RU2597378C1 - Альтернативная гидроэлектростанция - Google Patents

Альтернативная гидроэлектростанция Download PDF

Info

Publication number
RU2597378C1
RU2597378C1 RU2014119536/06A RU2014119536A RU2597378C1 RU 2597378 C1 RU2597378 C1 RU 2597378C1 RU 2014119536/06 A RU2014119536/06 A RU 2014119536/06A RU 2014119536 A RU2014119536 A RU 2014119536A RU 2597378 C1 RU2597378 C1 RU 2597378C1
Authority
RU
Russia
Prior art keywords
water
lifting
tape
driven
installation
Prior art date
Application number
RU2014119536/06A
Other languages
English (en)
Inventor
Валерий Михайлович Доронин
Original Assignee
Валерий Михайлович Доронин
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Валерий Михайлович Доронин filed Critical Валерий Михайлович Доронин
Application granted granted Critical
Publication of RU2597378C1 publication Critical patent/RU2597378C1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B9/00Endless-chain machines or engines
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B9/00Water-power plants; Layout, construction or equipment, methods of, or apparatus for, making same
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/06Stations or aggregates of water-storage type, e.g. comprising a turbine and a pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B3/00Machines or engines of reaction type; Parts or details peculiar thereto
    • F03B3/12Blades; Blade-carrying rotors
    • F03B3/126Rotors for essentially axial flow, e.g. for propeller turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/008Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations the wind motor being combined with water energy converters, e.g. a water turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/10Combinations of wind motors with apparatus storing energy
    • F03D9/13Combinations of wind motors with apparatus storing energy storing gravitational potential energy
    • F03D9/14Combinations of wind motors with apparatus storing energy storing gravitational potential energy using liquids
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K53/00Alleged dynamo-electric perpetua mobilia
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1823Rotary generators structurally associated with turbines or similar engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • F03D15/10Transmission of mechanical power using gearing not limited to rotary motion, e.g. with oscillating or reciprocating members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/91Mounting on supporting structures or systems on a stationary structure
    • F05B2240/911Mounting on supporting structures or systems on a stationary structure already existing for a prior purpose
    • F05B2240/9112Mounting on supporting structures or systems on a stationary structure already existing for a prior purpose which is a building
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/30Wind power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/50Hydropower in dwellings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/728Onshore wind turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/20Climate change mitigation technologies for sector-wide applications using renewable energy

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Hydraulic Turbines (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Wind Motors (AREA)

Abstract

Изобретение относится к конструкциям для получения электроэнергии из возобновляемых источников. Альтернативная гидроэлектростанция содержит водохранилище верхнего бьефа 2, конструкцию для его размещения на необходимой высоте, в которую включено здание с машинным залом, гидротурбину, устройство подвода воды к гидротурбине, ветродвигатель 7 с вертикальной осью вращения, водохранилище нижнего бьефа 1. Напор воды создают сбалансированные ленточные водоподъемные установки, приводимые в движение энергией ветра, начиная с ветра малой скорости. Для размещения водохранилища верхнего бьефа 2 на необходимой высоте, обеспечивающей напор воды, использует стальную, железобетонную каркасную или иную конструкцию. Изобретение направлено на создание альтернативной гидроэлектростанции, которая использует сбалансированные ленточные водоподъемные установки, приводимые в движение энергией ветра, начиная с ветра малой скорости, обеспечивающие подъем воды на необходимую высоту для создания напора, необходимого для работы гидротурбин. 1 з.п. ф-лы, 6 ил.

