior art keywords
underwater
natural gas
plant
gas
liquid nitrogen
Prior art date
Application number
RU2015142096/03A
Other languages
English (en)
Inventor
Чингиз Саибович Гусейнов
Original Assignee
Чингиз Саибович Гусейнов
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Чингиз Саибович Гусейнов filed Critical Чингиз Саибович Гусейнов
Priority to RU2015142096/03A priority Critical patent/RU2604887C1/ru
Application granted granted Critical
Publication of RU2604887C1 publication Critical patent/RU2604887C1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0275Construction and layout of liquefaction equipments, e.g. valves, machines adapted for special use of the liquefaction unit, e.g. portable or transportable devices
    • F25J1/0277Offshore use, e.g. during shipping
    • F25J1/0278Unit being stationary, e.g. on floating barge or fixed platform
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/01Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells specially adapted for obtaining from underwater installations
    • E21B43/017Production satellite stations, i.e. underwater installations comprising a plurality of satellite well heads connected to a central station
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D29/00Independent underground or underwater structures; Retaining walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0221Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/42Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/60Details about pipelines, i.e. network, for feed or product distribution

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Paleontology (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

Группа изобретений относится к подводным сооружениям и предназначена для подводного освоения газовых месторождений и сжижения природного газа в акваториях Северного Ледовитого океана, которые длительное время или же постоянно покрыты трудно проходимыми для арктических ледоколов ледовыми полями и исключают возможность добычи и транспорта скважинного флюида традиционным способом. Технический результат - повышение безопасности и качества проводимых работ в процессе подводного освоения газовых месторождений и подводного сжижения природного газа. Подводный комплекс для подводного освоения газовых месторождений и сжижения природного газа предназначен для круглогодичной работы на глубине в диапазоне от 100 до 120 м от уровня моря. Этот комплекс включает буродобывающее подводное сооружение, подводный жилой блок с центром управления, подводную атомную электростанцию, подводный завод для сжижения природного газа, подводный резервуар приема/хранения жидкого азота, подводный резервуар приема/хранения/отгрузки сжиженного природного газа и подводный танкер-газовоз. Буродобывающее подводное сооружение обладает возможностью круглогодичного подводного бурения скважин и их эксплуатации с очисткой скважинного флюида от мехпримесей. Буродобывающее подводное сооружение соединено с заводом для сжижения природного газа связующей гибкой трубой с длиной, обеспечивающей охлаждение природного газа в арктической среде моря до заданной величины. Подводный завод для сжижения природного газа выполнен с возможностью его сжижения путем каскадного ступенчатого последовательного охлаждения до температуры конденсации в противотоке с жидким азотом и обеспечения выхода отработанного жидкого азота по выхлопной гибкой трубе в атмосферу и/или под лед. Подводная атомная электростанция выполнена с возможностью обеспечения электроэнергией по гибким плавучим кабелям всех подводных сооружений. 3 н. и 4 з.п. ф-лы, 2 ил.

