RU2602736C1 - Способ и устройство калибровки инерциальных измерительных модулей - Google Patents

Способ и устройство калибровки инерциальных измерительных модулей Download PDF

Info

Publication number
RU2602736C1
RU2602736C1 RU2015132392/28A RU2015132392A RU2602736C1 RU 2602736 C1 RU2602736 C1 RU 2602736C1 RU 2015132392/28 A RU2015132392/28 A RU 2015132392/28A RU 2015132392 A RU2015132392 A RU 2015132392A RU 2602736 C1 RU2602736 C1 RU 2602736C1
Authority
RU
Russia
Prior art keywords
platform
imm
calibration
angular velocity
sensors
Prior art date
Application number
RU2015132392/28A
Other languages
English (en)
Inventor
Виталий Сергеевич Шорин
Владимир Борисович Никишин
Андрей Иванович Синев
Михаил Николаевич Карпов
Вероника Мударисовна Сафина
Екатерина Мударисовна Сафина
Original Assignee
Закрытое акционерное общество "Газприборавтоматикасервис"
ФГБОУ ВПО "Саратовский государственный технический университет имени Гагарина Ю.А."
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Закрытое акционерное общество "Газприборавтоматикасервис", ФГБОУ ВПО "Саратовский государственный технический университет имени Гагарина Ю.А." filed Critical Закрытое акционерное общество "Газприборавтоматикасервис"
Priority to RU2015132392/28A priority Critical patent/RU2602736C1/ru
Application granted granted Critical
Publication of RU2602736C1 publication Critical patent/RU2602736C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P21/00Testing or calibrating of apparatus or devices covered by the preceding groups

Abstract

Изобретения относятся к измерительной технике и могут быть использованы для проведения калибровки инерциальных измерительных модулей (ИИМ), в состав которых входят датчики угловой скорости (ДУС) и акселерометры. Технический результат - расширение функциональных возможностей. Для этого способ калибровки ИИМ включает установку ИИМ с блоком записи информации на платформу устройства для калибровки, обеспечивающего задание угловой скорости двигателем вокруг трех приблизительно ортогональных осей (отклонение от ортогональности не должно превышать 5°), связанных с ИИМ, вращение ИИМ вокруг приблизительно горизонтальной оси (отклонение оси вращения от плоскости горизонта не должно превышать 20°) с переменными угловыми скоростями и идентификацию математических моделей ошибок датчиков ИИМ. При этом вращения вокруг трех приблизительно ортогональных осей системы координат, связанной с ИИМ, осуществляются после однократного закрепления ИИМ на платформе устройства, а оценивание составляющих как моделей ошибок ДУС, так и моделей ошибок акселерометров осуществляется на основе сопоставления углов разворота ИИМ по показаниям акселерометров и ДУС в результате единого цикла калибровочных движений. Записанные данные инерциальных датчиков используют для идентификации математических моделей ошибок датчиков ИИМ, в частности постоянных составляющих нулевых сигналов и погрешностей масштабных коэффициентов ДУС и акселерометров, углов отклонения измерительных осей ИИМ от оси вращения устройства для калибровки и коэффициентов g-чувствительности ДУС. Устройство, реализующее данный способ, содержит двигатель, который вращает внешнюю рамку карданового подвеса (КП), фиксатор внутренней рамки, позволяющий устанавливать в определенные угловые положения внутреннюю рамку КП относительно внешней рамки, фиксатор платформы, позволяющий устанавливать в определенные угловые положения платформу относительно внутренней рамки КП. На платформе устройства располагается испытуемый ИИМ с устройством записи информации. Платформа устройства может быть снабжена интерфейсом беспроводной передачи информации. 2 н. и 1 з.п. ф-лы, 3 ил.