Description

Изобретение относится к конструкциям для получения электроэнергии из возобновляемых источников.
Из уровня техники известен «Аппарат для выработки электроэнергии» WO 2010150932 А1, который представляет собой очень сложную конструкцию.
Это высотное здание, в основании которого размещается нижнее водохранилище. Верхнее водохранилище располагается на верху здания и установлено на четырех полых колоннах, внутри которых оборудованы каналы для прохождения потоков воды к гидротурбинам, установленным внутри колонн, внизу. Гидротурбины вращают электрогенераторы, вырабатывающие электроэнергию. Под верхним водохранилищем, на заданной высоте, установлен мощный ветрогенератор с горизонтальной осью вращения и механизмом ориентации на направление ветра. На четырех колоннах вокруг ветрогенератора установлены поворотные панели, управляемые специальным датчиком, которые при повороте на определенный угол усиливают ветровой поток, поступающий на ветрогенератор. Электроэнергия, полученная от ветрогенератора, питает электронасос, который поднимает воду, по трубе, из нижнего водохранилища в верхнее водохранилище. Аппарат имеет контроллер для управления работой насоса и клапанов, регулирующих потоки воды, падающие на гидротурбины в соответствии с уровнем воды верхнего водохранилища.
В данном источнике электроэнергии невозможно использование энергии ветра малой скорости, так как мощный ветрогенератор может работать только при ветрах большой скорости.
Задачей изобретения является создание конструкции альтернативной гидроэлектростанции (АГЭС), которая использует сбалансированные ленточные водоподъемные установки (СЛВПУ), приводимые в движение энергией ветра, начиная с ветра малой скорости, обеспечивающие подъем воды на необходимую высоту для создания напора, необходимого для работы гидротурбин.
Указанная задача решена в альтернативной гидроэлектростанции, содержащей водохранилище верхнего бьефа, конструкцию для его размещения на необходимой высоте, в которую включено здание с машинным залом, гидротурбину, устройство подвода воды к гидротурбине, ветродвигатель с вертикальной осью вращения, водохранилище нижнего бьефа. Согласно изобретению гидроэлектростанция снабжена сбалансированной ленточной водоподъемной установкой для подъема воды на необходимую высоту и создания напора необходимого для работы гидротурбины, приводимой в движение энергией ветра, путем передачи вращательного движения от ветродвигателя на сбалансированную ленточную водоподъемную установку, состоящую из двух одинаковых зеркально установленных друг к другу ленточных водоподъемных установок, одна из которых ведущая, а другая - ведомая и которые установлены относительно друг друга так, чтобы нагруженные стороны водоподъемных лент водоподъемных установок находились снаружи сбалансированной ленточной водоподъемной установки, а ненагруженные стороны водоподъемных лент находились внутри сбалансированной ленточной водоподъемной установки, в которых верхний и нижний шкивы ведущей ленточной водоподъемной установки приводят в движение соответственно верхний и нижний шкивы зеркально установленной ведомой ленточной водоподъемной установки, вращающейся в направлении, противоположном вращению ведущей ленточной водоподъемной установки, в результате чего ненагруженная сторона ведущей ленточной водоподъемной установки нагружена нагруженной стороной ведомой ленточной водоподъемной установки, при этом величина ее нагрузки меньше на величину силы трения, существующей при передаче нагрузки ведомой ленточной водоподъемной установки на ведущую ленточную водоподъемную установку, что обеспечивается механизмом балансировки, состоящим из отжимного ролика, закрепленного на поворотном рычаге с