RU2595735C2 - Летательный аппарат, выполненный с возможностью висения - Google Patents
Летательный аппарат, выполненный с возможностью висения Download PDFInfo
- Publication number
- RU2595735C2 RU2595735C2 RU2012110189/11A RU2012110189A RU2595735C2 RU 2595735 C2 RU2595735 C2 RU 2595735C2 RU 2012110189/11 A RU2012110189/11 A RU 2012110189/11A RU 2012110189 A RU2012110189 A RU 2012110189A RU 2595735 C2 RU2595735 C2 RU 2595735C2
- Authority
- RU
- Russia
- Prior art keywords
- thermoelectric
- exhaust pipe
- exhaust gas
- aircraft
- aircraft according
- Prior art date
Links
- 238000006243 chemical reaction Methods 0.000 claims abstract description 13
- 239000000446 fuel Substances 0.000 claims abstract description 10
- 230000005678 Seebeck effect Effects 0.000 claims abstract description 5
- 238000002485 combustion reaction Methods 0.000 claims abstract description 3
- 239000011810 insulating material Substances 0.000 claims description 6
- 239000004065 semiconductor Substances 0.000 claims description 2
- 239000000758 substrate Substances 0.000 claims description 2
- 238000011144 upstream manufacturing Methods 0.000 claims description 2
- 230000000694 effects Effects 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 230000005540 biological transmission Effects 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- XSOKHXFFCGXDJZ-UHFFFAOYSA-N telluride(2-) Chemical compound [Te-2] XSOKHXFFCGXDJZ-UHFFFAOYSA-N 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 208000016261 weight loss Diseases 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D33/00—Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for
- B64D33/04—Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for of exhaust outlets or jet pipes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D41/00—Power installations for auxiliary purposes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D25/00—Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
- F01D25/30—Exhaust heads, chambers, or the like
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02K—JET-PROPULSION PLANTS
- F02K1/00—Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
- F02K1/78—Other construction of jet pipes
- F02K1/82—Jet pipe walls, e.g. liners
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/10—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
- H10N10/13—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/10—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
- H10N10/17—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D33/00—Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for
- B64D33/04—Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for of exhaust outlets or jet pipes
- B64D2033/045—Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for of exhaust outlets or jet pipes comprising infrared suppressors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2220/00—Application
- F05D2220/30—Application in turbines
- F05D2220/32—Application in turbines in gas turbines
- F05D2220/329—Application in turbines in gas turbines in helicopters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2220/00—Application
- F05D2220/60—Application making use of surplus or waste energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T50/00—Aeronautics or air transport
- Y02T50/50—On board measures aiming to increase energy efficiency
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T50/00—Aeronautics or air transport
- Y02T50/60—Efficient propulsion technologies, e.g. for aircraft
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- General Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Toys (AREA)
- Exhaust Silencers (AREA)
- Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
- Hybrid Cells (AREA)
- Electric Suction Cleaners (AREA)
Abstract
Изобретение относится к области авиации, в частности к конструкциям вертолетов. Летательный аппарат (1) выполнен с возможностью висения, имеет средство (7) приведения в действие и, по меньшей мере, одну выхлопную трубу (8, 8'), соединенную с выпускным отверстием средства (7) приведения в действие, чтобы выпускать выхлопной газ, создаваемый посредством сгорания топлива, из летательного аппарата. По меньшей мере, часть выхлопной трубы (8, 8') имеет контур (15) термоэлектрического преобразования для преобразования за счет эффекта Зеебека в электрическую энергию температурного градиента, создаваемого между внутренней и наружной частью выхлопной трубы (8, 8') потоком выхлопного газа. Достигается увеличение дальности полета, снижение расхода топлива, улучшение скоростных характеристик. 10 з.п. ф-лы, 6 ил.
Description
Настоящее изобретение относится к летательному аппарату, выполненному с возможностью висения, в частности, к вертолету, на который последующее описание ссылается исключительно в качестве примера, или к конвертоплану.
Как известно, минимизация расхода топлива и, следовательно, выбросов CO2 является главной проблемой в вертолетной промышленности.