Description

Предлагаемое изобретение относится к измерительной технике, в частности к устройствам для проведения калибровки инерциальных измерительных модулей (ИИМ), в состав которых входят датчики угловой скорости (ДУС) и акселерометры.
Известен быстрый способ калибровки ИИМ [1]. В соответствии с данным способом, оператор вращает ИИМ во всех направлениях без внешнего оборудования, либо с помощью оборудования. Снимаемые в это время с ИИМ данные позволяют определять 12 коэффициентов моделей погрешностей датчиков ИИМ, в том числе скорости дрейфов и масштабные коэффициенты ДУС, нулевые сигналы и масштабные коэффициенты акселерометров.
Недостатком данного способа является отсутствие среди оцениваемых коэффициентов модели ошибок калибруемых датчиков коэффициентов G-чувствительности. Определение этих коэффициентов особенно актуально для микромеханических ДУС, т.к. дрейфы, вызванные влиянием линейных ускорений на показания ДУС такого типа, могут достигать уровня 0.1°/с и являются величинами одного порядка с нулевыми сигналами ДУС. Не включение данных коэффициентов в модель погрешностей ДУС приводит к неверному оцениванию нулевых сигналов ДУС.
Известен также способ калибровки ИИМ по каналу акселерометров [2], при проведении которого ИИМ закрепляют на платформе поворотного стола низкой точности, платформу поворотного стола разворачивают во всем диапазоне углов крена и тангажа относительно вектора ускорения свободного падения с фиксированным шагом, в каждом положении фиксируют показания акселерометров и углы поворотов, численными методами проводят идентификацию математической модели каждого акселерометра, в процессе идентификации проводят минимизацию суммарной невязки показаний датчиков при варьировании смещений шкал датчиков углов поворотов платформы и угловых смещений осей поворотов платформы, затем проводят привязку измерительного базиса акселерометров к осям ИИМ, для чего точно определяют ориентацию ИММ в двух различных положениях относительно вектора ускорения свободного падения, при этом рассматриваемый способ не накладывает ограничений на число и расположение калибруемых акселерометров в составе ИИМ.
Недостатком данного способа является необходимость использования специальных устройств для точной регистрации углов поворота платформы, что усложняет конструкцию поворотной установки и методику калибровки.
Известен широкодиапазонный стенд [3]. Стенд содержит поворотную платформу для крепления испытуемого измерителя и подвода к нему питания через кольцевой коллектор, персональную ЭВМ, в слоты которой встроена схема сопряжения с элементами управления испытательными характеристиками платформы и датчиками контролируемых параметров испытуемых измерителей, установленные на платформе охладитель воздуха, термоэлектрический модуль с микровибростолом и универсальную термокамеру.
Недостатком данного стенда являются большие габариты и сложность конструкции, что делает его применение для калибровки микромеханических инерциальных модулей экономически нецелесообразным.
Известен также широкодиапазонный стенд [4] для контроля параметров измерителей угловых скоростей, содержащий платформу для крепления контролируемого измерителя и подвода к нему питания через кольцевой коллектор, персональную ЭВМ, в слоты которой встроена схема сопряжения с элементами управления испытательными характеристиками платформы и датчиками контролируемых параметров испытуемых измерителей, шесть кварцевых маятниковых акселерометров, гироскопический ДУС, два геркона, магнит, механизм отслеживания, суммирующий двухканальный усилитель.
Известен также стенд для контроля прецизионных датчиков угловых скоростей [5], содержащий основание, имеющее возможность вращаться вокруг оси стенда и предназначенное для закрепления на нем контролируемого датчика угловой скорости, имеющего датчик угла, датчик момента, соединенные через усилитель обратной связи, электродвигатель привода стенда, редукцию, коллектор для подвода питания к контролируемому датчику угловой скорости, задатчик эталонного напряжения.
Данные стенды не позволяют без перезакрепления контролировать параметры датчиков, имеющих две и более осей чувствительности.
Наиболее близким аналогом к заявляемому способу является способ калибровки датчиков угловой скорости бесплатформенного ИИМ [6], реализованный в известном широкодиапазонном стенде (например, УПГ-48), обеспечивающем приблизительно горизонтальное задание вектора угловой скорости с фиксированным направлением в пространстве. С помощью стендового оборудования вращают ИИМ последовательно вокруг трех приблизительно ортогональных осей ИИМ. Во время вращения записывают показания ИИМ по каналу акселерометров, показания ДУС. По сигналам акселерометров определяют угловую скорость ИИМ в базисе акселерометров. Идентифицируя математическую модель ДУС, определяют нулевые сигналы ДУС, матрицу, описывающую масштабные коэффициенты, перекрестные связи, ориентацию осей чувствительности ДУС в ИИМ, матрицу, описывающую влияние линейного ускорения на показания ДУС. При этом автоматически обеспечивается привязка осей ДУС к измерительному базису акселерометров.
Недостатками данного способа являются:
- необходимость предварительной калибровки акселерометров и переустановки ИИМ на платформе,