регулировочным винтом, регулирующим положение рычага между водоподъемной лентой с закрепленным водовпитывающим материалом, и жестко закрепленным упорным кронштейном, изменяя расстояние между отжимным роликом и водоподъемной лентой с закрепленным водовпитывающим материалом и, таким образом, регулируя вес воды, поднимаемой зеркально установленной ведомой ленточной водоподъемной установкой. Кроме того, пространство конструкции между водохранилищем верхнего бьефа и водохранилищем нижнего бьефа разделено на этажи для размещения на них промышленных, аграрных или коммерческих предприятий.
Устройство АГЭС поясняют чертежи.
На фиг. 1-4 изображена структурная схема АГЭС.
На фиг. 1 (вид слева), фиг. 2 (вид спереди), фиг. 3 (вид справа), фиг. 4 (вид сверху).
1 - ВНБ (водохранилище нижнего бьефа),
2 - ВВБ (водохранилище верхнего бьефа),
3 - трубопровод, соединяющий ВВБ,
4 - трубопровод, подводящий воду к гидротурбине,
5 - трубопровод, соединяющий ВНБ,
6 - запорная арматура,
7 - ветродвигатели с вертикальной осью вращения,
8 - эстакады для монтажа и технического обслуживания ветродвигателей,
9 - линии, на которых устанавливаются СЛВПУ, приводимые в движение ветродвигателями,
10 - коридоры, в которых устанавливаются СЛВПУ, приводимые в движение ветродвигателями,
11 - машинный зал,
12 - вход в машинный зал,
13 - лестница,
14 - лифт,
15 - гидротурбина и генератор,
16 - этажи для коммерческого применения.
На фиг. 5 (вид спереди) и 6 (вид сбоку) изображена структурная схема СЛВПУ.
17 - верхний блок СЛВПУ,
18 - нижний блок СЛВПУ,
19 - ветродвигатель с вертикальной осью вращения, передача которого на СЛВПУ осуществляется через коническую передачу,
20 - бесконечная лента с водовпитывающим слоем,
21 - ведущий шкив верхнего блока СЛВПУ,
22 - зеркально установленный шкив верхнего блока СЛВПУ,
23 - шкив нижнего блока СЛВПУ,
24 - зеркально установленный шкив нижнего блока СЛВПУ,
25 - выжимной механизм,
26 - водоприемник,
27 - механизм балансировки,
28 - уровень воды.
В состав АГЭС входят:
- ВВБ и ВНБ;
- конструкция, обеспечивающая размещение ВВБ на необходимой высоте и размещение ВНБ внизу;
- СЛВПУ (сбалансированные ленточные водоподъемные установки), обеспечивающие подъем воды на необходимую высоту для создания напора;
- здание с машинным залом с устройством подвода воды к гидротурбине и к СЛВПУ.
ВВБ и ВНБ представляют собой набор одинаковых емкостей, соединенных между собой трубопроводами. ВВБ имеет верхний и нижний трубопроводы. Верхний трубопровод обеспечивает заполнение емкостей ВВБ сверху, а нижний соединяет их по принципу сообщающихся сосудов. Каждая емкость оборудована запорной арматурой: кранами, которые отключают емкость от трубопроводов при ремонте, и аварийными клапанами. Количество емкостей ВВБ и ВНБ прямо пропорционально мощности АГЭС.
В том случае, когда АГЭС имеет постоянное соединение с незамерзающим природным источником воды, способным обеспечить потребности АГЭС в воде, этот источник играет роль ВНБ.
В ГЭС напор, создаваемый плотиной, равен разности между верхним уровнем ВВБ и верхним уровнем ВНБ, поэтому плотина испытывает огромную нагрузку. В АГЭС уровень воды в ВВБ может быть небольшим, так как напор равен разности уровней между дном ВВБ и верхним уровнем ВНБ. Поэтому удельная нагрузка конструкции для размещения ВВБ невелика.
Конструкция для размещения ВВБ на высоте, обеспечивающей необходимый напор воды, может представлять собой стальную, железобетонную каркасную или иную конструкцию. Таким образом, конструкция может быть быстровозводимой. К иным конструкциям можно отнести насыпную конструкцию для размещения ВВБ, при этом ВНБ размещается рядом или, при наличии, природного перепада высот.