Description

Изобретение относится к подводным сооружениям и предназначено для подводного освоения газовых месторождений и сжижения природного газа в акваториях Северного Ледовитого океана, которые длительное время или же постоянно покрыты трудно проходимыми для арктических ледоколов ледовыми полями, при этом осуществление добычи и транспорта скважинного флюида традиционным способом невозможно.
Известно подводное сооружение для освоения углеводородных ресурсов в арктических акваториях, работающее на глубинах от 70 до 120 м от уровня моря, при этом основание выполнено в виде круговой опорно-несущей палубы с технологическими модулями в виде секторов; в центре основания опорно-несущей палубы в устьевом модуле размещены скважины (RU 2515657 от 25.10.2012).
Известно подводное сооружение, используемое на акваториях длительно замерзающих морей, на которых освоение углеводородов с поверхности моря недоступно, работающее на глубинах от 100 до 120 м от уровня моря, при этом состоящее из опорно-несущего подводного комплекса и бурового комплекса или добычного комплекса (RU 2517285 от 03.12.2012).
Недостатком таких сооружений является отсутствие:
- комплексного подхода, обеспечивающего подводное освоение газовых месторождений;
- подводного способа, предусматривающего полный цикл сжижения природного газа;
- подводного способа транспортировки сжиженного природного газа.
Техническим результатом заявленного изобретения является повышение безопасности и качества проводимых работ в процессе подводного освоения газовых месторождений и подводного сжижения природного газа.
Указанный технический результат достигается в заявленном подводном комплексе для подводного освоения газовых месторождений и сжижения природного газа, круглогодично работающего на глубине в диапазоне от 100 до 120 м от уровня моря, тем, что включает: буродобывающее подводное сооружение; подводный жилой блок с центром управлением; подводную атомную электростанцию; подводный завод сжиженного природного газа; подводный резервуар приема/хранения жидкого азота; подводный резервуар приема/хранения/отгрузки сжиженного природного газа; и подводный танкер-газовоз, при этом буродобывающее подводное сооружение обладает возможностью круглогодичного подводного бурения скважин и их эксплуатации с очисткой скважинного флюида от мехпримесей; буродобывающее подводное сооружение соединено с заводом для сжижения природного газа связующей гибкой трубой с длиной, обеспечивающей охлаждение природного газа в арктической среде моря до заданной величины; подводный завод сжиженного природного газа выполнен с возможностью сжижения природного газа путем каскадного ступенчатого последовательного охлаждения до температуры конденсации в противотоке с жидким азотом и обеспечения выхода отработанного жидкого азота по выхлопной гибкой трубе в атмосферу и/или под лед; подводная атомная электростанция выполнена с возможностью обеспечения электроэнергией по гибким плавучим кабелям всех подводных сооружений.
Кроме того, указанный технический результат достигается также тем, что все подводные сооружения обладают собственной плавучестью и самостоятельной системой динамического позиционирования.
При этом указанный технический результат достигается в заявленном способе подводного освоения газовых месторождений, использующем подводный комплекс, тем, что круглогодичное подводное бурение скважин и последующую их эксплуатацию производят с буродобывающего подводного сооружения; на буродобывающем подводном сооружении скважинный флюид предварительно очищают от примесей и подают по гибкой трубе на подводный завод сжижения природного газа; арктическая среда моря и длина гибкой трубы обеспечивают охлаждение природного газа; далее на подводном заводе сжиженного природного газ природный газ сжижают путем каскадного ступенчатого последовательного охлаждения до температуры конденсации в противотоке в жидком азоте; при этом жидкий азот доставляют подводным танкером-газовозом, перекачивают в подводный резервуар приема/хранения жидкого азота, откуда подают на подводный завод сжиженного природного газа и преобразуют в газообразное состояние, направляют на выход в гибкую выхлопную трубу подводного завода сжижения природного газа; выхлопная труба подводного завода сжижения природного газа обеспечивает выход отработанного жидкого азота в атмосферу и/или под лед; после подводного завода сжижения природного газа сжиженный природный газ подают в подводный резервуар приема/хранения/отгрузки сжижения природного газа; транспортировку сжиженного природного газа производят за счет отгрузки из подводного резервуара приема/хранения/отгрузки сжиженного природного газа в подводный танкер-газовоз, который доставляет сжиженный природный газ до места назначения; электроэнергию, необходимую для функционирования всех подводных сооружений, производят на подводной атомной электростанции и передают по гибким плавучим кабелям; подводные сооружения обслуживает рабочий персонал, проживающий в подводном жилом блоке с центром управлением; управление производственно-техническими операциями выполняют автоматизировано и/или за счет робототехники.