- определение вектора угловой скорости вращения ИИМ по сигналам акселерометров посредством формирования разделенной разности оценок углов ориентации ИММ на соседних тактах их опроса, т.е. численного дифференцирования сигналов акселерометров, что приводит к высокой интенсивности случайной составляющей в формируемых оценках, принимаемых в данном способе калибровки датчиков угловой скорости за входное воздействие. Это значительно ограничивает достижимую точность калибровки.
Наиболее близким аналогом к заявляемому устройству является известный прецизионный полноповоротный углозадающий стол для испытаний элементов инерциальных приборов [7].
Недостатком данного устройства является невозможность без перезакрепления ИИМ на платформе стенда осуществлять вращение ИИМ вокруг его некомпланарных осей.
Задачей разрабатываемого способа является автоматизация процесса калибровки и, тем самым, исключение ошибок, вызванных человеческим фактором, а также снижение времени, затрачиваемого на получение результатов калибровки, и повышение точности определения калибруемых параметров.
Задачей разрабатываемого устройства является повышение технологичности и снижение трудоемкости процедуры калибровки.
Техническим результатом для способа являются:
1) повышение автоматизации процедуры калибровки за счет задания вращения ИИМ вокруг его некомпланарных осей с изменяемой угловой скоростью без применения процедур перезакрепления ИИМ на платформе устройства,
2) снижение времени, затрачиваемого на получение результатов калибровки, за счет применения алгоритмов совместной обработки данных, записанных с ДУС и акселерометров ИИМ,
3) повышение точности определения калибруемых параметров за счет перехода от операции дифференцирования углов, получаемых по сигналам акселерометров ИИМ к операции интегрирования угловых скоростей, определяемых по сигналам ДУС ИИМ, при определении разности между параметрами углового движения платформы устройства калибровки, измеренными акселерометрами ИИМ и ДУС ИИМ.
Техническим результатом для устройства является снижение времени, затрачиваемого на процедуру калибровки, за счет обеспечения возможности задания вращения ИИМ вокруг его некомпланарных осей с изменяемой угловой скоростью на устройстве, в котором только одна ось приводится во вращение двигателем, без применения процедур перезакрепления ИИМ на платформе устройства.
Указанный технический результат для способа достигается тем, что в известном способе калибровки ИИМ, включающем установку ИИМ на платформу устройства для калибровки таким образом, чтобы обеспечить задание угловой скорости двигателем вокруг трех приблизительно ортогональных осей ИИМ, вращение ИИМ вокруг приблизительно горизонтальной оси с переменными угловыми скоростями и идентификацию составляющих математических моделей ДУС, в частности погрешности масштабного коэффициента, постоянной составляющей скорости дрейфа и коэффициентов g-чувствительности для достижения указанного выше технического результата вращения вокруг трех ортогональных осей системы координат, связанной с ИИМ, осуществляются путем однократного закрепления ИИМ на платформе устройства, а оценка составляющих как моделей ошибок для ДУС, так и для моделей ошибок акселерометров, включающих погрешности масштабного коэффициента и нулевые сигналы, осуществляется на основе вычисления невязок оценок углов разворота осей чувствительности ИИМ по показаниям ДУС и акселерометров в результате единого цикла калибровочных движений.
Указанный технический результат для устройства достигается тем, что в известное устройство для калибровки ИИМ, включающее двигатель и платформу, на которой располагают калибруемый ИИМ с блоком записи информации, между двигателем и платформой введен кардановый подвес (КП) с внутренней рамой и фиксатором, выполненным с возможностью обеспечения взаимно ортогональных положений внутренней рамки и расположенным на ее оси; между платформой и внутренней рамкой размещен фиксатор платформы, позволяющий устанавливать платформу во взаимно ортогональные положения относительно внутренней рамки.
Кроме того, на платформе устройства может быть установлен интерфейс беспроводной передачи данных.
Изобретение поясняется чертежами.
На фиг. 1 представлена кинематическая схема устройства, реализующего предлагаемый способ, на фиг. 2 - схема поворотов, на фиг. 3 - опытный образец предлагаемого устройства.
На чертежах приняты следующие обозначения:
1 - управляемый двигатель
2 - опоры внутренней рамы 5 КП
3 - фиксатор внутренней рамы 5 КП
4 - внешняя рама КП
5 - внутренняя рама КП
6 - опоры внешней рамы 4 КП
7 - ИИМ
8 - платформа
9 - фиксатор внешней рамы 4 КП
I - ось внешней рамы 4 КП
II - ось внутренней рамы 5 КП
III - ось платформы 8
Оξηζ - система координат, связанная с плоскостью горизонта
Oxyz - система координат, связанная с конструктивными осями устройства для калибровки. Ось Ох совпадает с осью I наружной рамы 6 КП, ось Oz - с осью II внутренней рамы 5 КП. Ось Oy перпендикулярна осям Ох и Oz.
Ox1x2x3 - система координат, жестко связанная с ИИМ 7.
ψс, θс, γс - углы Эйлера-Крылова, описывающие ориентацию системы координат Oxyz относительно Оξηζ.
α1 β1 - углы Эйлера-Крылова, описывающие ориентацию системы координат Ox1x2x3 относительно Oxyz.