В основании конструкции, обеспечивающей размещение ВВБ, находится здание с машинным залом и устройством подвода воды к гидротурбине и к СЛВПУ.
В АГЭС используется наиболее эффективный способ использования энергии водотока, так как трубопровод, подводящий воду к турбине, соединенный с емкостями ВВБ, может устанавливаться вертикально.
СЛВПУ, приводимые в движение энергией ветра, начиная с ветра малой скорости (менее 5 м/с), обеспечивают подъем воды на необходимую высоту для создания напора, необходимого для работы гидротурбин.
Ведущий вал ЛВПУ (ленточная водоподъемная установка) разбалансирован, поэтому невозможно использование энергии ветра малой скорости для привода в движение ЛВПУ.
Сторона ленты ЛВПУ, насыщенная водой, от уровня воды, в которую опущен нижний шкив, до выжимного ролика, называется нагруженной стороной, а противоположная сторона ленты ЛВПУ называется ненагруженной стороной.
Часть подъемной ленты, от уровня воды до выжимного механизма насыщена водой и поэтому тяжелее части подъемной ленты после выжимного механизма на величину веса воды, которая удалена с подъемной ленты выжимным механизмом. Этот разбаланс присутствует постоянно.
Для обеспечения вращения ЛВПУ необходима скорость ветра с силой, превышающей силу, необходимую для преодоления разбаланса. К тому же происходит быстрый износ вращающихся деталей ЛВПУ, что приводит к резкому снижению эксплуатационного ресурса.
Для устранения разбаланса механизма ЛВПУ рядом с ним, зеркально, устанавливается второй такой же механизм ЛВПУ. Верхний и нижний шкивы первого механизма, который будет называться ведущим, приводят в движение верхний и нижний шкивы зеркально установленного, второго, ведомого механизма, которые вращаются в направлении, противоположном вращению первого механизма.
Передача движения может происходить посредством фрикционной передачи, зубчатой, цепной или ременной передачи, ремнем, надетым восьмеркой.
Механизмы сбалансированной ЛВПУ монтируются так, чтобы нагруженные стороны подъемных лент находились с наружных сторон, а ненагруженные, с внутренних сторон зеркально установленных друг к другу ЛВПУ.
В результате ненагруженная сторона ведущего водоподъемного механизма нагружается нагруженной стороной зеркально установленного ведомого водоподъемного механизма. Нагрузка нагруженной стороны зеркально установленного механизма равна нагрузке нагруженной стороны основного механизма, уменьшенной на величину силы трения, существующей при передаче движения зеркально установленного механизма. Таким образом, разбаланс устраняется.
Механизм балансировки СЛВПУ состоит из отжимного ролика, который закреплен на поворотном рычаге с регулировочным винтом, регулирующим положение рычага, между лентой с закрепленным водовпитывающим материалом и жестко закрепленным упорным кронштейном, изменяя расстояние между отжимным роликом и лентой с закрепленным водовпитывающим материалом и, таким образом, регулируется вес воды, поднимаемый зеркально установленной ленточной водоподъемной установкой. Механизм балансировки устанавливается максимально близко к нижнему шкиву зеркально установленного механизма ЛВПУ на его нагруженной стороне.
Механизм СЛВПУ предназначен для подъема воды на десятки метров. Для предотвращения колебаний и вибрации лент СЛВПУ на участках между ведущим и ведомым шкивами устанавливаются пары стабилизирующих роликов. Ролик, устанавливаемый с внутренней стороны ленты, имеет цилиндрическую форму. Ролик, устанавливаемый с наружной стороны ленты, имеет в цилиндрической форме выемку, равную поперечному сечению закрепленного на ленте водовпитывающего материала. При этом лента шире полосы водовпитывающего материала, закрепленного на ней симметрично относительно продольной оси. Количество стабилизирующих пар роликов зависит от высоты подъема воды СЛВПУ.