В том числе, указанный технический результат достигается в заявленном способе подводного освоения газовых месторождений, использующем подводный комплекс, тем, что удержание выхлопной трубы подводного завода сжижения природного газа в вертикальном положении производят за счет торообразного понтона.
Кроме того, указанный технический результат достигается в заявленном способе подводного освоения газовых месторождений, использующем подводный комплекс, тем, что для доставки жидкого азота и транспортировки сжиженного природного газа используют один и тот же подводный танкер-газовоз.
При этом указанный технический результат достигается в заявленном способе подводного сжижения природного газа газовых месторождений, использующем подводный комплекс, тем, что включающий два независимых холодильных цикла; первый независимый цикл состоит из одной ступени, в котором хладагентом является арктическая морская вода, процесс выполняют изобарически, при давлении 100 бар природный газ охлаждают до +7°С, при этом первый независимый цикл реализуют в гибкой трубе, связывающей буродобывающее подводное сооружение с подводным заводом сжижения природного газа; второй независимый цикл состоит из девяти ступеней, в котором хладагентом является жидкий азот, процесс выполняют при одновременном снижении температуры и давления, при этом второй независимый цикл реализуют непосредственно на подводном заводе сжижения природного газа; в каждой ступени второго независимого цикла природный газ дросселируют в противотоке жидкого азота, снижая его температуру и давление, затем сепарируют; жидкий азот подают в ступенях второго независимого цикла таким образом, чтобы максимально охладить последнюю ступень с природным газом; на первой ступени второго независимого цикла производят сжатие до давления 70 бар, охлаждение до 0°С и сепарацию; на второй ступени второго независимого цикла производят сжатие до давления 65 бар, охлаждение до -20°С и сепарацию; на третьей ступени второго независимого цикла производят сжатие до давления 60 бар, охлаждение до -40°С и сепарацию; на четвертой ступени второго независимого цикла производят сжатие до давления 55 бар, охлаждение до -60°С и сепарацию; на пятой ступени второго независимого цикла производят сжатие до давления 50 бар, охлаждение до -80°С и сепарацию; на шестой ступени второго независимого цикла производят сжатие до давления 30 бар, охлаждение до -108°С и сепарацию; на седьмой ступени второго независимого цикла производят сжатие до давления 15 бар, охлаждение до -123°С и сепарацию; на восьмой ступени второго независимого цикла производят сжатие до давления 5 бар, охлаждение до -143°С и сепарацию; на девятой ступени второго независимого цикла производят охлаждение до -163°С и сепарацию.
Предложенное техническое решение поясняется чертежами, где:
на фиг. 1 изображена схема комплекса подводных сооружений для подводного освоения газовых месторождений;
на фиг. 2 изображен способ подводного сжижения природного газа газовых месторождений.
Список сокращений, используемый в описании заявленного изобретения:
БДПС - буродобывающее подводное сооружение;
СПГ - сжиженный природный газ;
ЖА - жидкий азот;
ПАЭС - подводная атомная электростанция;
ПЖБ - подводный жилой блок.
Способ подводного освоения углеводородов и сжижения природного газа осуществляется при помощи комплекса подводных сооружений.
Комплекс при освоении газовых месторождений (см. фиг. 1) состоит из следующих подводных сооружений:
- буродобывающего подводного сооружения (1) или БДПС;
- подводного жилого блока с центром управлением (2) или ПЖБ;
- подводной атомной электростанции (3) или ПАЭС;
- подводного завода сжижения природного газа (4);
- подводного резервуара приема/хранения жидкого азота (далее ЖА) (5);
- подводного резервуара приема/хранения/отгрузки сжиженного природного газа (6);
- подводного танкера-газовоза (7).