Исследования в этой отрасли также главным образом нацелены на улучшение безопасности полета, увеличение дальности полета на запасе топлива, чтобы предоставлять возможность более длительных вылетов, и значительное улучшение характеристик скорости и ускорения, особенно в суровых, например высотных, условиях полета.
Целью настоящего изобретения является предоставление летательного аппарата, выполненного с возможностью висения, спроектированного так, чтобы достигать, по меньшей мере, одной из вышеупомянутых целей простым, недорогим способом.
Согласно настоящему изобретению предоставляется летательный аппарат, выполненный с возможностью висения, содержащий средство приведения в действие; и, по меньшей мере, одну выхлопную трубу, соединенную с выпускным отверстием упомянутого средства приведения в действие, чтобы выпускать выхлопной газ, создаваемый посредством сгорания топлива, из летательного аппарата, летательный аппарат, отличающийся тем, что, по меньшей мере, часть упомянутой выхлопной трубы содержит контур термоэлектрического преобразования для преобразования за счет эффекта Зеебека в электрическую энергию температурного градиента, создаваемого между внутренней и наружной частью выхлопной трубы потоком упомянутого выхлопного газа.
Предпочтительный, неограничивающий вариант осуществления изобретения будет описан посредством примера со ссылкой на сопровождающие чертежи, на которых:
Фиг.1 показывает вид в перспективе, с удаленными для ясности частями, вертолета в соответствии со сведениями настоящего изобретения;
Фиг.2 показывает крупномасштабный вид в перспективе, с удаленными для ясности частями, выхлопной трубы вертолета из фиг.1, оборудованной термоэлектрическими модулями для генерирования электрической энергии;
Фиг.3 показывает крупномасштабный покомпонентный вид в перспективе термоэлектрического модуля выхлопной трубы из фиг.2;
Фиг.4 показывает блок-схему последовательности операций того, как электрическая энергия, сгенерированная термоэлектрическими модулями из фиг.2 и 3, подается к электрическим нагрузкам вертолета;
Фиг.5 показывает крупномасштабное осевое сечение части выхлопной трубы по фиг.2;
Фиг.6 показывает крупномасштабное осевое сечение варианта выхлопной трубы по фиг.5.
Число 1 на фиг.1 указывает в целом вертолет, по существу, содержащий фюзеляж 2, вмещающий в себя экипаж и бортовое оборудование; несущий винт 3, установленный наверху 4 центральной части фюзеляжа 2, и который вращается вокруг оси A, чтобы переносить вертолет 1; и хвостовой винт 5, который установлен на хвостовом киле 6, выступающий из задней конечной части фюзеляжа 2, и вращается вокруг оси B, поперечной оси A.
Вертолет 1 также содержит в верхней центральной части фюзеляжа 2 известное средство 7 приведения в действие (показанное только схематически) для приведения в действие несущего винта 3 и хвостового винта 5 через соответствующие известные, не показанные трансмиссии.
Вертолет 1 содержит две выхлопные трубы 8 (только одна показана на фиг.1), соединенные с соответствующими выпускными отверстиями средства 7 приведения в действие, чтобы выпускать выхлопной газ, создаваемый посредством сгорания топлива, из вертолета 1.
Как показано на фиг.1, за исключением конечной части, из которой выхлопной газ выпускается в атмосферу, выхлопные трубы 8 проходят внутри соответствующих ниш 9 (только одна показана на фиг.1), сформированных наверху 4 фюзеляжа 2 и вентилируемых посредством наружного воздушного потока, создаваемого посредством полета вперед или даже просто от движения несущего винта 3.
Выхлопные трубы 8 являются идентичными, только одна будет описана ради простоты.
Со ссылкой на фиг.2 и 5 выхлопная труба 8 имеет продольную ось E и содержит впускную часть 10, соединенную с соответствующим выпускным отверстием средства 7 приведения в действие; промежуточную часть 11, где имеет место первая стадия охлаждения выхлопного газа; и выпускную часть 12, из которой полностью охлажденный выхлопной газ выпускается в атмосферу.