В ЛВПУ используется ветродвигатель с горизонтальной осью вращения, который имеет устройство для ориентации на ветер. ЛВПУ с ветродвигателем помещен в подвижный корпус, который вращается вокруг своей вертикальной оси, внутри неподвижного корпуса. Это усложняет конструкцию, делает ее значительно дороже.
Для устранения этого недостатка предлагается использовать ветродвигатель с вертикальной осью вращения, с передачей вращения на горизонтальный ведущий вал СЛВПУ через коническую, зубчатую или фрикционную передачу, напрямую или через редуктор. В этом случае достаточно одного неподвижного корпуса, в который заключена СЛВПУ, и конструкция становится значительно проще, надежней и дешевле.
При использовании механизма СЛВПУ для подъема воды на десятки метров его можно разделить на блоки. Верхний блок включает в себя два шкива, выжимной механизм и водоприемник, заключенные в корпус. Нижний блок включает в себя два шкива и механизм балансировки, заключенные в корпус. Отпадает необходимость в общем большом корпусе для СЛВПУ. Верхний блок и нижний блок можно устанавливать непосредственно на конструкцию АГЭС. Использование блочной схемы СЛВПУ обеспечит удешевление СЛВПУ.
То, что СЛВПУ будет работать при наличии ветра самой малой скорости, можно увидеть на примере отбалансированного автомобильного колеса на балансировочном станке. После легкого касания тяжелое колесо начинает вращаться и вращается некоторое время по инерции, после прекращения действия силы, приводящей его в движение. Разбалансированное колесо начнет движение после приложения силы, превышающей вес разбаланса, а после прекращения приложения силы начнет маятниковое качание относительно точки разбаланса и быстро остановится.
Объем воды, поднимаемый СЛВПУ, - величина переменная, которая зависит от скорости ветра. Кроме того, бывают периоды времени, когда ветра нет вообще. Поэтому количество СЛВПУ, работающих на АГЭС, определяется условиями ветрообстановки в месте размещения АГЭС.
Для обеспечения работы АГЭС при отрицательных температурах можно применить два способа:
Способ 1 - использовать водный раствор, который будет незамерзающим при отрицательных температурах;
Способ 2 - заключить всю конструкцию АГЭС в кожух, внутри которого будет поддерживаться положительная температура. Мощность АГЭС изначально увеличивается на величину мощности, необходимой для обеспечения нужной температуры внутри кожуха. Можно использовать тепло земли, заложив необходимую конструкцию получения этого тепла в проект АГЭС. В этом случае ВВБ располагается над ВНБ.
Для обеспечения работы ветродвигателей при отрицательных температурах можно применить противообледенительные системы и средства, используемые в авиации.
Работа АГЭС
Дующий ветер, начиная с ветра малой скорости, вращает ветродвигатели с вертикальной осью вращения, которые вращают СЛВПУ, обеспечивающие подъем воды из ВНБ в ВВБ.
Вода из ВВБ по трубопроводу подводится к гидротурбине, после чего поступает в ВНБ.
Объем ВВБ должен быть таким, какой обеспечит выработку электроэнергии во время отсутствия ветра.
Для начала промышленного производства АГЭС нужно:
- выбрать материалы для изготовления лент СЛВПУ;
- опытным путем определить оптимальное соотношение между высотой подъема и объемом поднимаемой воды одной СЛВПУ, приводимой в движение энергии ветра малой скорости. Проще говоря, определить, какое количество воды и на какую высоту будет подниматься СЛВПУ при самой малой скорости ветра.
Эти опыты можно провести за несколько месяцев.
По результатам опытов будет определено количество СЛВПУ, соответствующее мощности АГЭС, которая как законченное изделие будет производиться и комплектоваться на предприятиях.