Заявленный способ подводного освоения газовых месторождений заключается в следующем.
Круглогодичное подводное бурение скважин и последующая их эксплуатация производятся с БДПС (1). На БДПС (1) скважинный флюид предварительно очищается от примесей и поступает по гибкой трубе на завод сжижения природного газа (4). Арктическая среда моря и длина гибкой трубы обеспечивают охлаждение природного газа до температуры плюс 7°С. Далее на заводе сжижения природного газа (4) природный газ сжижается путем каскадного (ступенчатого последовательного) охлаждения до температуры конденсации (минус 163°С) в противотоке с ЖА.
ЖА доставляется подводным танкером-газовозом (7), перекачивается в резервуар ЖА (5), откуда подается на завод сжижения природного газа (4) и, преобразуясь в газообразное состояние, направляется на выход в гибкую выхлопную трубу завода сжижения природного газа (4). Выхлопная труба завода сжижения природного газа (4) обеспечивает выход отработанного ЖА в атмосферу/под лед, тем самым не загрязняя азотом водную толщу. Удержание выхлопной трубы в вертикальном положении обеспечивается за счет, например, торообразного понтона.
После завода сжижения природного газа (4) сжиженный природный газ поступает в подводного резервуара приема/хранения/отгрузки сжиженного природного газа (6).
Транспортировка СПГ обеспечивается за счет отгрузки из подводного резервуара приема/хранения/отгрузки сжиженного природного газа (6) в подводный танкер-газовоз (7), который доставляет СПГ до места назначения; при этом для доставки ЖА и транспортировки СПГ используется один и тот же танкер-газовоз (7).
Все подводные сооружения обслуживаются рабочим персоналом, проживающим в ПЖБ (2) с центром управления. Управление производственно-техническими операциями выполняется автоматизировано и/или за счет робототехники.
Электроэнергия, необходимая для функционирования всех подводных объектов, производится ПАЭС (3) и передается по гибким плавучим кабелям.
Заявленный способ подводного сжижения природного газа газовых месторождений заключается в следующем.
Схема каскадного ступенчатого охлаждения природного газа представлена на фиг. 2.
Способ сжижения природного газа состоит из 2 независимых холодильных циклов.
Первый независимый цикл состоит из одной ступени, в котором хладагентом является арктическая морская вода, процесс протекает изобарически, при давлении 100 бар природный газ охлаждается до +7°С. Первый независимый цикл реализован в гибкой трубе, связывающей БДПС (1) с подводным заводом сжижения природного газа (4).
Второй независимый цикл состоит из 9 ступеней, в котором хладагентом является ЖА, процесс протекает при одновременном снижении температуры и давления. Второй независимый цикл реализован непосредственно на подводном заводе сжижения природного газа (4).
В каждой ступени второго независимого цикла природный газ дросселируется в противотоке ЖА, тем самым снижая его температуру и давление, затем сепарируется.
Диаметр трубы второго независимого цикла, в которой подается природный газ, пропорционально уменьшается после сепарации от первой ступени к девятой.
ЖА протекает в ступенях таким образом, чтобы максимально охладить последнюю ступень с природным газом.
На первой ступени второго независимого цикла производят сжатие до давления 70 бар, охлаждение до 0°С и сепарация.
На второй ступени второго независимого цикла производят сжатие до давления 65 бар, охлаждение до -20°С и сепарация.
На третьей ступени второго независимого цикла производят сжатие до давления 60 бар, охлаждение до -40°С и сепарация.
На четвертой ступени второго независимого цикла производят сжатие до давления 55 бар, охлаждение до -60°С и сепарация.
На пятой ступени второго независимого цикла производят сжатие до давления 50 бар, охлаждение до -80°С и сепарация.
На шестой ступени второго независимого цикла производят сжатие до давления 30 бар, охлаждение до -108°С и сепарация.
На седьмой ступени второго независимого цикла производят сжатие до давления 15 бар, охлаждение до -123°С и сепарация.
На восьмой ступени второго независимого цикла производят сжатие до давления 5 бар, охлаждение до -143°С и сепарация.
На девятой ступени второго независимого цикла производят охлаждение до -163°С и сепарация.
Технико-экономическим преимуществом предлагаемого технического решения является возможность круглогодичного подводного освоения газовых месторождений с полным циклом подводного сжижения природного газа и подводной транспортировкой углеводородных продуктов потребителю.