Предлагаемый способ калибровки осуществляется следующим образом. Ось I вращения внешней рамки 4 КП располагают приблизительно горизонтально (допустимое отклонение оси I вращения внешней рамки 4 КП от плоскости горизонта не должно превышать 20°), что делает возможным использование для измерения угла поворота ИИМ 7 относительно плоскости горизонта сигналов акселерометров испытуемого ИИМ 7. Для этого ИИМ 7 устанавливается на платформу 8 устройства для калибровки таким образом, чтобы ось I вращения двигателя 1 совпадала с осью Ox1 с отклонением не более 5°. После этого с помощью двигателя 1 задают вращение ИИМ 7 с изменяемой угловой скоростью. Варьирование угловой скорости вращения обусловлено необходимостью разделения скорости дрейфа и погрешности масштабного коэффициента ДУС, что невозможно в случае постоянной скорости вращения. Отметим, что при выборе диапазона изменения скорости вращения необходимо исходить из диапазона измерения ДУС. Затем платформу 8 с установленным на ней ИИМ 7 поворачивают на 90° относительно оси III, обеспечивая тем самым совпадение оси Ох3 с осью I вращения двигателя 1 с отклонением не более 5°, и повторяют цикл вращений. После этого разворачивают внутреннюю раму 5 КП на 90° относительно внешней рамы 4, обеспечивая тем самым совпадение оси Ох2 с осью I вращения двигателя 1 с отклонением не более 5° и повторяют цикл вращений. Записывают измеренные при вращении платформы 8 датчиками ИИМ 7 проекции угловых скоростей и кажущихся ускорений на измерительные оси ИИМ 7. На основе полученных в результате испытаний данных инерциальных датчиков оценивают нулевые сигналы и погрешности масштабных коэффициентов акселерометров, нулевые сигналы, погрешности масштабных коэффициентов и коэффициенты g-чувствительности ДУС, углы α1β1.
При построении математического аппарата, используемого для получения оценок составляющих математической модели ошибок датчиков ИИМ 7, введено допущение о том, что за период проведения калибровки нестабильность калибруемых параметров не превышает допустимую погрешность.
Проведенные ранее исследования показали, что при калибровке микромеханических ИИМ требуют идентификации следующие параметры:
для ИИМ: матрица, описывающая отклонение осей чувствительности инерциальных датчиков от оси вращения (отметим, что погрешность установки модуля на платформу устройства для калибровки на практике значительно превышает взаимную неортогональность осей чувствительности датчиков в ИИМ)
Figure 00000001
для акселерометров: погрешность масштабного коэффициента δkWj и нулевой сигнал ΔWxj
для ДУС: погрешность масштабного коэффициента δkωl, постоянная составляющая скорости дрейфа Δωxj и коэффициенты g-чувствительности Kji.
Математическая модель выходных сигналов акселерометров W ^ x i
Figure 00000002
в этом случае примет вид:
[ W ^ x 1 W ^ x 2 W ^ x 3 ] = [ 1 + δ k W 1 0 0 0 1 + δ k W 2 0 0 0 1 + δ k W 3 ] D [ W x 1 W x 2 W x 3 ] + [ Δ W x 1 Δ W x 2 Δ W x 3 ] + [ w x 1 w x 2 w x 3 ] , ( 2 )
Figure 00000003
Математическая модель выходных сигналов ДУС ω ^ x i
Figure 00000004
будет иметь вид:
[ ω ^ x 1 ω ^ x 2 ω ^ x 3 ] = [ 1 + δ k ω 1 0 0 0 1 + δ k ω 2 0 0 0 1 + δ k ω 3 ] D ( [ ω x 1 ω x 2 ω x 3 ] + [ K 11 K 12 K 13 K 21 K 22 K 23 K 31 K 32 K 33 ] [ W x 1 W x 2 W x 3 ] ) + [ Δ ω x 1 Δ ω x 2 Δ ω x 3 ] + [ w ω 1 w ω 2 w ω 3 ] , ( 3 )
Figure 00000005
Для обработки данных реализуется два типа алгоритмов:
1. Основан на методе наименьших квадратов. Позволяет получать точечные оценки составляющих моделей датчиков. Данный алгоритм используется для быстрой калибровки в автоматическом режиме. Для его реализации данные, собранные с датчиков ИИМ 7, подставляются в функции, выведенные в соответствии с методом наименьших квадратов из (2) и (3), при условии вращения ИИМ вокруг оси I, отклоненной от оси Ox1 на угол не более 5°:
Figure 00000006
Figure 00000007
Figure 00000008
Figure 00000009
Figure 00000010
Коэффициенты математических моделей погрешностей датчиков ИИМ (ΔW2, ΔW3,
Figure 00000011
δkω1, k12, k13, ΔωХ1, β1, α1, Δωх2, Δωх3, k23, k31), при которых достигается минимум функций (4)-(8), являются искомыми.
Если ИИМ 7 находится в положении, в котором ось Ох2 ИИМ 7 отклонена от оси I на угол, не превышающий 5°, то минимизируемые функции получают циклической перестановкой коэффициентов в (4)-(8) 1→2→3→1.
Если ИИМ 7 находится в положении, в котором ось Ох3 ИИМ 7 отклонена от оси I на угол, не превышающий 5°, то минимизируемые функции получают циклической перестановкой коэффициентов в (4)-(8) 1→3→2→1.
2. Основан на методе оптимальной фильтрации. Позволяет получать временные реализации составляющих моделей датчиков. Данный метод используется при необходимости детального анализа погрешностей датчиков. Для его реализации на основе измеренных датчиками ИИМ 7 проекций угловых скоростей и кажущихся ускорений формируют измерения yj(ti). При условии вращения ИИМ 7 вокруг оси I, отклоненной от оси Ox1 ИИМ на угол не более 5°, измерения yj(ti) будут иметь вид:
Figure 00000012
Figure 00000013
Figure 00000014
Figure 00000015
Figure 00000016
где
Figure 00000017
- проекции сигналов акселерометров на оси Оξ, Оη, Oζ после вычитания из них ускорения свободного падения g. При известной (или вычисленной по сигналам гироскопов и акселерометров ИИМ 7) матрице направляющих косинусов А между осями систем координат Оξηζ, и Ox1x2x3 их находят из следующего соотношения:
Figure 00000018
В результате вектор измерения Y = [ y a (t i ) y b (t i ) y c (t i ) y d (t i ) y e (t i ) ] T
Figure 00000019
будет иметь вид:
Figure 00000020
где С - матрица измерения.
Figure 00000021
V - вектор шумов измерения;
X - вектор состояния
Figure 00000022