Claims (2)

1. Альтернативная гидроэлектростанция, содержащая водохранилище верхнего бьефа, конструкцию для его размещения на необходимой высоте, в которую включено здание с машинным залом, гидротурбину, устройство подвода воды к гидротурбине, ветродвигатель с вертикальной осью вращения, водохранилище нижнего бьефа, отличающаяся тем, что снабжена сбалансированной ленточной водоподъемной установкой для подъема воды на необходимую высоту и создания напора, необходимого для работы гидротурбины, приводимой в движение энергией ветра, путем передачи вращательного движения от ветродвигателя на сбалансированную ленточную водоподъемную установку, состоящую из двух одинаковых, зеркально установленных друг к другу, ленточных водоподъемных установок, одна из которых ведущая, а другая - ведомая, и которые установлены относительно друг друга так, чтобы нагруженные стороны водоподъемных лент водоподъемных установок находились снаружи сбалансированной ленточной водоподъемной установки, а ненагруженные стороны водоподъемных лент находились внутри сбалансированной ленточной водоподъемной установки, в которых верхний и нижний шкивы ведущей ленточной водоподъемной установки приводят в движение соответственно верхний и нижний шкивы зеркально установленной ведомой ленточной водоподъемной установки, вращающейся в направлении, противоположном вращению ведущей ленточной водоподъемной установки, в результате чего ненагруженная сторона ведущей ленточной водоподъемной установки нагружена нагруженной стороной ведомой ленточной водоподъемной установки, при этом величина ее нагрузки меньше на величину силы трения, существующей при передаче нагрузки ведомой ленточной водоподъемной установки на ведущую ленточную водоподъемную установку, что обеспечивается механизмом балансировки, состоящим из отжимного ролика, закрепленного на поворотном рычаге с регулировочным винтом, регулирующим положение рычага между водоподъемной лентой с закрепленным водовпитывающим материалом, и жестко закрепленным упорным кронштейном, изменяя расстояние между отжимным роликом и водоподъемной лентой с закрепленным водовпитывающим материалом и, таким образом, регулируя вес воды, поднимаемой зеркально установленной ведомой ленточной водоподъемной установкой.
2. Гидроэлектростанция по п. 1, отличающаяся тем, что пространство конструкции между водохранилищем верхнего бьефа и водохранилищем нижнего бьефа разделено на этажи для размещения на них промышленных, аграрных или коммерческих предприятий.
RU2014119536/06A 2011-12-12 2011-12-12 Альтернативная гидроэлектростанция RU2597378C1 (ru)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/RU2011/000978 WO2013089579A1 (ru) 2011-12-12 2011-12-12 Альтернативная гидроэлектростанция

