RU2603793C1 - Способ получения диборида алюминия - Google Patents

Способ получения диборида алюминия Download PDF

Info

Publication number
RU2603793C1
RU2603793C1 RU2015148675/05A RU2015148675A RU2603793C1 RU 2603793 C1 RU2603793 C1 RU 2603793C1 RU 2015148675/05 A RU2015148675/05 A RU 2015148675/05A RU 2015148675 A RU2015148675 A RU 2015148675A RU 2603793 C1 RU2603793 C1 RU 2603793C1
Authority
RU
Russia
Prior art keywords
temperature
mixture
boron
aluminum
diboride
Prior art date
Application number
RU2015148675/05A
Other languages
English (en)
Inventor
Мансур Хузиахметович Зиатдинов
Александр Степанович Жуков
Илья Александрович Жуков
Владимир Васильевич Промахов
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" (ТГУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" (ТГУ) filed Critical Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" (ТГУ)
Priority to RU2015148675/05A priority Critical patent/RU2603793C1/ru
Application granted granted Critical
Publication of RU2603793C1 publication Critical patent/RU2603793C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/02Boron; Borides
    • C01B35/04Metal borides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/65Reaction sintering of free metal- or free silicon-containing compositions
    • C04B35/651Thermite type sintering, e.g. combustion sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3804Borides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

Изобретение относится к бору и его соединениям, а именно к способам синтеза диборида алюминия, являющегося перспективным энергетическим материалом для ракетных топлив. Диборид алюминия получают высокотемпературной обработкой смеси порошков бора и алюминия в инертной атмосфере путем приготовления смеси порошка алюминия с размером частиц не более 0,01 мм, с порошком бора с размером частиц не более 0,001 мм при атомном соотношении компонентов от 1:2,05 до 1:2,1; формирования из полученной смеси брикетов с максимальным размером не более 22 мм и минимальным размером не менее 2 мм и пористостью не более 44%; последующего помещения брикетов в атмосферу нейтрального газа; нагревания их до температуры 100-500°С; зажигания нагретой смеси путем локального нагрева части ее поверхности до температуры 950-1150°С; и синтеза диборида алюминия в режиме послойного горения при температуре 820-920°С. Изобретение позволяет при минимальном расходе электроэнергии получать практически однофазный продукт, содержащий более 95 масс. % AlB2. 1 пр.