Claims (7)

1. Подводный комплекс для подводного освоения газовых месторождений и сжижения природного газа, круглогодично работающий на глубине в диапазоне от 100 до 120 м от уровня моря, включающий:
буродобывающее подводное сооружение;
подводный жилой блок с центром управления;
подводную атомную электростанцию;
подводный завод для сжижения природного газа;
подводный резервуар приема/хранения жидкого азота;
подводный резервуар приема/хранения/отгрузки сжиженного природного газа;
и подводный танкер-газовоз,
при этом буродобывающее подводное сооружение обладает возможностью круглогодичного подводного бурения скважин и их эксплуатации с очисткой скважинного флюида от мехпримесей;
буродобывающее подводное сооружение соединено с заводом для сжижения природного газа связующей гибкой трубой с длиной, обеспечивающей охлаждение природного газа в арктической среде моря до заданной величины;
подводный завод для сжижения природного газа выполнен с возможностью сжижения природного газа путем каскадного ступенчатого последовательного охлаждения до температуры конденсации в противотоке с жидким азотом и обеспечения выхода отработанного жидкого азота по выхлопной гибкой трубе в атмосферу и/или под лед;
подводная атомная электростанция выполнена с возможностью обеспечения электроэнергией по гибким плавучим кабелям всех подводных сооружений.
2. Подводный комплекс по п. 1, отличающийся тем, что все подводные сооружения обладают собственной плавучестью и самостоятельной системой динамического позиционирования.
3. Способ подводного освоения газовых месторождений, использующий подводный комплекс по п. 1, отличающийся тем, что
круглогодичное подводное бурение скважин и последующую их эксплуатацию производят с буродобывающего подводного сооружения;
на буродобывающем подводном сооружении скважинный флюид предварительно очищают от мехпримесей и подают по гибкой трубе на подводный завод сжижения природного газа;
арктической средой моря и длиной гибкой трубы обеспечивают охлаждение природного газа;
на подводном заводе для сжижения природного газа природный газ сжижают путем каскадного ступенчатого последовательного охлаждения до температуры конденсации в противотоке в жидком азоте;
при этом жидкий азот доставляют подводным танкером-газовозом, перекачивают в подводный резервуар приема/хранения жидкого азота, откуда подают на подводный завод для сжижения природного газа и преобразуют в газообразное состояние, направляют на выход в гибкую выхлопную трубу подводного завода для сжижения природного газа;
выхлопной трубой подводного завода для сжижения природного газа обеспечивают выход отработанного жидкого азота в атмосферу и/или под лед;
после подводного завода для сжижения природного газа сжиженный природный газ подают в подводный резервуар приема/хранения/отгрузки сжижения природного газа;
транспортировку сжиженного природного газа производят за счет отгрузки из подводного резервуара приема/хранения/отгрузки сжиженного природного газа в подводный танкер-газовоз, которым доставляют сжиженный природный газ до места назначения;
электроэнергию, необходимую для функционирования всех подводных сооружений, производят на подводной атомной электростанции и передают по гибким плавучим кабелям;
подводные сооружения обслуживает рабочий персонал, проживающий в подводном жилом блоке с центром управлением;
управление производственно-техническими операциями выполняют автоматизировано и/или за счет робототехники.
4. Способ по п. 3, отличающийся тем, что удержание выхлопной трубы подводного завода для сжижения природного газа в вертикальном положении производят за счет торообразного понтона.
5. Способ по п. 3, отличающийся тем, что для доставки жидкого азота и транспортировки сжиженного природного газа используют один и тот же подводный танкер-газовоз.
6. Способ подводного сжижения природного газа газовых месторождений, использующий подводный комплекс по п. 1, включающий:
два независимых холодильных цикла;
первый независимый цикл состоит из одной ступени, в котором хладагентом является арктическая морская вода, процесс выполняют изобарически, при давлении 100 бар природный газ охлаждают до +7°С, при этом первый независимый цикл реализуют в гибкой трубе, связывающей буродобывающее подводное сооружение с подводным заводом для сжижения природного газа;
второй независимый цикл состоит из девяти ступеней, в котором хладагентом является жидкий азот, процесс выполняют при одновременном снижении температуры и давления, при этом второй независимый цикл реализуют непосредственно на подводном заводе для сжижения природного газа;
в каждой ступени второго независимого цикла природный газ дросселируют в противотоке жидкого азота, снижая его температуру и давление, затем сепарируют;
жидкий азот подают в ступенях второго независимого цикла таким образом, чтобы максимально охладить последнюю ступень с природным газом;
на первой ступени второго независимого цикла производят сжатие до давления 70 бар, охлаждение до 0°С и сепарацию;
на второй ступени второго независимого цикла производят сжатие до давления 65 бар, охлаждение до -20°С и сепарацию;
на третьей ступени второго независимого цикла производят сжатие до давления 60 бар, охлаждение до -40°С и сепарацию;
на четвертой ступени второго независимого цикла производят сжатие до давления 55 бар, охлаждение до -60°С и сепарацию;
на пятой ступени второго независимого цикла производят сжатие до давления 50 бар, охлаждение до -80°С и сепарацию;
на шестой ступени второго независимого цикла производят сжатие до давления 30 бар, охлаждение до -108°С и сепарацию;
на седьмой ступени второго независимого цикла производят сжатие до давления 15 бар, охлаждение до -123°С и сепарацию;
на восьмой ступени второго независимого цикла производят сжатие до давления 5 бар, охлаждение до -143°С и сепарацию;
на девятой ступени второго независимого цикла производят охлаждение до -163°С и сепарацию.
7. Способ по п. 6, отличающийся тем, что диаметр трубы второго независимого цикла, в которую подают природный газ, пропорционально уменьшают после сепарации от первой ступени к девятой.
RU2015142096/03A 2015-10-02 2015-10-02 Способ подводного освоения газовых месторождений, способ подводного сжижения природного газа и подводный комплекс для их осуществления RU2604887C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015142096/03A RU2604887C1 (ru) 2015-10-02 2015-10-02 Способ подводного освоения газовых месторождений, способ подводного сжижения природного газа и подводный комплекс для их осуществления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015142096/03A RU2604887C1 (ru) 2015-10-02 2015-10-02 Способ подводного освоения газовых месторождений, способ подводного сжижения природного газа и подводный комплекс для их осуществления