Publications (1)

Publication Number Publication Date
RU2597378C1 true RU2597378C1 (ru) 2016-09-10

Family

ID=48612906

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014119536/06A RU2597378C1 (ru) 2011-12-12 2011-12-12 Альтернативная гидроэлектростанция

Country Status (4)

Country Link
US (1) US9506448B2 (ru)
CN (1) CN104040164B (ru)
RU (1) RU2597378C1 (ru)
WO (1) WO2013089579A1 (ru)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105840394B (zh) * 2015-01-13 2018-06-22 总瀛企业股份有限公司 陆上水流发电装置
CN109385988A (zh) * 2018-11-22 2019-02-26 中国电建集团成都勘测设计研究院有限公司 用于高水头、大流量、短引水发电厂房的尾水洞排水结构

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU179248A1 (ru) *
DE3935063A1 (de) * 1989-10-20 1991-04-25 Paul Boxhammer Wasserkraftanlage
WO2010150932A1 (ko) * 2009-06-26 2010-12-29 Kim Young Ho 발전장치

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US512352A (en) * 1894-01-09 Windmill
US4311011A (en) * 1979-09-26 1982-01-19 Lewis Arlin C Solar-wind energy conversion system
JPS57188783A (en) * 1981-05-15 1982-11-19 Shigeyoshi Jinnai Wind-force accumulating and storing power generator
RU1823915C (ru) * 1990-04-24 1993-06-23 Кустанайский сельскохозяйственный институт Ленточный водоподъемник
RU1772411C (ru) * 1990-05-22 1992-10-30 Головное Специализированное Конструкторское Бюро По Комплексу Машин Для Овцеводства И Водоснабжения Пастбищ Водоподъемный ветроагрегат
RU2067085C1 (ru) * 1991-07-08 1996-09-27 Кубанский государственный технологический университет Способ использования ветронасосной установки для аккумулирования энергии
US5905312A (en) * 1997-05-14 1999-05-18 Liou; David Gravity generating system
US6420794B1 (en) * 2000-06-23 2002-07-16 Thanh D. Cao Hydropower conversion system
US6861766B2 (en) * 2001-12-03 2005-03-01 Peter Rembert Hydro-electric generating system
JP2004019626A (ja) * 2002-06-20 2004-01-22 Matsushita Electric Ind Co Ltd 風力発電装置
RU2259497C1 (ru) * 2004-04-23 2005-08-27 Гой Владимир Леонтьевич Водоподъемная установка
KR100728939B1 (ko) * 2005-06-28 2007-06-15 한국신태양에너지 주식회사 풍력 및 소수력 병합발전장치
CN101122282B (zh) * 2006-11-20 2012-05-30 赵俊文 一种发电方法及装置
US8143740B1 (en) * 2009-02-12 2012-03-27 Simnacher Larry W Apparatus for storing and using wind energy
US7956485B1 (en) * 2009-02-12 2011-06-07 Simnacher Larry W Potential energy storage apparatus using energy from a wind energy generator
US8492918B1 (en) * 2009-04-08 2013-07-23 Kamen George Kamenov Hybrid water pressure energy accumulating tower(s) connected to a wind turbine or power plants
US8030790B2 (en) * 2009-04-08 2011-10-04 Kamen George Kamenov Hybrid water pressure energy accumulating wind turbine and method
US20110133467A1 (en) * 2009-12-07 2011-06-09 Stiles Robert A Kinetic energy recycling system for usable electric and hydraulic power generation
CN201786576U (zh) * 2010-09-09 2011-04-06 赵俊文 多功能风力、水力发电储能装置
KR20130075306A (ko) * 2011-12-27 2013-07-05 김영미 풍력 및 소수력 병합발전장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU179248A1 (ru) *
DE3935063A1 (de) * 1989-10-20 1991-04-25 Paul Boxhammer Wasserkraftanlage
WO2010150932A1 (ko) * 2009-06-26 2010-12-29 Kim Young Ho 발전장치

Also Published As

Publication number Publication date
CN104040164A (zh) 2014-09-10
US9506448B2 (en) 2016-11-29
US20160025063A1 (en) 2016-01-28
CN104040164B (zh) 2017-02-15
WO2013089579A1 (ru) 2013-06-20

Similar Documents

Publication Publication Date Title
CN107407250A (zh) 潜水型发电平台
CA2858649C (en) Hydraulic power generation apparatus without dam
CN101790638A (zh) 马格努斯力流体流能量采集机
KR101578537B1 (ko) 수면 부양식 고효율 수차 발전기
US20130229013A1 (en) Alignment of a wave energy converter for the conversion of energy from the wave motion of a fluid into another form of energy
RU2597378C1 (ru) Альтернативная гидроэлектростанция
CN104806439A (zh) 浮力动能装置及其产生动能的方法
RU2014125952A (ru) Универсальная ветро-гидросиловая установка УВГСУ "ГАЗ-ГАФ"
WO2013120205A1 (en) Generation of power from rivers and the like
EP3942174A1 (en) Electrical power and torque generation using combined application of fluid upthrust and leverage
CN203114524U (zh) 风力稳定发电系统
CN101220794A (zh) 河流发电装置
FI125302B (fi) Menetelmä vesiaaltojen energian muuttamiseksi sähköksi aaltovoimalalla ja aaltovoimala
CN216429818U (zh) 一种水能机发电系统
CN202283977U (zh) 浮船水轮发电系统
CN201148934Y (zh) 河流发电装置
JP6923223B2 (ja) リフト機能を有する往復式水力発電機構
CN101929413B (zh) 随水位自动调节的水轮机及应用
CN201763505U (zh) 随水位自动调节的水轮机
CN102510168B (zh) 一种扭矩输出系统
CN104895739A (zh) 一种低流速水力发电系统及方法
RU2612662C1 (ru) Ветродвигатель
RU2466293C1 (ru) Проточная бесплотинная гидротурбина
CN113818982A (zh) 一种无需建造拦河坝的水能机发电系统
CN204805018U (zh) 净水发电装置