По меньшей мере, промежуточная часть 11 выхлопной трубы 8 преимущественно содержит контур 15 термоэлектрического преобразования для преобразования посредством эффекта Зеебека в электрическую энергию температурного градиента, создаваемого между внутренней и наружной частью выхлопной трубы 8 потоком выхлопного газа.
Выхлопная труба 8 содержит два воздухозаборника 13 для частичного пропускания наружного воздушного потока в трубу 8.
Воздухозаборники 13 сформированы на входе промежуточной части 11 выхлопной трубы 8, рядом с впускной частью 10; в частности, воздухозаборники 13 размещены выше по потоку от термоэлектрического контура 15 относительно направления, в котором выхлопной газ протекает внутри выхлопной трубы 8.
Воздухозаборники 13 наклонены относительно оси E выхлопной трубы 8 и сходятся к упомянутой оси E по направлению потока выхлопного газа, так что наружный воздушный поток смешивается с выхлопным газом и локально понижает температуру такого выхлопного газа в термоэлектрическом контуре 15.
Благодаря своему наклону воздухозаборники 13 подают наружный воздушный поток в выхлопную трубу 8 в том же направлении потока выхлопного газа так, чтобы тот смешивался с последним без затруднения его продвижения и локально понижал его температуру. На практике воздухозаборники 13 предоставляют возможность недорогим и несложным образом эффективного управления температурным градиентом, действующим на термоэлектрический контур 15, а также предотвращают превышение максимальной рабочей температуры термоэлектрического контура 15.
Со ссылкой на фиг.2, 3 и 5 термоэлектрический контур 15 содержит последовательно-параллельную сеть термоэлектрических модулей 16, подвергаемых упомянутому температурному градиенту, когда средство 7 приведения в действие работает.
Как показано на фиг.3, каждый термоэлектрический модуль 16 содержит ряд ячеек 20 с полупроводниковым переходом, закрепленных предпочтительно на керамической подложке 21.
Более конкретно, ячейки 20 являются ячейками P- и N-типа, закреплены между двумя керамическими пластинами 22 и могут, например, быть изготовлены из теллурида висмута.
Каждый термоэлектрический модуль 16 также содержит средство 23 электрического соединения для соединения с другими термоэлектрическими модулями 16 и с электрической системой вертолета 1.
На фиг.5 варианта осуществления настоящего изобретения термоэлектрические модули 16 закреплены снаружи части стенки 24 выхлопной трубы 8, соответствующей промежуточной части 11.
Более конкретно, стенка 24 покрыта слоем 25 теплоизолирующего материала, на котором закреплены термоэлектрические модули 16, например, приклеены. Другими словами, слой 25 теплоизолирующего материала вставлен между стенкой 24 и термоэлектрическими модулями 16.
Толщина и теплопроводность теплоизолирующего материала слоя 25 выбраны так, что, когда вертолет 1 движется, температура, которая воздействует на термоэлектрические модули 16 изнутри выхлопной трубы 8, никогда не превышает максимальной рабочей температуры модулей 16.
Как показано на фиг.5, термоэлектрические модули 16 покрыты снаружи, т.е. со стороны, противоположной той, которая контактирует со слоем 25 теплоизолирующего материала, теплорассеивающим средством 26, изготовленным, например, из алюминиевых сплавов или материалов на основе графена.
Описанная структура обеспечивает то, что термоэлектрические модули 16 подвергаются нужному температурному градиенту, т.е. нужной разности в температуре между наружной стороной модулей 16, контактирующей с рассеивающим средством 26, и внутренней стороной модулей 16, контактирующей со слоем 25 из теплоизолирующего материала.
В предпочтительном варианте осуществления настоящего изобретения термоэлектрические модули 16 разделены на группы, каждая из которых содержит заданное число последовательно соединенных модулей 16; и число модулей 16, которые должны быть соединены последовательно, вычисляется посредством деления уровня V0 напряжения электрической системы вертолета 1 - обычно 28 В постоянного тока - на напряжение VM источника напряжения каждого модуля 16.
Группы модулей 16, вычисленные таким образом, затем параллельно соединяются друг с другом, чтобы минимизировать общее сопротивление термоэлектрического контура 15.