Для оценивания элементов вектора состояния X по измерениям Y применяется процедура оптимальной фильтрации.
Если ИИМ находится в положении, в котором ось х2 отклонена от оси вращения на угол, не превышающий 5°, то соотношения для алгоритма оценивания элементов вектора состояния получают циклической перестановкой коэффициентов в (9)-(15) 1→2→3→1.
Если ИИМ находится в положении, в котором ось х3 отклонена от оси вращения на угол, не превышающий 5°, то соотношения для алгоритма оценивания элементов вектора состояния получают циклической перестановкой коэффициентов в (9)-(15) 1→3→2→1.
Предлагаемое устройство для калибровки содержит двигатель 1, платформу 8, КП, устанавливаемый между двигателем 1 и платформой 8 в опорах 6 и включающий внешнюю раму 4 и внутреннюю раму 5, фиксатор 3 внутренней рамы 5, фиксатор 9 платформы 8. Внешняя рама 4 устанавливается во внутреннюю раму 5 в опорах 2. На платформе 8 располагают испытуемый ИИМ 7 с устройством записи информации.
Устройство работает следующим образом. Двигатель 1 вращает внешнюю раму 4 КП вокруг оси I, установленной в опорах 6. Посредством фиксатора 3 внутренней рамы 5 устанавливают внутреннюю рамку 5 КП в положения, при которых ось III и ось I либо параллельны, либо перпендикулярны. Посредством фиксатора 9 платформы 8 устанавливают платформу 8 относительно внутренней рамки 5 КП во взаимно ортогональные положения.
Съем информации с испытуемого ИИМ 7 осуществляется либо с помощью блока записи информации, расположенного на платформе 8 устройства для калибровки, либо с помощью интерфейса беспроводной передачи данных. В этом случае передатчик для беспроводной передачи данных размещается на платформе 8 устройства для калибровки, а приемник с блоком записи информации или устройством обработки информации размещается вне устройства для калибровки. Подача питания на ИИМ 7 осуществляется либо через скользящие токоподводы, расположенные на валу внешней рамы 4 КП, либо от аккумуляторов, расположенных непосредственно на платформе 8 устройства для калибровки.
Применение математического аппарата, построенного на основе метода наименьших квадратов или оптимальной фильтрации, позволяет при обработке собранных во время процедуры быстрой калибровки показаний датчиков ИИМ вычислять составляющие математической модели ошибок ИИМ, в частности нулевые сигналы и погрешности масштабных коэффициентов ДУС и акселерометров, ориентацию измерительных осей ИИМ относительно оси вращения и коэффициенты g-чувствительности ДУС. При этом исключается влияние человеческого фактора на результаты вычислений и снижается время, затрачиваемое на получение результатов калибровки.
Данным изобретением обеспечивается технологичность калибровки на уровне способов, реализованных с помощью многоосных калибровочных стендов при значительном упрощении конструкции, уменьшении массы и габаритов и значительном снижении стоимости калибровочного оборудования.
Таким образом, использование предлагаемых способа и устройства позволяет повысить технологичность и снизить трудоемкость процедуры калибровки, повысить точность определения калибруемых параметров. Это позволяет автоматизировать процесс калибровки и, тем самым, исключить ошибки, вызванные человеческим фактором, а также снизить время, затрачиваемое на получение результатов калибровки.
Опытный образец предлагаемого устройства для калибровки создан при совместном участии ЗАО «Газприборавтоматикасервис» и ФГБОУ ВПО «Саратовский государственный технический университет имени Гагарина Ю.А.» и проходит испытания.
Список использованных источников
1. Пат. US 2014372063 (A1) US, МПК7 G01P 21/00. Quick calibration method for inertial measurement unit / NIU XIAOJI [CN] и др.; заявитель UNIV WUHAN [CN] - № US 201314239145; заявл. 05.03.2013; опубл. 18.12.2014.
2. Пат. РФ 2477864, МПК7 G01P 21/00. Способ калибровки инерциального измерительного модуля по каналу акселерометров/ Корюкин М.С.; патентообладатель Открытое акционерное общество "Конструкторское Бюро Промышленной Автоматики" (RU) - №2011148861/28; заявл. 30.11.2011; опубл. 20.03.2013, Бюл. №6. - 5 с.: 1 ил.
3. Пат. РФ 2162230, МПК7 G01P 21/00. Широкодиапазонный стенд для контроля бесплатформенных инерциальных измерительных блоков / Ачильдиев В.М. и др.; заявители и патентообладатели Ачильдиев В.М., Дрофа В.Н., Рублев В.М.. - №2000105697/28; заявл. 13.03.2000; опубл. 20.01.2001, Бюл. №2. - 5 с.: 3 ил.
4. Пат. РФ 2142643, МПК6 G01P 21/00. Широкодиапазонный стенд для контроля измерителей угловой скорости / Калихман Л.Я. и др.; заявитель и патентообладатель Производственное объединение "Корпус" - №96114080/28; заявл. 10.07.1996; опубл. 10.12.1999, Бюл. №23. - 12 с.: 6 ил.
5. А.с. СССР 476516, МКИ G01P 13/00. 1973 г.
6. Пат. РФ 2447404, МПК7 G01P 21/00. Способ калибровки датчиков угловой скорости бесплатформенного инерциального измерительного модуля / Корюкин М.С.; патентообладатель Открытое акционерное общество "Конструкторское Бюро Промышленной Автоматики" (RU) - №2010124735/28; заявл. 16.06.2010; опубл. 10.04.2012, Бюл. №7. - 4 с.: ил.
7. Прецизионный полноповоротный углозадающий стол для испытаний элементов инерциальных приборов [Текст] / Р.В. Емаков [и др.] // XVIII Санкт-Петербургская международная конференция по интегрированным навигационным системам: сб. мат. XVIII междунар. конф. / ГНЦ РФ ОАО «Концерн «ЦНИИ «Электроприбор» - СПб, 2011. - С. 119-123.