Description

Изобретение относится к бору и его соединениям, а именно к способам синтеза диборида алюминия.
Диборид алюминия (AlB2) является перспективным энергетическим материалом для ракетных топлив. Теплота его сгорания намного превышает теплоту сгорания металлического алюминия. Однако в настоящее время отсутствуют эффективные технологии производства диборида алюминия. Наибольшее распространение получили печные технологии синтеза диборида алюминия (Самсонов Г.В., Серебрякова Т.И., Неронов В.А. Бориды. М.: Атомиздат. 1975. - 376 с.).
В качестве прототипа выбран способ получения диборида алюминия, описанный в работе «The Preparation of Aluminum Diboride, AlB2», Edward J. Felten. Journal of the American Chemical Society. 1956. V. 78 №23. P. 5977-5978. В соответствии с ним диборид алюминия синтезируют нагреванием стехиометрической смеси порошков бора и алюминия в замкнутой графитовой трубке при температуре 800°С в течение примерно 12 часов.
Синтез осуществляется в атмосфере гелия с использованием порошка бора чистотой 99,5 масс. %. По данным рентгенофазового анализа продукт имел коричневато-серый цвет и состоял в основном из фазы AlB2.
Рентгенографически обнаруживались также фазы Al, С и В4С.
Способ-прототип позволяет синтезировать диборид алюминия без примесей других его боридов. Вместе с тем, продукт загрязнен другими примесями, а сам процесс синтеза весьма продолжителен и сопровождается расходом значительного количества электроэнергии.
В предлагаемом изобретении решается задача создания нового способа получения диборида алюминия, который при минимальном расходе электроэнергии позволял бы производить практически однофазный продукт, содержащий не менее 90 масс. % фазы AlB2.
Поставленная задача решается тем, что способ получения диборида алюминия путем высокотемпературной обработки смеси порошков бора и алюминия в инертной атмосфере соответствии с предлагаемым изобретением включает:
- приготовление смеси порошка алюминия Al с размером частиц не более 0,01 мм, с порошком бора с размером частиц не более 0,001 мм при атомном соотношении компонентов от 1:2,05 до 1:2,1;
- формирование из смеси брикетов с максимальным размером не более 22 мм и минимальным размером не менее 2 мм и пористостью не более 44%;
- помещение брикетов в атмосферу нейтрального газа;
- нагревание брикетов до температуры 100-500°С;
- зажигание нагретой смеси путем локального нагрева части ее поверхности до температуры 910-1160°С;
- синтез диборида алюминия в режиме послойного горения при температуре 810-960°С с получением продукта, содержащего более 92 масс. % AlB2.
Предлагаемое техническое решение позволяет получать диборид алюминия при использовании в качестве исходного сырья порошков бора различной дисперсности и чистоты. Образование продукта с преимущественным содержанием AlB2 происходит и при более низком содержании в исходных порошках бора и алюминия и при меньшем их размере частиц. Опытным путем было определено, что в производственных условиях оптимально использовать исходные порошки дисперсностью менее 0,001 мм для бора и менее 0,01 мм для алюминия.
Далее в соответствии с предлагаемым изобретением используют исходную смесь при атомном соотношении компонентов (В:Al) от 2,05: 1 до 2,1:1 Многочисленные лабораторные эксперименты показали, что небольшой избыток бора необходим для полного превращения компонентов шихты в диборид и исключить сохранение в продукте остаточного алюминия. Обусловлено это тем, что в качестве сырья используется порошок аморфного бора, на поверхности которого адсорбируется значительное количество примесей.
Отличительной особенностью диборида алюминия AlB2 является сравнительно низкая термическая устойчивость. При нагреве свыше ~950°С он разлагается по реакции:
AlB2→AlB12+Al.
Вследствие формирования на поверхности частиц бора и алюминия защитных слоев оксидов, соответственно B2O3 и Al2O3, их твердофазное взаимодействие весьма затруднено. Заметная реакция Al и В обнаруживается только при расплавлении алюминия при температуре более ~700°С. Таким образом, фактический температурный диапазон, в котором возможен синтез AlB2, составляет приблизительно 700-950°С.
Известно, что для осуществления какого-либо процесса в режиме горения необходимо чтобы реакция, лежащая в его основе, была экзотермическая. Образование диборида алюминия по реакции:
2В+Al→AlB2+Q
происходит со значительным тепловыделением - 16±3 ккал/моль (Е.S. Domalski, G.Т. Armstrong. Heats of Formation of Aluminum Diboride and α-Aluminum Dodecaboride. Journal of applied physics and chemistry Vol. 71 A. No. 4. July-August 1967). Однако такого тепловыделения оказалось недостаточно для осуществления синтеза горением обычным способом.
Весьма неожиданно обнаружилось, что процесс низкотемпературного образования диборида алюминия можно интенсифицировать путем проведения процесса в режиме послойного горения. А именно посредством формирования исходной смеси порошков алюминия и бора с небольшим избытком бора (5-10 относит. % от стехиометрического содержания) в брикеты пористостью не более 44% с максимальным размером не более 22 мм и минимальным размером не менее 2 мм и предварительного нагревания их до температуры 100-500°С в атмосфере нейтрального газа, последующего зажигания нагретой смеси путем локального нагрева части ее поверхности до температуры 910-1160°С и синтеза диборида алюминия в режиме послойного горения при температуре 810-960°С.
Минимальная температура предварительного нагрева исходной шихты, при которой становится возможным синтез горением, равна 100°С. При меньшей начальной температуре смесь не горит. Нецелесообразно повышать исходную температуру и сверх 500°С. В этом случае из-за превышения температуры горения над температурой устойчивости AlB2 в продуктах горения появляется заметное количество додекаборида AlB12, доля которого с повышением температуры процесса быстро увеличивается.
Шихту для синтеза диборида алюминия, согласно предлагаемому техническому решению, необходимо предварительно брикетировать. Брикеты могут быть сформированы любым из известных способов. Важно, чтобы пористость их не превышала 44%. Такая пористость необходима для достижения оптимального уровня теплопроводности при формировании плоской волны горения. Опыты показали, что брикеты с пористостью более 44% не горят либо горение происходит в нестабильном режиме.
Критически важным параметром при реализации настоящего изобретения оказался размер брикетов. Оказалось, что при уменьшении хотя бы одного их геометрических размеров исходных брикетов менее 2 мм синтез горением становится невозможным. Причиной этого является превалирование скорости отвода тепла из зоны реакции над скоростью тепловыделения. Максимальный размер брикетов ограничен по причине формирования большого градиента температуры. Обнаружилось, что при увеличении минимального размера брикетов свыше 22 мм в их центральных областях появляется высокотемпературная фаза Al В12, доля которой с ростом размеров брикетов увеличивается.
Рассмотрим некоторые детали предлагаемого изобретения на примере конкретной его реализации.
Пример
Готовят смесь порошков бора аморфного с размером частиц менее 0,001 мм (CAS №7440-42-8) с содержанием бора 99,2 масс. % и алюминия (марка АСП-6) с размером частиц менее 0,01 мм с содержанием алюминия 99,1 масс. %, при их атомном соотношении (В:Al) 2,02:1. Смешивание осуществляют в шаровой мельнице с использованием спирта. После сушки смесь дозируют и прессуют, применяя гидравлический пресс и пресс-форму. Диаметр сформованных таким образом образцов 20 мм, высота - ~20 мм, пористость - 39-41%. Полученные образцы хаотично уложили в цилиндрический керамический тигель с внутренним диаметром 110 мм, высотой - 220 мм. Тигель помещается в атмосферу аргона. Нагретой электрической спиралью поверхностный слой одного или нескольких брикетов нагревают до -1050°С в течение времени, достаточном до начала реакции образования диборида алюминия по реакции:
2В+Al→AlB2.
Далее от возникшего очага реакции инициируется экзотермическая реакция синтеза в прилегающих слоях. Формируется послойное распространение волны горения-синтеза, которое завершается после полного превращения исходной смеси в целевой продукт. Температура горения, измеренная термопарным методом, равна 910°С. Продолжительность процесса горения ~3,5 минут.
По завершении горения продукт остывает в инертной атмосфере. Далее спеченный в волне продукт измельчается в порошок и анализируется рентгенографически. По данным рентгенофазового анализа продукт горения содержит свыше 95,0 масс. % фазы AlB2.
Таким образом, предлагаемый способ позволяет получать с минимальными затратами электроэнергии и времени практически однофазный порошок диборида алюминия AlB2.