Фиг.4 схематически показывает то, как термоэлектрические модули 16 применяются в вертолете 1.
Более конкретно, термоэлектрические модули 16 соединяются с рядом электрических нагрузок C в вертолете 1 посредством блока 27 преобразования постоянного тока в постоянный (DC/DC) и распределительного блока 28.
В показанном решении электрические нагрузки C определены основной батареей и вспомогательной батареей вертолета 1 и некритичными для безопасности полета нагрузками, такими как вспомогательные радиостанции, линии видеопередачи, видеокамеры, вспомогательные дисплеи, прожекторы, лебедки и т.д.
Блок 27 преобразования стабилизирует напряжение, прикладываемое к электрическим нагрузкам C, чтобы предохранять от значительных колебаний напряжения термоэлектрических модулей 16, вызванных изменениями в температуре.
Входной импеданс блока 27 преобразования предпочтительно является регулируемым, например, в зависимости от температуры термоэлектрических модулей 16, т.е. посредством применения термопары к термоэлектрическим модулям 16; и блок 27 преобразования максимизирует передачу мощности от термоэлектрических модулей 16 к электрическим нагрузкам C и обеспечивает минимальное выходное напряжение, совместимое с нагрузками C.
Распределительный блок 28 содержит ряд переключателей 29 для выборочного соединения соответствующих электрических нагрузок C с блоком 27 преобразования.
Подача мощности к электрическим нагрузкам C посредством распределительного блока 28, т.е. размыкание/замыкание переключателей 29, управляется блоком 30 управления в зависимости от доступной электрической мощности и рабочего состояния вертолета.
Доступная мощность может быть вычислена блоком 30 управления на основе соответствующего сигнала от блока 27 преобразования или посредством внутреннего алгоритма без необходимости обнаружения.
Блок 30 управления обеспечивает:
- отслеживание за подключениями мощности и состоянием заряда батарей вертолета 1;
- зарядку батарей при необходимости;
- управление переключателями;
- отключение мощности для ненужных электрических нагрузок; и
- диагностику отказов электрических нагрузок C и генераторов вертолета 1.
Число 8' на фиг.6 указывает в целом выхлопную трубу в соответствии с вариантом настоящего изобретения, и составные части которой указаны, где возможно, с помощью тех же ссылочных номеров, что и для соответствующих или эквивалентных частей уже описанной выхлопной трубы 8.
В этом случае, термоэлектрические модули 16, в целом, определяют, по меньшей мере, часть стенки 24 трубы 8' в промежуточной части 11.
Термоэлектрические модули 16 соединены механически друг с другом и с остальной частью стенки 24.
Преимущества вертолета 1 согласно настоящему изобретению будут ясны из вышеприведенного описания.
В частности, описанное решение обеспечивает преобразование части тепловой энергии, теряемой в выхлопном газе, непосредственно в электрическую энергию.
Как указано, электрическая энергия, регенерируемая из выхлопного газа, используется непосредственно, чтобы заряжать основную и вспомогательную батареи и другие электрические нагрузки C вертолета, и, таким образом, уменьшает мощность, отбираемую от средства 7 приведения в действие. В предшествующих известных решениях, в действительности, основная и вспомогательная батареи и электрические нагрузки C вертолета 1 запитывались соответствующими генераторами, подключенными к средству 7 приведения в действие.
Непосредственное подключение термоэлектрических модулей 16 к батареям и другим электрическим нагрузкам C вертолета 1, очевидно, обеспечивает значительную экономию топлива, увеличение дальности полета на запасе топлива и, таким образом, уменьшает вредные выбросы, в частности CO2.
Освобожденные от работы по зарядке батарей и снабжению мощностью других электрических нагрузок C, генераторы, обычно устанавливаемые на вертолете 1, могут быть уменьшены для сокращения веса и объема.
Аналогично, постоянно подзаряжаемые во всех (обычных и аварийных) условиях полета, батареи могут быть уменьшены по размеру относительно традиционных решений и больше не являются целью сертификационного регулирования, требующего достаточного резерва, чтобы питать необходимые электрические нагрузки, по меньшей мере, в течение 30 минут в аварийных условиях.