Related Child Applications (1)

Application Number Title Priority Date Filing Date
RU2016140207A Division RU2632598C1 (ru) 2016-10-13 2016-10-13 Способ подводного освоения газоконденсатных месторождений, способ подводного сжижения природного газа и подводный комплекс для их осуществления

Publications (1)

Publication Number Publication Date
RU2604887C1 true RU2604887C1 (ru) 2016-12-20

Family

ID=58697288

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015142096/03A RU2604887C1 (ru) 2015-10-02 2015-10-02 Способ подводного освоения газовых месторождений, способ подводного сжижения природного газа и подводный комплекс для их осуществления

Country Status (1)

Country Link
RU (1) RU2604887C1 (ru)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2660213C1 (ru) * 2017-07-19 2018-07-05 Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский государственный университет нефти и газа (национальный исследовательский университет) имени И.М. Губкина" Способ сжижения природного газа в процессе разработки подводных месторождений
RU2679699C2 (ru) * 2018-05-08 2019-02-12 Валентин Алексеевич Абрамов Способ установки подледно-подводных заводов сжиженного природного газа (СПГ) Абрамова В.А.
RU2686773C2 (ru) * 2018-09-19 2019-04-30 Валентин Алексеевич Абрамов Комплекс производства сжиженного природного газа (СПГ) с уменьшенным выбросом метана в атмосферу Земли В.А. Абрамова
RU2700525C2 (ru) * 2018-10-22 2019-09-17 Валентин Алексеевич Абрамов Комплекс производства сжиженного природного газа (СПГ) с уменьшенным выбросом метана в атмосферу Земли В.А. Абрамова
RU2713272C1 (ru) * 2019-05-24 2020-02-04 Валентин Алексеевич Абрамов Способ обеспечения жизнеспособности функционирования комплекса производства сжиженного природного газа с уменьшенным выбросом метана в атмосферу Земли
RU2745461C2 (ru) * 2020-02-04 2021-03-25 Валентин Алексеевич Абрамов Способ обеспечения жизнеспособности функционирования комплекса производства сжиженного природного газа с уменьшенным выбросом метана в атмосферу Земли Абрамова В.А.
RU2788253C1 (ru) * 2022-04-20 2023-01-17 Общество с ограниченной ответственностью "Газпром 335" Способ эксплуатации подводного газового и газоконденсатного месторождения и подводный эжектирующий модуль для его осуществления