Claims (3)

1. Способ калибровки инерциальных измерительных модулей (ИИМ), включающий закрепление ИИМ на платформе калибровочного стенда с обеспечением совпадения одной из измерительных осей ИИМ с осью вращения двигателя стенда с допустимым отклонением не более 5°, вращение платформы с закрепленным ИИМ с изменяющейся угловой скоростью вокруг трех взаимно перпедикулярных осей платформы, запись измеренных датчиками ИИМ проекций угловых скоростей и кажущихся ускорений, оценивание составляющих моделей ошибок датчиков ИИМ, включающих погрешности масштабного коэффициента и нулевые сигналы акселерометров, погрешности масштабного коэффициента, нулевые сигналы и коэффициенты g-чувствительности датчиков угловой скорости, осуществляемое на основе записанных проекций угловых скоростей и кажущихся ускорений.
2. Устройство для калибровки инерциальных измерительных модулей (ИИМ), включающее двигатель и платформу с размещенными на ней ИИМ и блоком записи информации, отличающееся тем, что между двигателем и платформой введен кардановый подвес с внутренней рамой и фиксатором, выполненным с возможностью обеспечения взаимно ортогональных положений внутренней рамки и расположенным на ее оси; между платформой и внутренней рамкой размещен фиксатор платформы, позволяющий устанавливать платформу во взаимно ортогональные положения относительно внутренней рамки.
3. Устройство по п. 2, отличающееся тем, что на платформу дополнительно размещают интерфейс беспроводной передачи данных.
RU2015132392/28A 2015-08-03 2015-08-03 Способ и устройство калибровки инерциальных измерительных модулей RU2602736C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015132392/28A RU2602736C1 (ru) 2015-08-03 2015-08-03 Способ и устройство калибровки инерциальных измерительных модулей

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015132392/28A RU2602736C1 (ru) 2015-08-03 2015-08-03 Способ и устройство калибровки инерциальных измерительных модулей