Все вышеупомянутые снижения веса обеспечивают дополнительную экономию топлива (снижая общий вес вертолета).
Дополнительная электрическая энергия, полученная за счет эффекта Зеебека, подаваемая во всех условиях полета, также предоставляет решение для ограничений электрической мощности в высотных условиях или в условиях небольшого угла тангажа относительно земли.
Другим важным преимуществом является безопасность: посредством термоэлектрического контура 15, формирующего дополнительный источник электрической энергии, батарея питает основные электрические нагрузки в вертолете 1 в случае, когда оба генератора отказали.
Описываемое инновационное решение также имеет преимущество увеличения запаса по охлаждению и, таким образом, уменьшения термического напряжения выхлопных труб 8, 8'.
Описанное и иллюстрированное решение также имеет длительный срок службы, без вращающихся частей, и не требует специального технического обслуживания.
В заключение, преобразуя тепло из выхлопных труб 8, 8' в электрическую энергию, описанная система уменьшает тепловой след вертолета 1, что является важным военным преимуществом.
Несомненно, в вертолете 1, который описан и иллюстрирован в данном документе, могут быть сделаны изменения, однако, без отступления от объема охраны, определенного в сопровождающей формуле изобретения.
В частности, в противоположность "элементарным" модулям, термоэлектрические модули 16 могут преимущественно быть в форме "макромодулей", каждый из которых определяет электрическую подсеть, чтобы увеличивать выходную мощность каждого модуля.
Кроме того, теплорассеивающее средство 26 может быть интегрировано в конструктивные крепления выхлопных труб 8, 8'.
Claims (11)
1. Летательный аппарат (1), выполненный с возможностью висения, содержащий средство (7) приведения в действие; и, по меньшей мере, одну выхлопную трубу (8, 8'), соединенную с выпускным отверстием упомянутого средства (7) приведения в действие, чтобы выпускать выхлопной газ, создаваемый посредством сгорания топлива, из летательного аппарата; при этом, по меньшей мере, часть упомянутой выхлопной трубы (8, 8') содержит контур (15) термоэлектрического преобразования для преобразования за счет эффекта Зеебека в электрическую энергию температурного градиента, создаваемого между внутренней и наружной частью выхлопной трубы (8, 8') потоком упомянутого выхлопного газа, при этом упомянутая выхлопная труба (8, 8') содержит, по меньшей мере, один воздухозаборник (13) для подведения снаружи в процессе полета воздушного потока в выхлопную трубу (8, 8'), отличающийся тем, что упомянутый воздухозаборник (13) размещен выше по потоку от упомянутого термоэлектрического контура (15) относительно направления, в котором выхлопной газ протекает внутри упомянутой выхлопной трубы (8, 8'), и тем, что упомянутый воздухозаборник (13) наклонен относительно оси (Е) упомянутой выхлопной трубы (8, 8') и сходится к упомянутой оси (Е) в направлении потока выхлопного газа так, что наружный воздушный поток смешивается с выхлопным газом и локально понижает температуру упомянутого выхлопного газа у упомянутого термоэлектрического контура (15).
2. Летательный аппарат по п. 1, в котором упомянутый термоэлектрический контур (15) содержит последовательно-параллельную сеть термоэлектрических модулей (16), подвергаемых упомянутому температурному градиенту.
3. Летательный аппарат по п. 2, в котором каждый упомянутый термоэлектрический модуль (16) содержит множество ячеек (20) с полупроводниковым переходом, прикрепленных к подложке (21).
4. Летательный аппарат по п. 1, в котором упомянутая выхлопная труба (8') содержит стенку (24), определяющую канал для упомянутого выхлопного газа; и упомянутые термоэлектрические модули (16) определяют, по меньшей мере, часть упомянутой стенки (24).
5. Летательный аппарат по п. 1, в котором упомянутая выхлопная труба (8) содержит стенку (24), определяющую канал для упомянутого выхлопного газа; и упомянутые термоэлектрические модули (16) закреплены снаружи упомянутой стенки (24).