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2240948C2 (ru) * 1998-02-10 2004-11-27 Статойл Аса Система, способ (варианты) и устройство перекачивания сжиженного природного газа с плавучей установки
RU2383683C1 (ru) * 2008-09-30 2010-03-10 Общество с ограниченной ответственностью "Крейн-шельф" (ООО "Крейн-шельф") Способ обустройства морских глубоководных нефтегазовых месторождений
WO2011029163A1 (en) * 2009-09-09 2011-03-17 Fernando Guilherme Castanheira Kaster Modular underwater oil collecting and transporting system
RU2503800C2 (ru) * 2011-07-13 2014-01-10 Закрытое акционерное общество Научно-проектное внедренческое общество "НГС- оргпроектэкономика" Подводная эксплуатационная платформа для добычи нефти и газа
RU2517285C1 (ru) * 2012-12-03 2014-05-27 Чингиз Саибович Гусейнов Подводное сооружение для бурения нефтегазовых скважин и добычи углеводородов и способы его транспортировки, монтажа и эксплуатации
RU2529683C1 (ru) * 2013-02-12 2014-09-27 Евгений Михайлович Герасимов Способ разработки углеводородных месторождений арктического шельфа и технические решения для реализации способа
RU2547161C2 (ru) * 2013-07-15 2015-04-10 Открытое акционерное общество "Государственный научно-исследовательский навигационно-гидрографический институт" (ОАО "ГНИНГИ") Способ обустройства морских глубоководных нефтегазовых месторождений

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2240948C2 (ru) * 1998-02-10 2004-11-27 Статойл Аса Система, способ (варианты) и устройство перекачивания сжиженного природного газа с плавучей установки
RU2383683C1 (ru) * 2008-09-30 2010-03-10 Общество с ограниченной ответственностью "Крейн-шельф" (ООО "Крейн-шельф") Способ обустройства морских глубоководных нефтегазовых месторождений
WO2011029163A1 (en) * 2009-09-09 2011-03-17 Fernando Guilherme Castanheira Kaster Modular underwater oil collecting and transporting system
RU2503800C2 (ru) * 2011-07-13 2014-01-10 Закрытое акционерное общество Научно-проектное внедренческое общество "НГС- оргпроектэкономика" Подводная эксплуатационная платформа для добычи нефти и газа
RU2517285C1 (ru) * 2012-12-03 2014-05-27 Чингиз Саибович Гусейнов Подводное сооружение для бурения нефтегазовых скважин и добычи углеводородов и способы его транспортировки, монтажа и эксплуатации
RU2529683C1 (ru) * 2013-02-12 2014-09-27 Евгений Михайлович Герасимов Способ разработки углеводородных месторождений арктического шельфа и технические решения для реализации способа
RU2547161C2 (ru) * 2013-07-15 2015-04-10 Открытое акционерное общество "Государственный научно-исследовательский навигационно-гидрографический институт" (ОАО "ГНИНГИ") Способ обустройства морских глубоководных нефтегазовых месторождений