Publications (1)

Publication Number Publication Date
RU2602736C1 true RU2602736C1 (ru) 2016-11-20

Family

ID=57760179

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015132392/28A RU2602736C1 (ru) 2015-08-03 2015-08-03 Способ и устройство калибровки инерциальных измерительных модулей

Country Status (1)

Country Link
RU (1) RU2602736C1 (ru)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2669263C1 (ru) * 2017-08-30 2018-10-09 Общество С Ограниченной Ответственностью "Автоматизированные Измерительные Системы И Технологии" Способ и устройство калибровки инерциальных измерительных модулей
CN109459585A (zh) * 2018-10-25 2019-03-12 北京航天计量测试技术研究所 一种加速度计零位偏置修正方法
RU2698547C1 (ru) * 2018-03-28 2019-08-28 Акционерное общество "Опытно-конструкторское бюро "Электроавтоматика" имени П.А. Ефимова" Способ автономного повышения точности применения микромеханической элементной базы
RU2718142C1 (ru) * 2019-04-17 2020-03-30 Акционерное общество Московский научно-производственный комплекс "Авионика" имени О.В. Успенского (АО МНПК "Авионика") Способ повышения точности калибровки масштабных коэффициентов и углов неортогональности осей чувствительности блока датчиков ДУС
RU2727344C1 (ru) * 2019-04-17 2020-07-21 Акционерное общество Московский научно-производственный комплекс "Авионика" имени О.В. Успенского (АО МНПК "Авионика") Способ повышения точности калибровки блока микромеханических датчиков угловой скорости
RU2751143C1 (ru) * 2020-07-29 2021-07-08 федеральное государственное автономное образовательное учреждение высшего образования "Северо-Кавказский федеральный университет" Способ автоматизации калибровки датчиков бесплатформенной инерциальной системы роботизированного беспилотного летательного аппарата
CN114459502A (zh) * 2021-12-17 2022-05-10 中国计量科学研究院 一种基于Stewart平台的惯性测量单元校准方法
CN115728517A (zh) * 2022-11-14 2023-03-03 北京自动化控制设备研究所 加速度计免标定非线性测量工装及装置
RU2804762C1 (ru) * 2022-11-15 2023-10-05 Федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский государственный технический университет имени Гагарина Ю.А." Универсальный прецизионный мехатронный стенд с инерциальными чувствительными элементами для контроля гироскопических измерителей угловой скорости

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2269813C2 (ru) * 2004-03-10 2006-02-10 ЗАО "Газприборавтоматикасервис" Способ калибровки параметров бесплатформенного инерциального измерительного модуля
RU2447404C2 (ru) * 2010-06-16 2012-04-10 Открытое акционерное общество "Конструкторское Бюро Промышленной Автоматики" Способ калибровки датчиков угловой скорости бесплатформенного инерциального измерительного модуля

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2269813C2 (ru) * 2004-03-10 2006-02-10 ЗАО "Газприборавтоматикасервис" Способ калибровки параметров бесплатформенного инерциального измерительного модуля
RU2447404C2 (ru) * 2010-06-16 2012-04-10 Открытое акционерное общество "Конструкторское Бюро Промышленной Автоматики" Способ калибровки датчиков угловой скорости бесплатформенного инерциального измерительного модуля