6. Летательный аппарат по п. 5, в котором слой (25) теплоизолирующего материала вставлен между каждым упомянутым термоэлектрическим модулем (16) и упомянутой стенкой (24), на которой упомянутый термоэлектрический модуль (16) закреплен.
7. Летательный аппарат по п. 1, в котором упомянутая выхлопная труба (8, 8') содержит теплорассеивающее средство (26), закрепленное с наружной стороны упомянутых термоэлектрических модулей (16).
8. Летательный аппарат по п. 1, в котором упомянутые термоэлектрические модули (16) разделены на группы, каждая из которых содержит предварительно определенное число последовательно соединенных термоэлектрических модулей (16); упомянутые группы термоэлектрических модулей (16) параллельно соединены друг с другом.
9. Летательный аппарат по п. 1, также содержащий ряд электрических нагрузок (С); и блок (27) DC/DC-преобразования, соединяющий упомянутые термоэлектрические модули (16) с упомянутыми электрическими нагрузками (С), и который стабилизирует напряжение, прикладываемое к электрическим нагрузкам (С).
10. Летательный аппарат по п. 9, также содержащий ряд переключателей (29) для выборочного соединения упомянутых электрических нагрузок (С) с упомянутым блоком (27) преобразования; и блок (30) управления для размыкания/замыкания упомянутых переключателей (29) в зависимости от доступной электрической мощности и рабочего состояния летательного аппарата (1).
11. Летательный аппарат по п. 9 или 10, в котором упомянутые электрические нагрузки (С) содержат батарею упомянутого летательного аппарата (1).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11425066A EP2500269A1 (en) | 2011-03-18 | 2011-03-18 | Aircraft capable of hovering |
EP11425066.5 | 2011-03-18 |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2012110189A RU2012110189A (ru) | 2013-09-27 |
RU2595735C2 true RU2595735C2 (ru) | 2016-08-27 |
Family
ID=45814428
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2012110189/11A RU2595735C2 (ru) | 2011-03-18 | 2012-03-16 | Летательный аппарат, выполненный с возможностью висения |
Country Status (7)
Country | Link |
---|---|
US (1) | US8939397B2 (ru) |
EP (2) | EP2500269A1 (ru) |
JP (1) | JP2012197073A (ru) |
KR (1) | KR101872867B1 (ru) |
CN (1) | CN102689691B (ru) |
IN (1) | IN2012DE00783A (ru) |
RU (1) | RU2595735C2 (ru) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9666781B2 (en) * | 2013-08-19 | 2017-05-30 | The Boeing Company | Methods for recovering waste energy from bleed air ducts |
JP2015039925A (ja) * | 2013-08-21 | 2015-03-02 | 株式会社Ihiエアロスペース | スラスタ用熱エネルギ回収装置 |
EP2868896A1 (en) * | 2013-11-05 | 2015-05-06 | Rolls-Royce Deutschland Ltd & Co KG | Turbo engine with an energy harvesting device, energy harvesting device and a method for energy harvesting |
CN105217046B (zh) * | 2015-09-28 | 2017-08-29 | 易瓦特科技股份公司 | 具有柔性排气管的排气通道 |
FR3042539B1 (fr) * | 2015-10-16 | 2017-11-24 | Labinal Power Systems | Systeme anti-flexion pour turbomachine d'aeronef |
US10291156B2 (en) * | 2015-10-30 | 2019-05-14 | Ge Aviation Systems Llc | Combined hybrid thermionic and thermoelectric generator |
GB2559956B (en) * | 2017-02-15 | 2020-09-16 | Ge Aviat Systems Ltd | Power distribution node for a power architecture |
US10366909B2 (en) * | 2017-07-27 | 2019-07-30 | Taiwan Semiconductor Manufacturing Company, Ltd. | Thermal chamber exhaust structure and method |