Claims (1)

  1. Способ получения диборида алюминия, включающий приготовление шихты, состоящей из порошков алюминия и бора, и последующую ее высокотемпературную обработку, отличающийся тем, что готовят смесь порошка алюминия с размером частиц не более 0,01 мм, с порошком бора с размером частиц не более 0,001 мм при атомном соотношении компонентов от 1:2,05 до 1:2,1, смесь формируют в брикеты пористостью не более 44% с максимальным размером не более 22 мм и минимальным размером не менее 2 мм, брикеты помещают в атмосферу нейтрального газа, нагревают до температуры 100-500°С, нагретую смесь зажигают путем локального нагрева части ее поверхности до температуры 950-1150°С и осуществляют синтез диборида алюминия в режиме послойного горения при температуре 820-920°С.
RU2015148675/05A 2015-11-12 2015-11-12 Способ получения диборида алюминия RU2603793C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015148675/05A RU2603793C1 (ru) 2015-11-12 2015-11-12 Способ получения диборида алюминия

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015148675/05A RU2603793C1 (ru) 2015-11-12 2015-11-12 Способ получения диборида алюминия

Publications (1)

Publication Number Publication Date
RU2603793C1 true RU2603793C1 (ru) 2016-11-27

Family

ID=57774669

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015148675/05A RU2603793C1 (ru) 2015-11-12 2015-11-12 Способ получения диборида алюминия