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2660213C1 (ru) * 2017-07-19 2018-07-05 Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский государственный университет нефти и газа (национальный исследовательский университет) имени И.М. Губкина" Способ сжижения природного газа в процессе разработки подводных месторождений
RU2679699C2 (ru) * 2018-05-08 2019-02-12 Валентин Алексеевич Абрамов Способ установки подледно-подводных заводов сжиженного природного газа (СПГ) Абрамова В.А.
RU2686773C2 (ru) * 2018-09-19 2019-04-30 Валентин Алексеевич Абрамов Комплекс производства сжиженного природного газа (СПГ) с уменьшенным выбросом метана в атмосферу Земли В.А. Абрамова
RU2700525C2 (ru) * 2018-10-22 2019-09-17 Валентин Алексеевич Абрамов Комплекс производства сжиженного природного газа (СПГ) с уменьшенным выбросом метана в атмосферу Земли В.А. Абрамова
RU2713272C1 (ru) * 2019-05-24 2020-02-04 Валентин Алексеевич Абрамов Способ обеспечения жизнеспособности функционирования комплекса производства сжиженного природного газа с уменьшенным выбросом метана в атмосферу Земли
RU2745461C2 (ru) * 2020-02-04 2021-03-25 Валентин Алексеевич Абрамов Способ обеспечения жизнеспособности функционирования комплекса производства сжиженного природного газа с уменьшенным выбросом метана в атмосферу Земли Абрамова В.А.
RU2745461C9 (ru) * 2020-02-04 2021-04-29 Валентин Алексеевич Абрамов Способ обеспечения жизнеспособности функционирования комплекса производства сжиженного природного газа с уменьшенным выбросом метана в атмосферу Земли Абрамова В.А.
RU2788253C1 (ru) * 2022-04-20 2023-01-17 Общество с ограниченной ответственностью "Газпром 335" Способ эксплуатации подводного газового и газоконденсатного месторождения и подводный эжектирующий модуль для его осуществления

Similar Documents

Publication Publication Date Title
RU2604887C1 (ru) Способ подводного освоения газовых месторождений, способ подводного сжижения природного газа и подводный комплекс для их осуществления
RU2632598C1 (ru) Способ подводного освоения газоконденсатных месторождений, способ подводного сжижения природного газа и подводный комплекс для их осуществления
RU2478074C2 (ru) Способ нагнетания диоксида углерода
RU2436936C2 (ru) Система, судно и способ для добычи нефти и тяжелых фракций газа из коллекторов под морским дном
JP2016520468A (ja) 浮き埠頭で天然ガスを液化するシステムおよび方法
EP2756220A1 (en) Shipping method for co2 storage and import of cng
GB2584215A (en) Improved techniques in the upstream oil and gas industry
CN108698951A (zh) 用于从水下环境中提取滞留气体,将其转化为笼合物,并将其安全输送以供消耗的方法和系统
KR20100068088A (ko) 이산화탄소를 해양지중에 저장하기 위한 공정방법
US20150128840A1 (en) Frontier Field Development System for Large Riser Count and High Pressures for Harsh Environments
AU2012207059B2 (en) Linked LNG production facility
KR20150041820A (ko) 가스 액화 시스템 및 방법
CN103868322A (zh) 一种用于海上天然气开采的预冷式重烃回收系统及工艺
AU2008219347B2 (en) Linked LNG production facility
AU2008219346B2 (en) Sheltered LNG production facility
AU2012207058A1 (en) Sheltered LNG production facility
RU2180305C2 (ru) Комплекс абрамова для промысловой разработки месторождений природного газа
RU2014243C1 (ru) Способ промысловой комплексной подводной разработки морских месторождений
RU2660213C1 (ru) Способ сжижения природного газа в процессе разработки подводных месторождений
RU2529683C1 (ru) Способ разработки углеводородных месторождений арктического шельфа и технические решения для реализации способа
GB2554076A (en) Subsea hydrocarbon processing
CN203744654U (zh) 一种用于海上天然气开采的预冷式重烃回收系统
US7503186B2 (en) Method and system for condensation of unprocessed well stream from offshore gas or gas condensate field
Boekhorst et al. FLNG: Applying Advanced Technology to bring more natural gas to market
US20220388610A1 (en) Operation of an Unmanned Productive Platform