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
БИНДЕР Я.И., ПАДЕРИНА Т.В., АНУЧИН О.Н. Калибровка датчиков угловой скорости с механическим носителем вектора кинетического момента в составе бесплатформенных инерциальных измерительных модулей. Г. и Н. 2003. *
Прецизионный полноповоротный углозадающий стол для испытаний элементов инерциальных приборов [Текст] / Р.В. Емаков [и др.] // XVIII Санкт-Петербургская международная конференция по интегрированным навигационным системам: сб. мат. XVIII междунар. конф. / ГНЦ РФ ОАО "Концерн "ЦНИИ "Электроприбор" - СПб, 2011. - С. 119-123. *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2669263C1 (ru) * 2017-08-30 2018-10-09 Общество С Ограниченной Ответственностью "Автоматизированные Измерительные Системы И Технологии" Способ и устройство калибровки инерциальных измерительных модулей
RU2698547C1 (ru) * 2018-03-28 2019-08-28 Акционерное общество "Опытно-конструкторское бюро "Электроавтоматика" имени П.А. Ефимова" Способ автономного повышения точности применения микромеханической элементной базы
CN109459585A (zh) * 2018-10-25 2019-03-12 北京航天计量测试技术研究所 一种加速度计零位偏置修正方法
RU2718142C1 (ru) * 2019-04-17 2020-03-30 Акционерное общество Московский научно-производственный комплекс "Авионика" имени О.В. Успенского (АО МНПК "Авионика") Способ повышения точности калибровки масштабных коэффициентов и углов неортогональности осей чувствительности блока датчиков ДУС
RU2727344C1 (ru) * 2019-04-17 2020-07-21 Акционерное общество Московский научно-производственный комплекс "Авионика" имени О.В. Успенского (АО МНПК "Авионика") Способ повышения точности калибровки блока микромеханических датчиков угловой скорости
RU2751143C1 (ru) * 2020-07-29 2021-07-08 федеральное государственное автономное образовательное учреждение высшего образования "Северо-Кавказский федеральный университет" Способ автоматизации калибровки датчиков бесплатформенной инерциальной системы роботизированного беспилотного летательного аппарата
CN114459502A (zh) * 2021-12-17 2022-05-10 中国计量科学研究院 一种基于Stewart平台的惯性测量单元校准方法
CN115728517A (zh) * 2022-11-14 2023-03-03 北京自动化控制设备研究所 加速度计免标定非线性测量工装及装置
CN115728517B (zh) * 2022-11-14 2024-04-02 北京自动化控制设备研究所 加速度计免标定非线性测量工装及装置
RU2804762C1 (ru) * 2022-11-15 2023-10-05 Федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский государственный технический университет имени Гагарина Ю.А." Универсальный прецизионный мехатронный стенд с инерциальными чувствительными элементами для контроля гироскопических измерителей угловой скорости
RU2810893C1 (ru) * 2023-10-03 2023-12-29 Акционерное общество "Научно-исследовательский институт "Полюс" им. М.Ф. Стельмаха" Способ калибровки прецизионных датчиков угловой скорости с учетом годичной угловой орбитальной скорости вращения Земли

Similar Documents

Publication Publication Date Title
RU2602736C1 (ru) Способ и устройство калибровки инерциальных измерительных модулей
RU2669263C1 (ru) Способ и устройство калибровки инерциальных измерительных модулей
CN103808331B (zh) 一种mems三轴陀螺仪误差标定方法
CN110006450B (zh) 一种激光捷联惯导系统在卧式三轴转台上的标定方法
Aggarwal et al. A standard testing and calibration procedure for low cost MEMS inertial sensors and units
RU2566427C1 (ru) Способ определения температурных зависимостей масштабных коэффициентов, смещений нуля и матриц ориентации осей чувствительности лазерных гироскопов и маятниковых акселерометров в составе инерциального измерительного блока при стендовых испытаниях
CN110108300B (zh) 一种基于卧式三轴转台的imu正六面体标定方法
Lv et al. The compensation effects of gyros' stochastic errors in a rotational inertial navigation system
Yang et al. Binocular vision-based method used for determining the static and dynamic parameters of the long-stroke shakers in low-frequency vibration calibration
CN106482746A (zh) 一种用于混合式惯导系统的加速度计内杆臂标定与补偿方法
EP3123209B1 (en) Absolute vector gravimeter and methods of measuring an absolute gravity vector
CN103323625A (zh) 一种mems-imu中加速度计动态环境下的误差标定补偿方法
CN110006454A (zh) 一种imu标定三轴转台垂直度和初始姿态的方法
Liu et al. A method for gravitational apparent acceleration identification and accelerometer bias estimation
Zaitsev et al. Study of systems error compensation methods based on molecular-electronic transducers of motion parameters
RU2683144C1 (ru) Способ определения ошибок ориентации измерительных осей лазерных гироскопов и маятниковых акселерометров в бесплатформенной инерциальной навигационной системе
Sun et al. Sequential calibration method of nonlinear errors of PIGA on counter-rotating platform centrifuge
CN112649889A (zh) 一种六分量地震数据及绝对重力测量仪、测量方法
D'Emilia et al. Calibration test bench for three-axis accelerometers An accurate and low-cost proposal
RU2427801C2 (ru) Способ прогнозирования переменной составляющей выходного сигнала электромеханического датчика угловой скорости (дус) на этапе изготовления его гиромотора по характеристикам угловых вибраций, возбуждаемых гиромотором, и установка для реализации способа
RU2386107C1 (ru) Автономный способ определения начальной ориентации приборной системы координат бесплатформенного инерциального блока управляемого объекта относительно базовой системы координат
KR100515470B1 (ko) 진자운동을 이용한 관성측정장치의 오차보정장치
Choi et al. Calibration of inertial measurement units using pendulum motion
CN104655095B (zh) 一种利用光纤陀螺测定地理纬度的方法
RU2727344C1 (ru) Способ повышения точности калибровки блока микромеханических датчиков угловой скорости

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner
QB4A Licence on use of patent

Free format text: LICENCE FORMERLY AGREED ON 20171227

Effective date: 20171227