Country Status (1)

Country Link
RU (1) RU2603793C1 (ru)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101920973A (zh) * 2010-09-02 2010-12-22 浙江大学 一种多孔二硼化铝的制备方法
RU2566768C1 (ru) * 2014-07-07 2015-10-27 Акционерное Общество "Уральский Научно-Исследовательский Химический Институт С Опытным Заводом" (Ао "Унихим С Оз") Композиция боридов алюминия и способ ее получения

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101920973A (zh) * 2010-09-02 2010-12-22 浙江大学 一种多孔二硼化铝的制备方法
RU2566768C1 (ru) * 2014-07-07 2015-10-27 Акционерное Общество "Уральский Научно-Исследовательский Химический Институт С Опытным Заводом" (Ао "Унихим С Оз") Композиция боридов алюминия и способ ее получения

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DUYGU AGAOGULLARI et al, Aluminium diboride synthesis from elemental powders by mechanical alloying and annealing, "Journal of the European Ceramic Society", 2012, Vol.32, No.7, p.p.1457-1462. MICHAEL L. WHITTAKER et al, Effect of synthesis atmosphere, wetting, and compaction on the purity of AlB 2 , "Journal of Solid State Chemistry", 2013, Vol.201, p.p.93-100. *
EDWARD J. FELTEN, The Preparation of Aluminium Diboride, AlB 2 1 , "Journal of the American Chemical Society", 1956, Vol.78, No.23, p.p.5977-5978. *

Similar Documents

Publication Publication Date Title
Lin et al. Preparation of zinc oxide (ZnO) powders with different types of morphology by a combustion synthesis method
Pivkina et al. Prospects of using boron powders as fuel. II. Influence of aluminum and magnesium additives and their compounds on the thermal behavior of boron oxide
CN111646799B (zh) 一种燃烧法制备Tin+1ACn材料的方法
Sun et al. Preparation and characterization of sintered B/MgB2 as heat release material
Weimin et al. Chemistry reaction processes during combustion synthesis of B2O3–TiO2–Mg system
Amosov et al. Effect of batch pelletizing on a course of SHS reactions: An overview
Streletskii et al. Kinetics of mechanical activation of Al/CuO thermite
CN105755541A (zh) 一种利用微波诱发燃烧合成反应合成氧化锌晶须的方法
Ohyama et al. Combustion synthesis of YAG: Ce phosphors via the thermite reaction of aluminum
Yang et al. Mechanical-activation-assisted combustion synthesis of SiC
Lebedeva et al. Combustion products agglomeration of propellant containing boron with fluorinated coatings
Liu et al. Reaction synthesis of TiSi2 and Ti5Si3 by ball-milling and shock loading and their photocatalytic activities
RU2603793C1 (ru) Способ получения диборида алюминия
Shi et al. Effects of reactants proportions on features of in-situ magnesiothermic self-propagating high temperature synthesized boron carbide powder
Kochetov et al. Dependence of burning rate on sample size in the Ni+ Al system
Yeh et al. Effects of dilution and preheating on SHS of vanadium nitride
Zhang et al. The effect of carbon sources and activative additive on the formation of SiC powder in combustion reaction
Guojian et al. Combustion of Na2B4O7+ Mg+ C to synthesis B4C powders
Cho et al. Feasible process for producing in situ Al/TiC composites by combustion reaction in an Al melt
Sun et al. High reactive MgO‐Y2O3 nanopowders via microwave combustion method and sintering behavior
Kovalev et al. SHS of single crystals in the BC-Mg system: Crystal structure of new modification of B 25 C 4 Mg 1.42=[B 12] 2 [CBC][C 2] Mg 1.42
RU2477337C2 (ru) Способ получения боридных покрытий из борной кислоты
RU2479560C1 (ru) Способ получения борфторсодержащей энергоемкой композиции
Zhou et al. Flash synthesis of Li2TiO3 powder by microwave-induced solution combustion
CN103663482A (zh) LaB6的制备方法

Legal Events

Date Code Title Description
QB4A Licence on use of patent

Free format text: LICENCE FORMERLY AGREED ON 20180815

Effective date: 20180815