CN109606709A (zh) * | 2018-11-14 | 2019-04-12 | 中国直升机设计研究所 | 一种用于直升机的排气管安装结构 |
KR102407759B1 (ko) * | 2020-10-13 | 2022-06-13 | 현대오토에버 주식회사 | 비행체용 전력 분배 시스템 및 방법 |
WO2022095008A1 (zh) * | 2020-11-09 | 2022-05-12 | 常州机电职业技术学院 | 一种汽车排气系统余热回收利用装置及回收利用方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1285168A1 (ru) * | 1985-08-01 | 1987-01-23 | Институт технической теплофизики АН УССР | Глушитель шума выхлопа двигател внутреннего сгорани |
Family Cites Families (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3879229A (en) * | 1972-04-19 | 1975-04-22 | William W Gilbert | Tubular thermopile |
DE2433591A1 (de) * | 1974-07-12 | 1976-01-22 | Otto Pulch | Thermoelektrischer generator |
US4018046A (en) * | 1975-07-17 | 1977-04-19 | Avco Corporation | Infrared radiation suppressor for gas turbine engine |
GB2044359B (en) * | 1979-03-16 | 1982-10-27 | Rolls Royce | Gas turbine engine air intakes |
GB2114229B (en) * | 1981-11-03 | 1984-11-21 | Rolls Royce | Gas turbine engine infra-red radiation suppressor |
US5699965A (en) * | 1989-06-30 | 1997-12-23 | Sikorsky Aircraft Corporation | Infrared suppressor for a gas turbine engine |
US6134879A (en) * | 1989-12-21 | 2000-10-24 | United Technologies Corporation | Suppression system for a gas turbine engine |
JP2691051B2 (ja) * | 1990-05-28 | 1997-12-17 | 三菱重工業株式会社 | 航空機用ガスタービンエンジン |
US5554819A (en) * | 1992-01-22 | 1996-09-10 | Baghai-Kermani; A. | Method and apparatus for the thermoelectric generation of electricity |
WO2001061768A1 (en) * | 2000-02-18 | 2001-08-23 | Motorola Inc. | Thermoelectric power generator for an aircraft |
CN1330083C (zh) * | 2003-05-16 | 2007-08-01 | 浙江大学 | 一种热电式微型电源 |
CN100397671C (zh) * | 2003-10-29 | 2008-06-25 | 京瓷株式会社 | 热电换能模块 |
JP2005269713A (ja) * | 2004-03-16 | 2005-09-29 | Toyota Motor Corp | 熱発電装置 |
JP2005295725A (ja) * | 2004-04-01 | 2005-10-20 | Toyota Motor Corp | 熱電発電装置 |
JP2006062439A (ja) * | 2004-08-25 | 2006-03-09 | Ishikawajima Harima Heavy Ind Co Ltd | 熱気球の電源装置 |
US20060118157A1 (en) * | 2004-12-03 | 2006-06-08 | Caterpillar Inc | Thermoelectric generator and control system |
JP2009087955A (ja) * | 2005-01-12 | 2009-04-23 | Showa Denko Kk | 熱電変換システムを有する廃熱回収システム |
FR2900386B1 (fr) * | 2006-04-28 | 2008-06-20 | Eurocopter France | Installation motrice pour aeronef a voilure tournante |
AU2007351593A1 (en) * | 2006-06-09 | 2008-10-23 | Bell Helicopter Textron Inc. | Engine exhaust system with directional nozzle |
US7985918B2 (en) * | 2006-12-14 | 2011-07-26 | Thermohex, Llc | Thermoelectric module |
US8100216B2 (en) * | 2006-12-19 | 2012-01-24 | Bradley Wayne Bartilson | Hybrid drivetrain with waste heat energy conversion into electricity |
US9018512B2 (en) * | 2007-12-21 | 2015-04-28 | The Boeing Company | Thermoelectric generation system |
JP2009293390A (ja) * | 2008-06-02 | 2009-12-17 | Honda Motor Co Ltd | ガスタービンエンジン |
FR2942077B1 (fr) * | 2009-02-06 | 2013-08-16 | Turbomeca | Generation thermoelectrique pour turbine a gaz |
FR2945268B1 (fr) * | 2009-05-05 | 2013-05-17 | Airbus France | Generateur electrique sur une partie tournante de turbopropulseur |
US8484983B2 (en) * | 2009-12-07 | 2013-07-16 | The Boeing Company | Thermoelectric generator on an aircraft bleed system |
US8578696B2 (en) * | 2010-08-03 | 2013-11-12 | General Electric Company | Turbulated arrangement of thermoelectric elements for utilizing waste heat generated from turbine engine |
US20120118345A1 (en) * | 2010-11-15 | 2012-05-17 | The Boeing Company | Thermal integration of thermoelectronic device |
-
2011
- 2011-03-18 EP EP11425066A patent/EP2500269A1/en not_active Withdrawn
-
2012
- 2012-03-16 JP JP2012059546A patent/JP2012197073A/ja not_active Ceased
- 2012-03-16 IN IN783DE2012 patent/IN2012DE00783A/en unknown
- 2012-03-16 US US13/422,855 patent/US8939397B2/en active Active
- 2012-03-16 RU RU2012110189/11A patent/RU2595735C2/ru active
- 2012-03-17 EP EP12160021.7A patent/EP2500270B1/en active Active
- 2012-03-19 CN CN201210073379.XA patent/CN102689691B/zh active Active
- 2012-03-19 KR KR1020120027872A patent/KR101872867B1/ko active IP Right Grant
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1285168A1 (ru) * | 1985-08-01 | 1987-01-23 | Институт технической теплофизики АН УССР | Глушитель шума выхлопа двигател внутреннего сгорани |
Non-Patent Citations (1)
Title |
---|
Энциклопедия ";Авиация"; под ред. Г.П.Свищева, ЦАГИ им. проф. Н.Е.Жуковского, изд. ";Большая Российская энциклопедия";, Москва, 1994, сс.131, 143;WO 2001061768 A1, 23.08.2001;WO 2010089505 A1, 12.08.2010;DE 2433591 A1, 22.01.1976. * |
Also Published As
Publication number | Publication date |
---|---|
CN102689691A (zh) | 2012-09-26 |
EP2500270A2 (en) | 2012-09-19 |
EP2500270A8 (en) | 2012-12-12 |
US20120233988A1 (en) | 2012-09-20 |
RU2012110189A (ru) | 2013-09-27 |
EP2500270A3 (en) | 2013-10-23 |
EP2500269A1 (en) | 2012-09-19 |
CN102689691B (zh) | 2016-02-17 |
EP2500270B1 (en) | 2015-08-26 |
KR20120106660A (ko) | 2012-09-26 |
IN2012DE00783A (ru) | 2015-08-21 |
US8939397B2 (en) | 2015-01-27 |
KR101872867B1 (ko) | 2018-07-02 |
JP2012197073A (ja) | 2012-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2595735C2 (ru) | Летательный аппарат, выполненный с возможностью висения | |
US20210039798A1 (en) | Propulsion system and methods of use thereof | |
US10138899B2 (en) | Electric propulsion assembly for an aircraft | |
CA2782972C (en) | Thermoelectric generator on an aircraft bleed system | |
US10533481B2 (en) | Thermal electric assembly attached on an outer surface of a hot section of a gas turbine engine to generate electrical power | |
US8973377B2 (en) | Thermoelectric power generation using aircraft fuselage temperature differential | |
US11292604B2 (en) | Integrated heat management for hybrid propulsion | |
US20130228647A1 (en) | Rotary Wing Aircraft Propulsion System | |
US20170159563A1 (en) | Method and system for pre-cooler exhaust energy recovery | |
JP6990916B2 (ja) | 熱電変換発電部を具備するタービンおよびこのようなタービンを具備する乗り物 | |
US9999164B2 (en) | Cooling apparatus for cooling electronic device in aircraft | |
CN205022878U (zh) | 无人直升机 | |
CN209479968U (zh) | 多旋翼飞行平台 | |
US20240166358A1 (en) | System and method for generating electrical energy from thermal waste energy and removing thermal waste energy in an aircraft | |
CN106712707A (zh) | 一种高空飞行器太阳能电池板的散热和温差发电装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PD4A | Correction of name of patent owner | ||
PC43 | Official registration of the transfer of the exclusive right without contract for inventions |
Effective date: 20200512 |
|
PD4A | Correction of name of patent owner |